Power Dominator Coloring of Certain Classes of Graphs

¹Sathish Kumar K, ²Gnanamalar David N, ³ Subramanian K.G ¹Assistant Professor, ²Associate Professor and Head (retired), ³UGC-Emeritus fellow Department of Mathematics, Madras Christian College, Tambaram, Chennai, India

Abstract: Let G(V, E) be a graph. A proper coloring of a graph G assigns colors to the vertices of G, such that any two vertices joined by an edge are given different colors. A dominator coloring of a graph G is a proper coloring such that every vertex dominates all the vertices in at least one color class. Based on the concepts of dominator coloring and power domination, a new coloring concept called power dominator coloring of a graph G was introduced. The power dominator chromatic number $\chi_{pd}(G)$ is the minimum number of colors required for a power dominator coloring of a graph G. In this paper, we obtain the power dominator chromatic number of certain classes of graphs.

Index Terms – Graph Coloring, power domination, power dominator coloring, power dominator chromatic number.

I. INTRODUCTION

A graph G = (V, E) is a discrete structure with a finite set of objects, called vertices and a finite set of pairs of vertices, called edges. A proper coloring [2] of a graph *G* assigns colors to the vertices of *G* in such a way that any two adjacent vertices of *G* are assigned different colors. The chromatic number $\chi(G)$ is the minimum number of colors needed for a proper coloring of *G*. Based on the well-investigated notion of domination [4, 10] in graphs, the concept of dominator coloring [1, 3, 6, 7] of a graph *G* was introduced. A dominator coloring of a graph *G* is a proper coloring of the vertices of *G*, satisfying the property that every vertex dominates at least one color class which consists of those vertices of *G* that have the same color. The concept of power domination in a graph was introduced by Haynes et al. [9, 10] in modelling by graphs, the task of monitoring the state of an electric power system. The notion of power domination of vertices by a given vertex *u* can be described by associating a monitoring set M(u) as follows: For a vertex *u* in a graph *G*, (*i*) M(u) = N[u], the closed neighbourhood of *u* in *G* (*ii*) consider a vertex *w* which is originally not in M(u) and add this vertex *w* to M(u), whenever *w* has a neighbour $v \in M(u)$ such that all the neighbours of *v* other than *w*, are already in M(u) (*iii*) repeat Step(*ii*) until no more vertex could be added to M(u). Then we say that *u* power dominates all vertices in M(u). Combining the concepts of dominator coloring and power domination, a new variant of proper coloring called power dominator coloring called power dominator coloring of a graph *G* was introduced [11,12] which requires that every vertex of the vertex set *V* power dominates all vertices of at least one color class. The power dominator chromatic number $\chi_{pd}(G)$ is the minimum number of colors required for a power dominator coloring of *G*. Certain properties of $\chi_{pd}(G)$ were derived in [11, 12], besides computing this numbe

graphs. Here we compute $\chi_{pd}(G)$ for certain other special classes of graphs. For standard notions related to graphs and for special classes of graphs, we refer to [2, 5, 8, 11, 13, 14].

II. THE POWER DOMINATOR CHROMATIC NUMBER OF SPECIAL GRAPH CLASSES

We first consider three classes of graphs.

Definition 2.1

(*i*) A Tadpole graph T(m, n) is the graph [14] obtained by joining by an edge, a vertex of the cycle $C_m, m \ge 3$, and an end vertex of the path $P_n, n \ge 1$.

(*ii*) A spider [5] is a rooted tree in which each vertex has degree one or two, except for the root which is of degree at least 3. A leg of a spider is a path from the root to a vertex of degree one.

(*iii*) The *m*-book graph B_m is the graph [13] $S_{m+1} \times P_2$, the Cartesian product of S_{m+1} and P_2 where S_{m+1} is the star graph and P_2 is the path on two vertices.

Theorem 2.1

- (i) For the Tadpole graph $T_{m,n}$ $(m \ge 3, n \ge 1)$, the power dominator chromatic number is 3 *i.e.* $\chi_{pd}(T_{m,n}) = 3$
- (*ii*) For a Spider graph S_n of order $n \ge 5$ and having at least one leg of length 2, the power dominator chromatic number is 3 *i.e.* $\chi_{pd}(S_n) = 3$
- (iii) For the *m*-book graph B_m , with $m \ge 3$, the power dominator chromatic number is 3 *i.e.* $\chi_{pd}(B_m) = 3$.

