
www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1803087 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1420

An Alacritous Compression by Amalgamating

Modified Adaptive Huffman and Lempel-Ziv-Welch

Algorithm

Suman Laha

Guru Ghasidas Vishwavidyalaya

Koni, Bilaspur, CG-495009.

Abstract: Compression refers to reducing the amount of data bits which used to represent store and/or transmit file content, without

excessively reducing the amount of the input data. Data Compression technique can enables exact reproduction of the input data on

decomposition which leads to loss in compressed data. The Adaptive Huffman Algorithm with FGK process used to compress the

particular set of files without loss of data but the expected result of compression is very poor. To overcome the poor compression, it

will be modified along with Vitter algorithm. Vitter Algorithm helps to compress the total number of data files and to produces the

better efficiency but the drawback was the execution time of data file. Since it requires more execution time, more space, results are in

in efficient of the compressed data. So to rectify the arising problems, this paper introduced Modified Adaptive Huffman algorithm

along with Lempel-Ziv-Welch (LZW) Algorithm. Lempel-Ziv-Welch is a data based technical algorithm which compresses the

repetitive sequences of data very well. LZW requires no earlier data about the information stream and it can pack the info stream in

one single go with its straight forwardness and enabling quick execution to bring the first content information document with highest

compression ratio.

Keywords: Data Compression, FGK, Vitter Algorithm, High compression ratio, Data File.

1. INTRODUCTION

Data compression is the way toward altering, encoding or changing over the bits structure of information such that it devours less

space on disk. It supports dropping the storage size of one or more data occasions or elements. Data compression is also known as

source coding or bit-rate reduction. Data compression empowers sending a data protest or file rapidly finished a network or the

Internet and in upgrading physical capacity assets. Data compression has wide implementation in computing services and solutions,

specifically data communications. Data compression works through a few packing systems and programming arrangements that use

information compression algorithms to lessen the information measure. A typical information compression strategy evacuates and

replaces dull information components and images to lessen the information estimate.

The viewed picture compression utilizing basic coding procedures called Huffman .Discrete Wavelet Transform (DWT) coding

and fractal algorithm is done. These systems are straightforward in usage and use less memory. Huffman coding system includes in

lessening the repetitive information in input pictures.DWT can have the capacity to enhance the nature of compressed picture [1].The

paper gives a philosophy to loss information pressure in keen appropriation frameworks utilizing the particular esteem decay strategy.

The clarified strategy is prepared to do fundamentally lessening the volume of information to be transmitted through the

correspondences organize and precisely reproducing the first information [2]. There are two classifications of pressure systems

utilized with computerized illustrations, loss and lossless. While every utilization distinctive procedures to pack records, both have a

similar point. To search for copy information in the realistic and utilize a considerably more conservative information portrayal. Using

this approach, the signal is partitioned into a set of 8 samples and each set is DCT-transformed. The least-significant transform

coefficients are removed before transmission and are filled with zeros before an inverse transform [3]. Loss and Lossless each have

different strategies which are utilized by various record organizes and accomplish distinctive outcomes. Accordingly not all loss or

lossless organizations will utilize similar techniques. It is past the extent of this Unit to take a gander at these techniques in detail so

you won't be surveyed on them. The Unit entitled Digital Imaging: Bitmaps covers compression strategies in more detail. If you are a

not unclear about this, the following may help:

 Loss compression methods include DCT (Discreet Cosine Transform), Vector Quantization and Huffman coding

 Lossless compression methods include RLE (Run Length Encoding), string-table compression, LZW (Lempel Ziff Welch)

and zlib.

In this it is to analyze the challenges and openings in the arrangement of adaptable remote structures to get a handle on the

colossal data time frame. On one hand, study the front line arranging models and banner handling frameworks adaptable for managing

tremendous data development in remote frameworks [4]. Compression strategies are also called algorithms, which are figuring’s that

are utilized to pack files. Associations that make record positions make their own specific algorithms and battle with each other to

make the best game plan.

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1803087 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1421

The work concerns the ensured organization of 3D remedial pictures, with the essential point that such organization must occur in

an absolutely clear manner for the end-customer, paying little regard to the computational and frameworks organization capacities

may use [5]. Algorithms look for monotonous data, i.e. repeat regards that aren't required, in the reasonable and make another

depiction of the data. This depiction influences a more diminutive archive to appraise yet keeps the vital data for demonstrating the

sensible. The compression procedure starts by linearizing multi-dimensional preview data.

The key thought is to fit/foresee the progressive data focuses with the best fit determination of bend fitting models [6]. Basically

when you take a gander at a compacted document you should see no or little distinction in the realistic. The paper surveys the

improvement and pattern of data stream bunching and examines run of the mill data stream grouping algorithms clarified as of late,

for example, Birch algorithm, Local Search algorithm, Stream algorithm and CluStream algorithm [7].

