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INTRODUCTION 

           In complex analysis, branch of mathematics,analytic continuation is a technique to extend the 
domain of a given analytic function. Analytic continuation often succeeds in defining further values of a 
function .In mathematics, the notion of a germ of an object in/on a topology space is an equivalence 
class of that object and others of the same kind which captures their shared local properties. In the 
topological version of Galois Theory functions of one variable it is proved that the character of location 
of the Riemann surface of a function over the complex line can prevent the representability of this 
function by quadratures.  

ABSTRACT : In this paper it is shown that analytic continuation and germ of many-valued analytic 
function that set at least the topology of this set. This is needed to construct topological version for 
germ function  of meromorphic function.  

 KEYWORDS : Analytic ,Open ,Monodromy ,Dimension,Meromorphic , Differential space 

DEFINITION: 

            Suppose ƒ is an analytic function defined on a non empty open subset U of the complex plane C. If 
V is a larger open subset of C, containing U, and F is an analytic function defined on V such that 

  F (z) = ƒ(z)      ∀𝑧 ∈ 𝑈 

 Then F is called an analytic continuation of  ƒ 

DEFINITION: 

                    Two pairs (𝑓1, ∅1) and (𝑓2, ∅2) shall be equivalent 𝑖𝑓 and only if  ∅1 = ∅2 and𝑓1 = 𝑓2 in some 
neighborhood of ∅1.The conditions for an equivalence relation are obviously fulfilled. The equivalence 
classes are called germs, or more specifically germs of analytic function 

   The set of all germs 𝐹𝜑 with φ𝜖𝐷 is called a sheaf over D; we shall denote it by 𝜎 or 𝜎𝐷 .If we are    dealing 

with germs of analytic function,𝜎𝐷 Is called the sheaf of germs of analytic function over D. 

DEFINITION: 

                    There is a projection map 𝜋: 𝜎 → 𝐷 which maps 𝐹𝜑 on φ.  For a fixed 𝜎𝜖𝐷  the inverse image 

𝜋−1(𝜑) is called the stalk over 𝜑; it is denoted by 𝜎𝜑. 
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                   I.ON THE COUNTABILITY OF MULTIVALUED ANALYTIC FUNCTIONS 

LEMMA: 1.1 

Let a neighborhood 𝑈 of the origin in the space 𝐶𝑛 be the direct product 𝑈 = 𝑈1 × 𝑈2 of a connected 
neighborhood 𝑈1 in the space 𝐶𝑛−1  and a connected neighborhood 𝑈2in the complex line𝐶1. Then any 
function 𝑓 that is analytic in the complement of the hyper plane 𝑧 = 0 in the neighborhood 𝑈 and is 
bounded of the origin can be continued analytically to the entire neighborhood𝑈. 

PROOF: 

The lemma follows from the Cauchy integral formula. Indeed,  

let us define a function 𝑓 ̅on the domain 𝑈 by the Cauchy integral  

𝑓(̅𝑥, 𝑧) =
1

2𝜋𝑖
∫

𝛾(𝑥,𝑧)

𝑓(𝑥,𝑢)𝑑𝑢

𝑢−𝑧
 

Where, 

𝑥and𝑧 are points in the domains 𝑈1 and 𝑈2, respectively. 

𝑓(𝑥, 𝑢)is the given function, and 𝛾(𝑥, 𝑧) is an integrating contour that belongs to complex line{𝑥} × 𝐶1 
in the domain 𝑈, en closes the points (𝑥, 𝑧) and (𝑥, 0), and continuously depends on (𝑥, 𝑧). 

The function 𝑓(̅𝑥, 𝑧) defines the desired analytic continuation.  

Indeed, 

         The function 𝑓 ̅is analytic in the entire domain 𝑈. 

 

According to the Riemann theorem on a removable singularity, 

This function coincides with the given function 𝑓 in a neighborhood of the origin. 

Hence  the proof 

 

THEOREM:1.2     

     If (𝑓, 𝐷) is a function  element and if 𝛾 is a curve which starts at the center of 𝐷,then (𝑓, 𝐷)admits at 
most one analytic continuation along 𝛾. 

PROOF: 

 If 𝛾 is covered by chains 𝜁1 = {𝐴0,𝐴1,𝐴2, … , 𝐴𝑚}    and  𝜁2 = {𝐵0, 𝐵1, 𝐵2, … , 𝐵𝑛}, 
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  Where,  

𝐴0 = 𝐵0 = 𝐷. 