Proof:

(*i*) Let the vertex set of the Tadpole graph $T_{m,n}$ $(m \ge 3, n \ge 1)$ be $V(T_{m,n}) = \{v_1, v_2, ..., v_m\} \cup \{u_1, u_2, ..., u_n\}$ where v_i $(1 \le i \le m)$ is on the cycle of the tadpole and u_i $(1 \le i \le n)$ is on the path. Let v_m be the vertex joined to the end vertex u_1 of the path in the Tadpole graph. Assign color 1 to the vertex v_m . The remaining vertices $v_i, 1 \le i \le m - 1$ and $u_j, 1 \le j \le n$ are colored by new colors 2 for odd *i*, *j* and 3 for even *i*, *j*. Each vertex of $T_{m,n}$ power dominates the vertex v_m with color 1 which is the only vertex in the color class 1. Note that the vertices v_1, v_{m-1}, u_1 being adjacent to v_m dominate and hence power dominate the vertex v_m . For instance, the vertex v_2 on the cycle is adjacent to v_1 and hence dominates v_1 which in turn dominates the only other vertex v_m and so, by the definition of power domination, v_2 power dominates v_m . Thus $\chi_{pd}(T_{m,n}) = 3$.

(*ii*) We consider a spider graph of order $n \ge 5$ and having at least one leg of length 2. Now the root vertex is given color 1 and in a leg of the spider, which is a path, the vertices are given colors 2, 3 alternatively. It is clear that the vertices with colors 2 and 3 power dominate the root vertex and hence the color class 1. Also the root vertex with color 1 power dominates its own color. Hence the power dominator chromatic number of a spider graph is 3.

(*iii*) The *m*-book graph B_m is the Cartesian product $S_{m+1} \times P_2$ where S_{m+1} is the star graph with a central vertex v_1 and the *m* pendant vertices v_i , $2 \le i \le m + 1$ and P_2 is the path on two vertices u_1, u_2 . The vertex set $V(B_m)$ of the *m*-book graph B_m consists of vertices (v_i, u_j) , $(1 \le i \le m + 1, 1 \le j \le 2)$ such that (v_1, u_1) and (v_1, u_2) are adjacent in B_m and are of degree m+1 while each of the remaining 2m vertices is of degree 2. We assign color 1 to the vertex (v_1, u_1) , color 2 to the vertex (v_1, u_2) . The *m* vertices (v_i, u_2) , $2 \le i \le m + 1$ are assigned the color 1 itself. Note that none of these vertices will be adjacent to (v_1, u_1) with color 1. Now the only vertex in the color class 2 is (v_1, u_2) . The vertex (v_1, u_1) and each of the vertex sufficient to (v_1, u_2) , $2 \le i \le m + 1$, dominates and hence power dominates the vertex (v_1, u_2) , the vertex (v_1, u_2) dominates itself and each of the remaining vertices (v_i, u_1) , $2 \le i \le m + 1$, power dominates (v_1, u_2) . Hence each of the vertices of B_m power dominates the color class 2. Thus $\chi_{pd}(B_m) = 3$.

We next consider another class of graphs.

Definition 2.2

The (n, m)-lollipop graph $L_{n,m}$ is the graph [14] obtained by joining by an edge, a vertex of the complete graph K_n to an end vertex of the path P_m .

Theorem 2.2

For the Lollipop graph $L_{n,m}$, $(n \ge 2, m \ge 1)$, the power dominator chromatic number is n i.e. $\chi_{pd}(L_{n,m}) = n$.

Proof

Let the vertex set of the Lollipop graph $L_{n,m}$, $n \ge 2$, be $V(L_{n,m}) = \{v_1, v_2, ..., v_n\} \cup \{u_1, u_2, ..., u_m\}$ where v_i $(1 \le i \le n)$ is on the complete graph K_n of the Lollipop and u_i $(1 \le i \le m)$ is on the path P_m . Without loss of generality, assume that the edge between K_n and P_m in the Lollipop graph, joins v_n and u_1 . Since every vertex of K_n is adjacent to every other vertex, assign distinct color i to v_i , $1 \le i \le n$. The vertices on the path P_m of $L_{n,m}$ are colored by 1 and 2 alternatively. By the definition of power dominator coloring, each of the vertices u_j , $1 \le j \le m$, power dominates the color class n. Each of the vertices v_i , $1 \le i \le n$, power dominates its own color class. Thus $\chi_{pd}(G) = n$.

III Power dominator Chromatic Number of Kragujevac tree

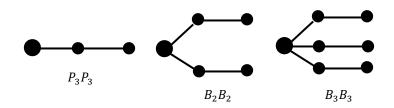
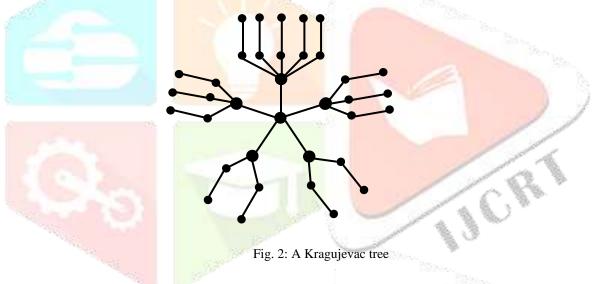


Fig. 1: Rooted trees

The path P_3 is a 3-vertex rooted tree, with the root at one of its terminal vertices. For $= 2, 3, 4, \cdots$, the rooted tree B_k is constructed by identifying the roots of k copies of P_3 . The root of B_k is the vertex obtained by this process of identifying the roots. Examples of the rooted trees are given in Fig. 1.