The target of this examination is to outline computationally proficient designs for executing discrete wavelet change based

ultrasonic three-dimensional (3D) information compression algorithm on a reconfigurable ultrasonic framework on-chip (SoC)

equipment stage [8]. Utilizing exact perceptions that tactile information have solid spatiotemporal compressibility, this paper clarifies

a novel compressive information accumulation plot for remote sensor systems [9]. A CODEC (compacted/decompressed) is utilized

complete the algorithm to spare a record in a packed arrangement and open a compacted document. CODECs can be executed in

either equipment or programming. This paper presents flywheel, a HTTP proxy service that expands the life of versatile information

designs by compacting reactions in-flight between starting point servers and customer programs [10].

The development of the Lempel-Ziv-Welch (LZW) [11] Coded Probabilistic Finite State Automata (LZW-Coded PFSA) to

arrange exercises, for example, strolling, hopping, running, midriff pivots, and shoulder turns. The PFSA uncover the hidden design

of a given action and characterize it without making any an earlier presumptions by gathering designs from the sensor estimations.

LZW-Coded PFSA select the ideal variable length state from the time-arrangement information and pack with effectiveness.

In the modified Adaptive Huffman algorithm the repeated data should be coded with another symbol. So it takes more codal

symbols ,occupies more space and increases the compression and decompression timings. Thus to code the repeated data’s and to

classify the similar data’s, this paper introduced LZW algorithm in Adaptive Huffmon algorithm. The rest of the paper is organized as

related researches in the section 2,the section 3 comprises the implementation of Adaptive Huffman algorithm with LZW, section 4

comprises of comparison results and analysis followed by references.

2. Related Research

Tooth Zhang et.al,[12] explained a constant data compression and adjusted convention method for wide-zone estimation

frameworks (WAMS). The compression algorithm joins special case compression (EC) with swing entryway inclining (SDT)

compression. The compression rationale is intended to play out this algorithm progressively. Choice of compression parameters and

data remaking is displayed. An adjusted convention is presented by enhancing the organization of data outlines characterized by IEEE

standard C37.118 for compacted data parcels. The clarified compression system and convention were connected to the phasor

estimation units (PMUs) of a hydropower plant in Guizhou Power Grid in Southwest China. A low-recurrence wavering occurrence

was recorded by this system. The crude, packed and remade data were broke down to check the compression and decide the precision

of the clarified method. Additionally, the wavelet-based data compression, the independent EC and SDT are contrasted and the

clarified compression procedure. The compression proportions of the ESDC will reach in the scope of 6 to 11, and declines the

correspondence data by roughly 75% just with not more precision progressively for both the relentless and dynamic states.

Nandita Vijaykumar et.al,[13] presented the Core-Assisted Bottleneck Acceleration (CABA) structure that utilizes sit without

moving on-chip assets to lighten diverse bottlenecks in GPU execution. CABA gives adaptable systems to consequently produce

"help twists "that execute on GPU centers to perform particular errands that can enhance GPU execution and efficiency. CABA

empowers the utilization of sit out of gear computational units and pipelines to reduce the memory transmission capacity bottleneck,

e.g. By utilizing help twists to perform data compression to exchange less data from memory. On the other hand, a similar structure

can be utilized to deal with situations where the GPU is bottlenecked by the accessible computational units, in which case the memory

pipelines are sit and can be utilized by CABA to accelerate calculation, e.g., by performing remembrance utilizing help warps. CABA

is a general substrate that can lighten the memory transmission capacity bottleneck in present day GPU frameworks by empowering

adaptable executions of data compression algorithms. To alleviate a wide range of framework bottlenecks in throughput-arranged

designs, and there is not any more effective usage.

Cristian Perra et.al,[14] demonstrated the Plenoptic images are obtained from the projection of the light intersection a framework

of miniaturized scale focal point clusters which reproduces the scene from various bearing into a camera gadget sensor. Plenoptic

images have an alternate structure regarding standard computerized images, and novel algorithms for information compression. It

clarifies an algorithm for the compression of plenoptic images. The smaller scale images creating a plenoptic picture are prepared by a

versatile expectation device, going for lessening information relationship before entropy coding happens. The initial assumption

provides a better understanding of the plenoptic signal structure but have to leverage the development of novel compression

algorithms with limited compression ratio

Yafei Xing et.al, [15] explained a Holographic data assume a vital part in late three-dimensional imaging and additionally

minuscule applications. Colossal measures of capacity limit will be included for this sort of data. In this way, it winds up important to

create productive multi dimensional image compression plans for capacity and transmission purposes. It center around the moved

separation data, acquired by the stage moving algorithm, where two arrangements of distinction data should be encoded. All the more

definitely, a divisible vector lifting plan is researched so as to abuse the two-dimensional attributes of the holographic substance. In

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1803087 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1422

addition, the clarified deterioration has been adjusted to the data substance. Because of the specific structures of such data, the

expanding expectation channel length increases just regarding bitrate sparing and visual nature of reproduction.