  If(𝑓, 𝐷) can be analytically continued along 𝜁1 to a function element (𝑔𝑚, 𝐴𝑚),and   

  If (𝑓, 𝐷)can be analytically continued along 𝜁2 to (ℎ𝑛, 𝐵𝑛), 

Then, 

𝑔𝑚 = ℎ𝑛in𝐴𝑚 ∩ 𝐵𝑛. 

 Since, 

 𝐴𝑚and𝐵𝑛  are, By assumption,   discs with the same centre 𝛾(1), 

 It follows that , 

𝑔𝑚andℎ𝑛 have the same expansion in powers of 𝑧 − 𝛾(1), and we may as well replace 𝐴𝑚 and𝐵𝑛 by 
whichever is the larger one of the two. 

 With this agreement, the conclusion is that 𝑔𝑚 = ℎ𝑛. 

 Let 𝜁1 and 𝜁2  be as above.  

There are numbers , 

 0= 𝑠0 < 𝑠1 < ⋯ < 𝑠𝑚 = 1 = 𝑠𝑚+1 and  0 = 𝜎0 < 𝜎1 < ⋯ < 𝜎𝑛 = 1 = 𝜎𝑛+1 

 

Such that , 

𝛾([𝑠𝑖, 𝑠𝑖+1]) ⊂ 𝐴𝑖 , 𝛾([𝜎𝑗, 𝜎𝑗+1]) ⊂ 𝐵𝑗,(0≤ 𝑖 ≤ 𝑚, 0 ≤ 𝑗 ≤ 𝑛). 

There are function elements, 

(𝑔𝑖,𝐴𝑖)~(𝑔𝑖+1, 𝐴𝑖+1)and(ℎ𝑗 , 𝐵𝑗)~(ℎ𝑗+1, 𝐵𝑗+1) 

For 0 ≤ 𝑖 ≤ 𝑚 − 1 and 0 ≤ 𝑗 ≤ 𝑛 − 1. 

Here, 

𝑔0 = ℎ0 = 𝑓. 

We claim that, 

if0 ≤ 𝑖 ≤ 𝑚 and 0 ≤ 𝑗 ≤ 𝑛, and if [𝑠𝑖, 𝑠𝑖+1] intersects[𝜎𝑖 , 𝜎𝑖+1]. 

Then, 
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(𝑔𝑖, 𝐴𝑖)~(ℎ𝑗 , 𝐵𝑗). 

Assume there are pairs (𝑖, 𝑗) for which this is wrong. 

Among them there is one for which 𝑖 + 𝑗 is minimal.  

It clear that than 𝑖 + 𝑗 > 0. 

Suppose, 

𝑠𝑖 ≥ 𝜎𝑗.then 𝑖 ≥ 1, and since [𝑠𝑖, 𝑠𝑖+1] intersects [𝜎𝑗, 𝜎𝑗+1]. 

We see that, 

𝛾(𝑠𝑖) ∈ 𝐴𝑖−1 ∩ 𝐴𝑖 ∩ 𝐵𝑗. 

The minimality  of𝑖 + 𝑗  shows that (𝑔𝑖−1, 𝐴𝑖−1)~(ℎ𝑗 , 𝐵𝑗);and  

Since, 

(𝑔𝑖−1, 𝐴𝑖−1)~(𝑔𝑖, 𝐴𝑖),Implies that (𝑔𝑖, 𝐴𝑖)~(ℎ𝑗 , 𝐵𝑗). 

This is contradicts our assumption. 

     The possibility 𝑠𝑖 ≤ 𝜎𝑗 . 

      In particular, 

                          It holds for the pair(𝑚, 𝑛). 

Hence the proof. 

THEOREM:1.4 

Suppose {𝛾𝑡}0 ≤ 𝑡 ≤ 1) is one- parameter family of curves from 𝛼 and 𝛽in the plane,  D is a disc with 
center at 𝛼, and the function element (𝑓, 𝐷) admits analytic continuation along each 𝛾𝑡, to an element 
(𝑔𝑡, 𝐷𝑡).  Then𝑔1 = 𝑔0. 

PROOF: 

Fix  𝑡 ∈ 𝐼. there is chain 𝜁 = {𝐴0, 𝐴1 … 𝐴𝑛} which covers 𝛾𝑡, with𝐴0 = 𝐷, 

Such that , 

(𝑔𝑡, 𝐷𝑡)is obtained by continuation of (𝑓, 𝐷) along ζ. 