Let $d \ge 2$ be an integer. Let $\beta_1, \beta_2, ..., \beta_d$ be rooted trees as specified above *i.e.*, each of $\beta_1, \beta_2, ..., \beta_d$ is some rooted tree B_k . A *Kragujevac tree T* is a tree [8] having a vertex of degree *d*, adjacent to the roots of $\beta_1, \beta_2, ..., \beta_d$. This vertex is called the *central vertex* of *T* and *d*, the *degree* of *T*. The subgraphs $\beta_1, \beta_2, ..., \beta_d$ are the *branches* of *T*. Note that some (or all) branches of *T* may be mutually isomorphic. It is clear that the branch B_k has 2k + 1 vertices. We denote the vertices of a Kragujevac tree as follows: Pendant vertices of *T* are denoted by x_i , support vertex adjacent to x_i by w_i , vertex in the set $N(w_i) - \{x_i\}$ by v_i (root of a branch) and the central vertex by *u*.



Theorem 2.3 The power dominator chromatic number of Kragujevac tree T is $\chi_{pd}(T) = 2 + d$, where d is the degree of T.

Proof:

The Kragujevac tree *T* with central vertex *u* of degree $d \ge 2$ is adjacent to the roots of the branches $\beta_1, \beta_2, ..., \beta_d$. We assign color 1 to the central vertex *u* and all the pendant vertices x_i of *T* and color 2 to all the support vertices w_i (adjacent to x_i) of *T*. Then the vertices v_i , the roots of the branches, are colored each by a distinct color *i*. Note that the number of such vertices is *d*, the degree of *T*. Thus we require d + 2 colors. Note that the vertex *u* dominates and hence power dominates v_i (in fact all such v_i). The vertex w_i also dominates and hence power dominates v_i while x_i power dominates v_i . Thus the vertices *u*, w_i, x_i power dominate the color class *i* while power dominates its own color. Hence $\chi_{pd}(T) = 2 + d$.

Acknowledgment

The author K.G. Subramanian is grateful to University Grants Commission, India, for the award of Emeritus Fellowship (No.F.6-6/2016-17/EMERITUS-2015-17-GEN-5933 / (SA-II)) to him to execute his work in the Department of Mathematics, Madras Christian College.

REFERENCES

- [1] Arumugam S., Bagga J. and Chandrasekar K.R. 2012. On Dominator Coloring in Graphs, Proc. Indian Acad. Sci., 122, 561-571.
- [2] Bondy J.A. and Murty U.S.R. 1986. Graph Theory with Applications, Elsevier, North Holland, New York.
- [3] Chellai, M and Maffray, F. 2012. Dominator colorings in some classes of graphs, Graphs Combin., 28, 97 107.
- [4] Cockayne, E.J. and Hedetniemi, S.T. 1977. Towards a theory of domination in graphs, Networks, 7, 247-261.
- [5] Fan, G. and Sun, L. 2007. The Erdos Sos conjecture for Spiders, Discrete Math. 307, 3055-3062.
- [6] Gera, R.M. 2007. On Dominator Coloring in Graphs, Graph Theory Notes of New York LII, 25-30.
- [7] Gera, R.M., Horton, S. and Rasmussen, C. 2006. Dominator Colorings and Safe Clique Partitions, Congressus Numerantium, 181, 19-32.
- [8] Gutman, I. 2014. Kragujevac trees and their energy, Ser. A; Appli. Math. Inform. And Mech. 6(2), 71-79.
- [9] Haynes, T.W., Hedetniemi, S.M., Hedetniemi, S.T. and Henning, M.A. 2002. Domination in graphs applied to electric power networks. SIAM J. Discrete Math., 15(4), 519-529.
- [10] Haynes, T.W., Hedetniemi, S.M. and Slater, P.J. 1998. Fundamentals of Domination in Graphs, Marcel Dekkar, New York.
- [11] Sathish Kumar, K., David, N.G. and Subramanian, K.G. 2016. Graphs and power dominator colorings, Annals of Pure and Applied Mathematics, 11(2), 67-71.
- [12] Sathish Kumar, K, David, N. G. and Subramanian, K.G. 2016. Power Dominator Coloring of Certain Special Kinds of Graphs, Annals of Pure and Applied Mathematics, 11(2), 83-88.
- [13] Weisstein, E.W. Book Graph. From Math World A Wolfram Web Resource. http://mathworld.wolfram.com/BookGraph.html
- [14] William, A., Roy, S. and Rajasingh, I. 2014. Packing Chromatic Number of Cycle Related Graphs. Int. J. Mathematics and Soft Computing, 4(1), 27-33.