Chunsheng Zhu et.al,[16] explained a preparing of the tangible data in WSN– MCC incorporation, by distinguishing the basic

issues concerning WSN– MCC coordination and clarifying a novel tactile data handling system, which goes for transmitted attractive

tangible data to the portable clients in a quick, solid, and secure way. The clarified structure could drag out the WSN lifetime,

diminish the capacity necessities of the sensors and the WSN entryway, and lessen the movement load and transfer speed prerequisite

of tactile data transmissions. Furthermore, the structure is fit for checking and anticipating the future pattern of the tangible data

movement, and in addition enhancing its security. It gave system equipped for upgrading the system lifetime, the capacity

prerequisite, the security and observing execution of WSNs, and the security of the transmitted tactile data and of decreasing the

movement and transfer speed required for tangible data transmissions and the distributed storage and handling overhead. The

execution of the system empowers the portable clients to safely acquire their coveted tangible data speedier however it neglects to

retrieve.

3. An Innovation of Efficient Lossless Text Data Compression Techniques:

The improved Huffman Coding algorithm works in two phases to compress the text data specially in the numeric data and

symbolic data. This paper presents different data compression methodologies performing the lossless data to compress the data further

and to produce the final output. The original text data file is compressed by Adaptive Huffman Algorithm along with the FGK process

only with the particular set of files. To compress large number of files the FGK process along with the Vitter algorithm is introduced

to compress the total number of data files. This algorithm was named as Modified Adaptive Huffman Algorithm. In modified

Adaptive Huffman algorithm each numeric code and the corresponding binary codes will be generated dynamically to obtain the

compressed binary output. But the generated binary code forgets to identify the repeated data’s, it codes the similar data’s separately.

Hence it occupies more space, more time and efficiency to bring the original output data’s. So modified Adaptive Huffman coding

techniques has a need for Efficient Lempel-Ziv-Welch (LZW) to identify the repeated datas.LZW algorithm gets the modified input

data’s from the Adaptive Huffman Algorithm identifies the repeated data’s and symbols the repeated data in a single code with the

highest compression ratio. Then the data’s will be decoded within LZW provides the output stream in one single pass with simplicity

and fast execution without loss in data. The following figure 1 explains the process of lossless data compression.

Figure 1: Architecture for Lossless Data Compression Technique

Lossless Data Compression

 Input the Text Data file

Adaptive Huffman Algorithm

 FGK Algorithm

Vitter algorithm

improve the

compression ratio

Compressed data file

Send the Compressed data file to Efficient

LZW technique

Perform the encoding and decoding

operation

Provide the Highest Compression ratio

Output Original Text Data File

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1803087 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1423

3.1 Compression of Input Data by Adaptive Huffman coding with FGK and Vitter Algorithm

Adaptive Huffman coding is likewise called Dynamic Huffman coding. It is an adaptive coding system in view of Huffman

coding. It grants assembling the code as the images are being transmitted, having no underlying information of source circulation, that

permits one-pass encoding and adjustment to changing conditions in data. The advantage of one-pass strategy is that the source can be

encoded progressively, however it turns out to be more touchy to transmission blunders, since only a solitary misfortune ruins the

entire code. There are various usage of this strategy, the most remarkable are FGK (Faller-Gallager-Knuth) and Vitter algorithm.

3.1.1 FGK (Faller-Gallager-Knuth) Algorithm:
The reason for algorithm FGK is the Sibling Property. A double code tree with non negative weights has the sibling property if

every hub (aside from the root) has a sibling and if the hubs can be numbered arranged by no diminishing weight with every hub

contiguous its sibling. Moreover the parent of a node is higher in the numbering. A binary prefix code is a Huffman code if and only if

the code tree has the sibling property. In this sibling model is described in Fig 2.

 Fig: 3.2 Process of FGK Algorithm

Figure 2: Process of FGK Algorithm

Note that node numbering corresponds to the order in which the nodes are combined by Huffman’s algorithm, first nodes 1 and 2,

then nodes 3 and 4.

Algorithm FGK compares favorably with static Huffman code, if we consider also overhead costs. If T=total number of bits

transmitted by algorithm FGK for a message of length t containing n distinct symbols, then the equation is,

2421 ntSTnS

 (1)
Where S is the execution of the static Huffman, t is the length and n is an image. So the execution of algorithm FGK is never

much more regrettable than twice ideal. Since the FGK Algorithm has a few downsides about the hub or-sub tree swapping, so here

utilizing the Vitter disclosed algorithm to enhance it.