There are numbers 0 = 𝑠0 < 𝑠1 < ⋯ < 𝑠𝑛 = 1 

such that, 
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𝐸𝑖 = 𝛾𝑡([𝑠𝑖, 𝑠𝑖+1]) ⊂ 𝐴𝑖(𝑖 = 0,1,2, … . , 𝑛 − 1). 

There exists an 𝜖 > 0 which is less than the distance from any of the compact sets 𝐸𝑖 to the 
corresponding open disc 𝐴𝑖. 

The uniform continuity of 𝜑 on 𝐼2 shows that there exists a 𝛿 > 0. 

Such that , 

⎸𝛾𝑡(𝑠) − 𝛾𝑢(𝑠)  ⎸ <∈       if s𝜖𝐼, 𝑢𝜖𝐼, ⎸𝑢 − 𝑡 ⎸ < 𝛿. 

Suppose, 

            𝑢satisfies these conditions  

Then, 

shows that 𝜁 covers 𝛾𝑢, and shows that both  𝑔𝑡 and 𝑔𝑢 are obtained by continuation of (𝑓, 𝐷) along this 
same chain 𝜁. 

 Hence, 

𝑔𝑡 = 𝑔𝑢. 

Thus , 

Each 𝑡 ∈ 𝐼 is covered by a segment 𝐽𝑡 . 

 Such that, 

𝑔𝑢 = 𝑔𝑡for all 𝑢𝜖𝐼 ∩ 𝐽𝑡 . 

Since, 

𝐼is compact, 𝐼 is covered by finitely many 𝐽𝑡;  and since 𝐼  is connected ,   we see in a finite number of 
steps that 𝑔1 = 𝑔0. 

Hence the proof 

THEOREM:1.5 

             Suppose Ω is a simply connected region, (𝑓, 𝐷) is a function element,𝐷 ⊂ 𝛺 and (𝑓, 𝐷) can be 
analytically continued along every curve in Ω that starts at the center of 𝐷. Then there exists 𝑔 ∈ 𝐻(𝛺) 
such that 𝑔(𝑧) = 𝑓(𝑧) for all𝑧 ∈ 𝐷. 

PROOF: 

        Let Г0 andГ1 be two curves in Ω from the center 𝛼  of D to same point𝛽 ∈ 𝛺. 

It follows that , 
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            The analytic continuation of (𝑓, 𝐷) along Г0  and Г1 lead to the same element (𝑔𝛽 , 𝐷𝛽), 

Where, 

𝐷𝛽is a disc with center at 𝛽. If 𝐷𝛽1,
 

  Then, 

(𝑔𝛽1
𝐷𝛽1

)can be obtained by first continuing (𝑓, 𝐷) to 𝛽 

Then, 

Along the straight line from 𝛽 to  𝛽1. 

 This shows that, 

𝑔𝛽1
= 𝑔𝛽in 𝐷𝛽1

∩ 𝐷𝛽. 

Hence , 

𝑔(𝑧) = 𝑔𝛽(𝑧)  ,  (𝑧 ∈ 𝐷𝛽) is there fore consistent and gives the holomorphic extension of f. 

Hence the proof. 

                  II.MODIFICATION OF TOPOLOGY OF AN ANALYTIC SET 

LEMMA:2.1 

Let a subset 𝑇 of an (𝑛 − 1)-dimensional analytic set ∑ belonging to an 𝑛-dimensional analytic manifold 
𝑀 have the following properties. 

1. The set 𝑇 is a real topological submaifold of𝑀 of co-dimension two, i.e., any point 𝑎𝜖𝑇 has a 
neighborhood  𝑈𝑎 in 𝑀  such that the set  𝑈𝑎 ∩ 𝑇 is a topological sub manifold in the domain 𝑈𝑎 of real 
dimensional 2𝑛 − 2. 

 2. The set ∑\𝑇 is a closd subset of ∑ of real co-dimension ≥ 2 (𝑖, 𝑒. , ∑\𝑇 is a union of finitely many real 
topological sub manifolds of 𝑀 of dimension ≤ 2𝑛 − 4). 

Then any (𝑛 − 1)-dimensional irreducible component of ∑ intersects exactly one connected component 
of the topological manifold 𝑇. More over, any connected component of 𝑇 is dense in the corresponding 
irreducible (𝑛 − 1)-dimensional component of the analytic set∑. 

PROOF: 

Lemma is a consequence of the following facts: 

a) A set of co-dimension two cannot separate a topological manifold, 
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b) If all singular points are deleted from a irreducible component of an analytic set, then the remaining 
manifold is connected. 

c) Let us first show that  

       Any connected component 𝑇0 of the set 𝑇 intersects exactly one irreducible component of theset ∑. 

Indeed, the set ∑\∑𝐻 is of real dimension ≤ 2𝑛 − 4; 

Therefore, 

             This set cannot separate the connected(2𝑛 − 2)-dimensional real manifold 𝑇0into parts. 

Thus, 

       The 𝐷𝑖 ∩ ∑𝐻.Since the set 𝐷𝑖\∑𝐻 is dense in the component 𝐷𝑖  and the set 𝐷𝑖  is closed,  

It follows that, 

𝑇0is entirely contained in the irreducible component 𝐷𝑖  of the set ∑.  

Suppose that, 

 A point 𝑎 of 𝑇0belongs to another (𝑛 − 1)-dimensional component 𝐷𝑗 , 

𝐷𝑗 ≠ 𝐷𝑖 , 𝑜𝑓 ∑. 

However, 

             By assumption, the set 𝑇 and hence its component 𝑇0 are open in the topology of ∑. 

Since,  

        The set 𝐷𝑗 ∩ ∑𝐻 is dense in 𝐷𝑗 . 

It follows that. 

𝑇0contains some points of the set 𝐷𝑗 ∩ ∑𝐻, 

Which is impossible. 

Which is contradiction 

This proves the desired assertion. 

Let us now show that different connected components of the manifold 𝑇 cannot belong to the same 
(𝑛 − 1)-dimensional irreducible  component of the set ∑. 

Indeed, 
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 If all singular points and all points not belonging to the manifold 𝑇 are delete from an irreducible 
(𝑛 − 1)-dimensional component , then a connected manifold is obtained. 

Hence, 

It is covered by exactly one connected component of the manifold𝑇 

 This proves the lemma  

          

          III.TOPOLOGY OF GERMS OF MEROMORPHIC FUNCTIONS 

THEOREM:3.1 

In this case,0 is a typical value for the meromorpic germ 𝑓 =
𝑃  

𝑄
if  and only if the strict transfom of the 

curve  { 𝑃 = 0} intersects only components of the exceptional divisor 𝔇 with 𝐾(𝐸) ≤ 𝑙(𝐸). 

PROOF: 

Suppose that, 

            The value 0 is typical if and only if the family 𝑃 + 𝑐𝑄 𝑖𝑠 𝜇-constant  (for c from a neighborhood of 
0) 

If a family 𝑃𝑐of function  of two variables (𝑐 ∈ (𝒞, 0)) is 𝜇-constant then the embedded resolution of the 
curves {𝑃𝑐 = 0}  are combinatorially equivalent. 

 However these resolution are obtained by blow-ups of different points and  thus (minimal) resolution of 
the curve{𝑃0 = 0}can be not a resolution of the curve {𝑃𝑐 = 0}. 

Let us suppose that, 

  The strict transform of a branch of the curve{𝑃 = 0} intersects a component 𝐸 of the exceptional 
divisor with 𝐾(𝐸) > 𝑙(𝐸). In this in local coordinates at the point of intersection   𝑝 ̃ =𝑢𝑘. 𝑦 𝑎𝑛𝑑  𝑄 =
𝑣. 𝑥𝑙   (𝑢(0) ≠ 0, 𝑣(0) ≠ 0). 

The lifting 𝑃  ̃+𝑐 �̃� of the function 𝑃 + 𝑐𝑄 is equal  to𝑥𝑙(𝑢. 𝑥𝑘−𝑙. 𝑦 + 𝑐. 𝑣). 

Therefore, 

        Its multiplicity along the component 𝐸 is equal to 𝑙 and it is less than that one of the function 𝑝. 
Thus𝜋 is not the minimal resolution of  {𝑃 + 𝑐𝑄 = 0} for 𝑐 ≠ 0. this is contradiction. 

If the strict transform of the curve{𝑃 = 0} intersect only components of the exceptional divisor with 
𝐾(𝐸) ≤ 𝑙(𝐸), 

Then the family 𝑝 ̃+𝑐𝑄  ̃in a neighborhood of the intersection has the form 𝑥𝑘(𝑢. 𝑦 + 𝑐𝑣. 𝑥𝑙−𝑘) with 𝑙 −
𝑘 ≥ 0. 
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Thus the strict transform of the corresponding branch of the exceptional divisor.   