3.2.3 Vitter Algorithm:

Vitter Algorithm presents two changes over algorithm FGK, calling the new plan algorithm V. As a tribute to his work, the

algorithm is turned out to be well known with the letter flipped topsy turvy algorithm V. Swapping of hubs amid encoding and

interpreting is difficult. In FGK algorithm the quantity of changing (considering a double cost for the updates that move a changed

node two levels higher) is bounded by]2/[td , where dt is the length of the added symbol in the old tree (this bound require some

effort to be proved and is due to the work of Vitter). In algorithm V, the number of changing is bounded by 1. Moreover algorithm V,

7

11(f

)

32

21

11
9

5(c)
5

3(a)
4(b)

5(d) 7(e)

10

8

2

4 6
3

9

11

1

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1803087 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1424

not only minimize
iilw as Huffman and FGK, but also iMaxl

, i.e. the height of the tree, and il , i.e. is better suited to

code next symbol, given it could be represented by any of the leaves of the tree. When transmit an NYT symbol and have to transmit

code for the NYT node, then for its generic code. For every symbol that is already in the tree, only have to transmit code for its leaf

node. In this operation is performed by Figure 3.

Figure 3: Performance of Vitter Algorithm

The output of the "abb" gives 01100001 001100010 11.The execution of the NYT image transmission is at first with an exhaust

tree. For "a" transmit its binary code. Then NYT brings forth two tyke hubs: 254 and 255, both with weight 0. Increment weight for

root and 255. Code for "a", related with hub 255, is 1.For "b" transmit 0 (for NYT hub) at that point its binary code. And the NYT

brings forth two kid hubs: 252 for NYT and 253 for leaf hub, both with weight 0. Increment weights for 253, 254, and root. To keep

up Vitter's invariant that all leaves of weight w continue (in the certain numbering) every interior hub of weight w, the branch

beginning with hub 254 ought to be swop (regarding images and weights, yet not number requesting) with hub 255. Code for "b" is

11.For the second "b" transmit 11.

At that point the comfort of clarification this progression doesn't precisely take after Vitter's

algorithm, however the impacts are identical. At last go to leaf hub 253. Notice they have two squares with weight 1. Hub 253 and

254 is one square (comprising of leaves), hub 255 is another piece (comprising of inward hubs). For hub 253, the greatest number in

its piece is 254, so swap the weights and images of hubs 253 and 254. Presently hub 254 and the branch beginning from hub 255

fulfill the Slide And Increment condition and consequently should be exchange. Finally increment hub 255 and 256's weight. Future

code for "b" is 1, and for "an" is currently 01, which mirrors their recurrence. The accompanying

figure is clarified algorithm of including an image.

0

0

0

0

1

1
1

2

1

1

1

3

2

1

NYT 256

NYT 254

256

a 255

NYT

252

a 254

256

25

5

b 253

NYT

252

a 253

b 255

256

254

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1803087 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1425

Figure 4: Algorithm for adding a symbol

These two targets are come to through another numbering plan, called implicit numbering. The nodes of the tree are numbered in

expanding request by level; nodes on one level are numbered lower than the nodes on the following more elevated amount. Nodes on

a similar level are numbered in expanding request from left to right. On the off chance that this numbering is satisfied (and in FGK it

isn't for the most part satisfied), certain sorts of updates can't occur.

The way to limit the other sort of trades is to keep up the accompanying invariant. For each weight w, all leaves of weight w go

before (in the verifiable numbering) every inside hub of weight w. The exchanges, in the algorithm V, are intended to reestablish

certain numbering, when another image is perused, and to safeguard the invariant. In the event that T=total number of bits transmitted

by algorithm V for a message of length t containing n particular images, at that point the condition is,

1221 ntSTnSV

 (2)

Even from a pessimistic standpoint at that point, Vitter's versatile technique may transmit one more piece for each code word than

the static Huffman strategy. Observationally, algorithm V marginally outflanks algorithm. In this execution isn't fulfilled, so the

Huffman coding methods were offered for Lempel-Ziv-Welch (LZW) for information based procedure. This strategy will enhance the

execution of compression.3.3 Innovation on Efficient LZW (Lempel–Ziv–Welch) Compression technique

The LZW algorithm is an exceptionally normal compression strategy. This algorithm is ordinarily utilized as a part of GIF and

alternatively in PDF and TIFF. Unix's pack charge, among different employments. It is lossless, which means no data is lost when

compacting. The algorithm is easy to execute and has the potential for high throughput in equipment usage. It is the algorithm of the

generally utilized Unix file compression utility pack, and is utilized as a part of the Zip file design. The Idea depends on reoccurring

examples to spare data space. LZW is the chief strategy for broadly useful data compression because of its straightforwardness and

adaptability. It is the premise of numerous PC utilities that claim to twofold the limit of your hard drive.