Therefore {𝑃 + 𝑐𝑄 = 0} has the same resolution as {𝑝 = 0} and the family is 𝜇-constant. 

 

THEOREM:3.2 

Let 𝑓 =
𝑃

𝑄
 be a germ of meromorphic  function of two variables . Then. 

a)  If the germ of the curve {𝑃 = 0} at 0 has a non-isolated singularity but  {𝑃 + 𝑐𝑄 = 0} has an isolated 
singularity (for 𝑐 small enough ) then the value 0 is atypical . 

b) If 𝑃 = 𝑅. 𝑃1 and 𝑄 = 𝑅. 𝑄1 where 𝑅 = 𝑔. 𝑐. 𝑑. (𝑃, 𝑄) and the curve {𝑃1 = 0} has an isolated singularity 

at the origin then 0 is a typical value for meromorphic germ 𝑓 if and only if (ℳ𝑓
0) = 0.  

PROOF: 

The first part follows from the definition of typical  value. 

Let us assume that, 

 {𝑃 = 0}has an isolated singularity at the origin. 

If 𝑄1(0) ≠ 0 

Then, 

𝓧(ℳ𝑓
0) = 𝒳({𝑥, 𝑦) ∈ 𝐵𝜀:𝑃1 = 𝑐} ∖{𝑅 = 0}) = 1 − 𝜇(𝑃1, 0} − (𝑃1, 𝑅)0, 

Where, 

( 𝑃1, 𝑅)0 is the intersection multiplicity of the both curves at the origin.  

Therefore, 

         The eular characteristic (ℳ𝑓
0) is equal to zero if and only if 𝑃1 has no critical point at the origin and 

(𝑃1, 𝑅)0 = 1. 

 It means that we are in the case 

𝑓 =
𝑃

𝑄
=

𝑥𝑦

𝑥
 

If 𝑄1(0) = 0   

Then, it follows from that the Euler character 

𝒳(ℳ𝑓
0)= −𝜇(𝑃, 0) +∑ 𝜇(𝑃 + 𝑐𝑄, 𝐴).𝐴∈{𝑃+𝑐𝑄=0}∩𝐵𝜀
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Let  𝑘(respectively  𝑠) be the intersection multiplicity at the origin of the curve {𝑅 = 0} with thecurve 
{𝑃1 = 0} (respectively with the curve {𝑃1 + 𝑐𝑄1 = 0}). 

At any other intersection point 𝐴 ∈ {𝑃1 + 𝑐𝑄1 = 0} ∩ 𝐵𝜀} ∖ {0} the curve {𝑃 + 𝑐𝑄 = 0} has a non-
degenerate critical point with Milnor number equals to 1. 

Let  𝑙 be the number of such points. 

 The conservation law of the intersection multiplicity gives  

𝑘 = (𝑅, 𝑃1)0 = (𝑅, 𝑃1 + 𝑐𝑄1)0 + 𝑙 = 𝑠 + 𝑙. 

Using the following formula for the Milnor number 

𝜇(𝑅𝑃1, 0) = (𝜇(𝑃1, 0) + 2(𝑅, 𝑃1)0 − 1 

And the vanishing of the Euler characteristic 𝒳(ℳ𝑓
0)  on has 

0= 𝒳(ℳ𝑓
0)= (𝜇(𝑃1 + cQ1, 0) − μ(P1, 0)) + (R, P1 + cQ1)0 − (R, P1)0. 

Since, 

         The Milnor number and the intersection multiplicity are semi continuous, 

The family 𝑃1 + 𝑐𝑄1 has to be 𝜇-constant and (𝑅, 𝑃1 + 𝑐𝑄1)0 = (𝑅, 𝑃1)0. 

Note that these two last conditions are equivalents to the fact that the family 𝑃 + 𝑐𝑄  is 𝜇-constant. 

Now the proof that  0 is typical follows from the proof of the “only if” part in the general case follows 
from the fact if 

𝑅 = 𝑔. 𝑐. 𝑑(𝑃, 𝑄) = 𝑅1
𝑛−1 … . 𝑅𝑠

𝑛𝑠and𝑄 = 𝑅. 𝑄1 and 𝑄 = 𝑅. 𝑄1 

Then, 

         The meromorphic germ 𝑓 defines the same fibration as the  meromorphic germ           𝑓 =
𝑅1….𝑅𝑆.𝑃1

𝑅1…𝑅𝑆.𝑄1
 . 
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