3.3.1 Working Principle of LZW

LZW compression works by perusing an arrangement of images, gathering the images into strings, and changing over the strings

into codes. Since the codes consume up less space than the strings they supplant, to get compression. Trademark highlights of LZW

incorporates,

 LZW compression utilizes a code table, with 4096 as a typical decision for the quantity of table passages. Codes 0-255 in the

code table are constantly appointed to speak to single bytes from the information document.

 When encoding starts the code table contains just the initial 256 sections, with the rest of the table being spaces.

Compression is accomplished by utilizing codes 256 through 4095 to speak to groupings of bytes.

 As the encoding proceeds with, LZW distinguishes rehashed arrangements in the information, and adds them to the code

table.

 Decoding is achieved by taking each code from the compressed file and translating it through the code table to find what

character or characters it represents.

Example: ASCII code. Regularly, every character is put away with 8 binary bits, permitting up to 256 one of a kind images for the

information. This algorithm tries to stretch out the library to 9 to 12 bits for every character. The new interesting images are

comprised of blends of images that happened beforehand in the string. It doesn't generally pack well, particularly with short, various

strings. However, is useful for compacting repetitive information, and does not need to spare the new lexicon with the information,

this technique can both pack and uncompressed information.

leaf_ to_ increment = NULL

S = pointer to the leaf node containing the next symbol

IF (S is NYT) THEN

Extend P by adding two children

Left child becomes new NYT and right child is the new symbol leaf

node

S = parent of new symbol leaf node

leaf_ to_ increment = Right Child of p

ELSE

Swap S with leader of its block

IF (new p is sibling to NYT) THEN

leaf_ to_ increment = S

S = parent of p

WHILE (S != NULL)

Slide_ And_ Increment(p)

IF (leaf_ to_ increment != NULL)

Slide_ And_ Increment(leaf_ to_ increment)

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1803087 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1426

3.3.2 Implementation of Efficient LZW

The possibility of the compression algorithm is the accompanying: as the information is being handled, a content information

keeps a correspondence between the longest experienced words and a rundown of code esteems. The words are supplanted by their

relating codes thus the info record is compacted. Consequently, the effectiveness of the algorithm increments as the quantity of long,

tedious words in the info information increments. Compression procedure of LZW is to Adding the static Huffman execution and

Vitter execution. Therfore the String Table is,

VSST

 (3)

Where ST is the string table, S is the Static Huffman performance and V is the Vitter. This equation is to perform the encoding

and decoding performance.

Encoding LZW

Use the LZW algorithm to compress the string: BABAABAAA.The steps involved are systematically shown in the diagram

below.

Table 1: LZW Compression Step 1

Table 2: LZW Compression Step

Table 3: LZW Compression Step 3

Encoder Output String Table

Output

Code

Representation Code word String

66 B 256 BA

Encoder Output String Table

Output

Code

Representation Code word String

66 B 256 BA

65 A 257 AB

BABAABAAA

S=B

V=Empty

C=

BABAABAAA

S=A

V=Empty

BABAAB

AAA

S=A

V=Empty

C=

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1803087 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1427

Table 4: LZW Compression Step 4

Encoder Output String Table

Output Code Representation Code word String

66 B 256 BA

65 A 257 AB

256 BA 258 BAA

257 AB 259 ABA

Table 5: LZW Compression Step 5

Table 6: LZW Compression Step 6

Encoder Output String Table

Output Code Representation Code word String

66 B 256 BA

65 A 257 AB

256 BA 258 BAA

Encoder Output String Table

Output Code Representation Code word String

66 B 256 BA

65 A 257 AB

256 BA 258 BAA

257 AB 259 ABA

65 A 260 AA

BABAABAAA

S=A

V=A

C=

BABAABAAA

S=AA

V=Empty

BABAABAAA

S=A

V=Empty

C=

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1803087 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1428

Figure 5: Pseudo code for LZW Encoding

The compressed values are <66><65><256><257><65><260>.In this values to decompressed by using LZW technique. The

following figures are explaining the decompression process.

LZW Decoding:

Use LZW to decompress the output sequence of : <66><65><256><257><65><260>

The steps involved are systematically shown in the diagram below.

Table 7: LZW decompression step 1

Table 8: LZW decompression step 2

Encoder Output String Table

Output Code Representation Code word String

66 B 256 BA

65 A 257 AB

256 BA 258 BAA

257 AB 259 ABA

65 A 260 AA

260 AA

Decoder Output String Table

String Code word String

B

A 256 BA

Initialize table with single character strings

S= first input character

WHILE not end of input stream

V = next input character

IF S + V is in the string table

ST = S + V

ELSE

output the code for S

add S + V to the string table

S = V

END WHILE

output code for S

 Old=65 S=A

<66><65><256><257><65><260> New=66 V=A

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1803087 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1429

Table 9: LZW decompression step 3

Table 10: LZW decompression step 4

Table 11: LZW decompression step 5

Decoder Output String Table

String Code word String

B

A 256 BA

BA 257 AB

Decoder Output String Table

String Code word String

B

A 256 BA

BA 257 AB

AB 258 BAA

Decoder Output String Table

String Code word String

B

A 256 BA

BA 257 AB

AB 258 BAA

A 259 ABA

 Old=256 S=BA

<66><65><256><257><65><260> New=256 V=B

 Old=257 S=AB

<66><65><256><257><65><260> New=257 V=A

 Old=65 S=A

<66><65><256><257><65><260> New=66 V=A

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1803087 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1430

Figure 6: Pseudo Code for LZW Decompression Algorithm

Finally the LZW algorithm compresses repetitive sequences of data very well. Since the code words are 12 bits, any single

encoded character will expand the data size rather than reduce it.

4. Results and Discussion

This segment clarified the execution of the system of Data Compression which plays out the compression, decompression and

Compression proportion. Compression and decompression time is essentially with an adjustment in compression proportion.

Encoding is the way toward putting a grouping of characters (letters, numbers, accentuation, and certain images) into a particular

arrangement for productive transmission or capacity. Decoding is the contrary procedure - the change of an encoded organize once

again into the first succession of characters. Encoding and decoding are utilized as a part of data interchanges, systems administration,

and capacity. The clarified framework for the packed data it is utilized to actualize in the working stage of JAVA with the related

framework arrangement.4.1 Performance Analysis

The compression time, decompression time and compression ratio is must always be low for obtaining efficient result. The

compression time, decompression time and compression ratio is shown below tables.

Table 12: Compression time for Modified Adaptive Huffman with Efficient LZW

Decoder Output String Table

String Code word String

B

A 256 BA

BA 257 AB

AB 258 BAA

A 259 ABA

AA 260 AA

Initialize table with single character strings

 OLD = first input code

 Output translation of OLD

 WHILE not end of input stream

 NEW = next input code

 IF NEW is not in the string table

 S = translation of OLD

 ST = S + C

 ELSE

 S = translation of NEW

 output T

 C = first character of S

 OLD + C to the string table

 OLD = NEW

 END WHILE

 Old=65 S=A

<66><65><256><257><65><260> New=66 V=A

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1803087 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1431

File Name File Size(byte) Compression Time(m

sec)

F1 22,094 50236

F2 44,355 150731

F3 11,252 14356

This table shows the compression time of Lossless process.Here the file F1 having the file size 22,094,which has the compression

time is 50236.The file F2 having the file size 44355,which has the time of compression is 150731.Finally the file F3 having the file

size 11,252 which has the compression time is 14356 and the performance of the result is shown in below graph.

0

20000

40000

60000

80000

100000

120000

140000

160000

F1 F2 F3

compression time

File Size(bytes)

Figure 7: Compression time for Modified Adaptive Huffman with Efficient LZW

Table 13: Decompression time for Modified Adaptive Huffman with Efficient LZW

File Name File Size(byte) Decompression Time(m

sec)

F1 22,094 6142

F2 44,355 6883

F3 11,252 2317

This table shows the decompression time of Lossless process.Here the file F1 having the file size 22,094,which has the

decompression time is 6142.The file F2 having the file size 44,355,which has the time of decompression is 6883.Finally the file F3

having the file size 44,355 which has the decompression time is 2317 and the performance of the result is shown in below graph.

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1803087 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1432

0

1000

2000

3000

4000

5000

6000

7000

8000

F1 F2 F3

Decompression time

Figure 8: Decompression time for Modified Adaptive Huffman with Efficient LZW

Table 14: Compression Ratio for Modified Adaptive Huffman with Efficient LZW

File Name File Size Compression Ratio

F1 22,094 62.7633

F2 44,355 58.2336

F3 11,252 70.30235

This table shows the compression ratio of Lossless process.Here the file F1 having the file size 62,7633,which has the

compression ratio is 62.7633.The file F2 having the file size 44,355 which has the compression ratio is 58.2336.Finally the file F3

having the file size 11,252,which has the compression ratio is 70.30235 and the performance of the result is shown in below graph.

0

10

20

30

40

50

60

70

80

F1 F2 F3

Compression Ratio

Figure 9: Compression Ratio for Modified Adaptive Huffman with Efficient LZW

File Size (bytes)

File Size (bytes)

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1803087 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1433

4.2. Comparison Results

The data size utilized for compression time is 50236, 150731 and 14356.In this section perform the Comparison of Adaptive

Huffman, Efficient LZW and Modified Adaptive Huffman with Efficient LZW. In that data values are generated on Fig 4.4.

Table 15: Compression time for Adaptive Huffman, Efficient LZW and Modified Adaptive Huffman with Efficient LZW

Algorithms Compression Time

Adaptive Huffman 111646.00

Efficient LZW 235375.00

Modified Adaptive Huffman with Efficient

LZW

71774.33

From this table shows the compression time of Adaptive Huffman, Efficient LZW,and Modified Adaptive Huffman with Efficient

LZW.Here Adaptive Huffman algorithm having the compression time is 111646,Efficient LZW algorithm having the compression

time is 235375.Finally the Modified Adaptive Huffman with Efficient LZW algorithm having the compression time 71774.33 and the

performance of the result is shown in below graph.

0

50000

100000

150000

200000

250000

Adaptive

Huffman

Efficient LZW Modified

Adaptive

Huffman with

Efficient LZW

Compression time

Figure 10: Compression time for Adaptive Huffman, Efficient LZW, Modified Adaptive Huffman with Efficient LZW

The data size utilized for decompression time is 6142,6883and 2317 In this section perform the Comparison of Adaptive Huffman,

Arithmetic Efficient LZW and Modified Adaptive Huffman with Efficient LZW.In that data values are generated on Fig 4.5.

Table 16: Decompression time for Adaptive Huffman, Efficient LZW and Modified Adaptive Huffman with Efficient LZW

Algorithms Decompression Time

Adaptive Huffman 8351.333

Efficient LZW 5906.333

Modified Adaptive Huffman with Efficient LZW 4911.00

From this table demonstrates the decompression time of Adaptive Huffman, Efficient LZW,and Modified Adaptive Huffman with

Efficient LZW.Here Adaptive Huffman algorithm having the decompression time is835130.33, Efficient LZW algorithm having the

decompression time is 59063.333.Finally the Modified Adaptive Huffman with Efficient LZW algorithm having the decompression

time is 49114.00 and the execution of the outcome is appeared in underneath diagram.

Algorithms

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1803087 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1434

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Adaptive

Huffman

Efficient LZW Modified

Adaptive

Huffman with

Efficient LZW

Decompression time

Figure 11: Decompression time for Adaptive Huffman, Efficient LZW and Modified Adaptive Huffman with Efficient LZW

The data size utilized compression ratio is 62.7633, 58.2336 and 70.3025. In this section perform the Comparison of Adaptive

Huffman, Efficient LZW and Modified Adaptive Huffman with Efficient LZW. In that data values are generated on Fig 4.6.

Table 17: Compression Ratio for Adaptive Huffman, Arithmetic and Efficient LZW

Algorithms Compression Ratio

Adaptive Huffman 61.86367

Efficient LZW 62.4298

Modified Adaptive Huffman with

Efficient LZW algorithm

 66.763083

From this table shows the compression ratio of Adaptive Huffman,Efficient LZW and Modified Adaptive Huffman with Efficient

LZW algorithm. Here Adaptive Huffman algorithm having the compression ratio is 61.86367, LZW algorithm having the

compression ratio is 62.4298.Finally Modified Adaptive Huffman with Efficient LZW algorithm having the compression ratio of

66.763083 and the performance of the result is show below graph.

60.5

61

61.5

62

62.5

63

63.5

64

Adaptive Huffman Efficient LZW Modified Adaptive

Huffman with

Efficient LZW

Compression Ratio

Figure 12: Compression Ratio for Adaptive Huffman, Efficient LZW and Modified Adaptive Huffman with Efficient LZW

Algorithms

Algorithms

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1803087 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1435

In the table 4.4, 4.5 and 4.6 demonstrates the effectiveness of the clarified strategy is contrasted and the diverse strategies. The

Adaptive Huffman and Efficient LZW are utilized to give the compression and decompression time in inefficient manner. The

Compression Time of Adaptive Huffman has 111646, LZW contains 235375.00 and proposed algorithm contains 71774.33. The

Decompression Time of Adaptive Huffman has 8351.333,LZW contains 5906.333 and proposed algorithm contains 4911.00, The

Compression ratio of Adaptive Huffman has 61.86367, Efficient LZW has 62.4298 and proposed algorithm contains 66.763083.The

Explained procedure effectively enhances the productivity contrast with alternate systems. Thus it explains the proposed Adaptive

Huffman with LZW performs well compared to Adaptive Huffman and efficient LZW algorithms.

5. Conclusion

To store large number of files in limited space, the demand for compressing the data will be increased in day to day life. Hence the

essential need is to compress the data without any loss. So the paper explained the lossless compression of data using Adaptive

Huffman with LZW. The explained algorithms were implemented in Java, valuating the compression ratio, compression time and

decompression time using text files without loss. The comparisons were made with Adaptive Huffman, LZW and Arithmatic Coding.

The results showed that Huffman and Arithmetic coding techniques were offered for Lempel-Ziv-Welch (LZW) indicated the best

results with the highest compression ratio of 66.763083, followed by Adaptive Huffman and Efficient LZW with compression ratio of

61.8636 and 62.4298. It was noted that the performance of the data compression algorithms on compression time and decompression

time depend on the characteristics of the files, the different symbols and symbol frequencies. The Adaptive Hoffman with LZW

Algorithm reads the attributes of the documents, symbols, frequencies and provides the output data file as same as input data file with

efficiently on its time and ratio without the loss of any data.

References

1. Jasmi, R., Praisline, B., Perumal, and Pallikonda Rajasekaran, M. 2015. Comparison of image compression techniques using

huffman coding, DWT and fractal algorithm. Computer Communication and Informatics (ICCCI), 2015 International Conference

on. IEEE.

2. de Souza, Julio Cesar Stacchini, Tatiana Mariano Lessa Assis, and Bikash Chandra Pal. 2017. Data compression in smart

distribution systems via singular value decomposition. IEEE Transactions on Smart Grid, 8(1): 275-284.

3. Birvinskas, Darius, et al. 2015. Fast DCT algorithms for EEG data compression in embedded systems. Computer Science and

Information Systems, 12(1): 49-62.

4. Bi, Suzhi, et al. 2015. Wireless communications in the era of big data. IEEE communications magazine, 53(10): 190-199.

5. Castiglione, Arcangelo, et al. 2015. Cloud-based adaptive compression and secure management services for 3D healthcare

data. Future Generation Computer Systems, 43: 120-134.

6. Di, Sheng, and Franck Cappello. 2016. Fast error-bounded lossy HPC data compression with SZ. Parallel and Distributed

Processing Symposium, 2016 IEEE International. IEEE.

7. Ding, Shifei, et al. 2015. Research on data stream clustering algorithms. Artificial Intelligence Review, 43(4): 593-600.

8. Govindan, Pramod, et al. 2016. Hardware and software architectures for computationally efficient three-dimensional ultrasonic data

compression. IET Circuits, Devices & Systems, 10(1): 54-61.

9. Liu, Xiao-Yang, et al. 2015. CDC: Compressive data collection for wireless sensor networks. IEEE Transactions on Parallel and

Distributed Systems, 26(8): 2188-2197.

10. Agababov, V., Buettner, M., Chudnovsky, V., Cogan, M., Greenstein, B., McDaniel, S., Piatek, M., Scott, C., Welsh, M., Yin, B.

2015. Flywheel: Google's Data Compression Proxy for the Mobile Web. InNSDI, 15: 367-380.

11 .Wilson, J., Najjar, N., Hare, J., & Gupta, S. 2015. Human activity recognition using LZW-coded probabilistic finite state

automata. In Robotics and Automation (ICRA), 2015 IEEE International Conference on IEEE, 3018-3023.

12. Zhang, Fang, Lin Cheng, Xiong Li, Yuanzhang Sun, Wenzhong Gao, and Weixing Zhao. 2015. Application of a real-time data

compression and adapted protocol technique for WAMS. IEEE Transactions on Power Systems, 30(2): 653-662.

13. Vijaykumar, N., Pekhimenko, G., Jog, A., Bhowmick, A., Ausavarungnirun, R., Das, C., & Mutlu, O. 2015. A case for core-

assisted bottleneck acceleration in GPUs: enabling flexible data compression with assist warps. In ACM SIGARCH Computer

Architecture News. 43(3): 41-53.

14. Perra, C. 2015. Lossless plenoptic image compression using adaptive block differential prediction. In Acoustics, Speech and

Signal Processing (ICASSP), 2015 IEEE International Conference on IEEE, 1231-1234.

15. Xing, Yafei, et al. 2015. Adaptive nonseparable vector lifting scheme for digital holographic data compression. Applied

optics, 54(1): A98-A109.

16. Zhu, Chunsheng, Hai Wang, Xiulong Liu, Lei Shu, Laurence Yang, T. and Victor Leung, C.M. 2016. A novel sensory data

processing framework to integrate sensor networks with mobile cloud. IEEE Systems Journal, 10(3): 1125-1136.

http://www.ijcrt.org/

