Spaces of Distribution for Fourier-Stieltjes Transform of Vector Measures on Compact Groups

B.G.Khedkar^{#1}, S. B. Gaikwad^{*2}

 *Arts, Commerce and Science College Sonai, Tal.:Newasa, Dist.: Ahmednagar, Pin: 414105, (M.S) India
 *New Arts, Commerce and Science College Ahmednagar, Pin: 414005, (M.S) India.

Abstract:

This paper deals with distributional spaces of Fourier-Stieltjes transform of vector measures on compact groups. The present paper mainly provides some topological properties of functional spaces. In particular we found dual spaces.

AMS Mathematics Subject Classification: (2010) 46 F12

Keywords: Fourier transform, Stieltjes transform, Compact group, Distribution, Banach Space.

1. INTRODUCTION

The Fourier transform of a complex valued function on a commutative locally compact group G, such as \mathbb{R}^n , is again a complex valued function on the character group X of G. Otherwise, it is family (E_{σ}) $\sigma \in \Sigma$ of continuous linear operators E_{σ}: H_{σ} \rightarrow H_{σ}, where Σ is the dual object of the compact non commutative group G, and σ a class of irreducible unitary representations of G in Hilbert space H_{σ}.

In case \mathbb{C} is replaced by a Banach space FS_{α} , it is a family of continuous sesquilinear mappings $\phi(\sigma)$: $H_{\sigma} \times H_{\sigma} \rightarrow FS_{\alpha}$. In fact, for each $\sigma \in \Sigma$, we choose once and for all an element U^{σ} in σ , denote its representation space by H_{σ} , and fix an orthonormal basis $(\xi_{1}^{\sigma}, \dots, \xi_{d_{\sigma}}^{\sigma})$ of H_{σ} , where $d_{\sigma} = \dim H_{\sigma}$, as a canonical basis. We put $u_{ij}^{\sigma}(t) = \langle U_{t}^{\sigma}\xi_{j}^{\sigma},\xi_{i}^{\sigma}\rangle$ and introduce the operator $\overline{U^{\sigma}}$ on H_{σ} such that $\langle \overline{U}_{t}^{\sigma}\xi_{j}^{\sigma},\xi_{i}^{\sigma}\rangle = \overline{u_{ij}^{\sigma}}(t)$, the complex conjugate of $u_{ij}^{\sigma}(t)$. The Fourier- Stieltjes transform on G for an FS_{α}-valued bounded vector measure m, where FS_{α} is a normed space is given by ;

$$\hat{m}(\sigma)(\xi,\eta) = \int_{G} \langle \overline{U}_{t}^{\sigma} \xi, \eta \rangle dm(t) \ (\xi,\eta) \in H_{\sigma} \times H_{\sigma}.$$

(For details on vector measures see [5] and [6]). The mapping H $_{\sigma} \times$ H $_{\sigma} \rightarrow$ FS $_{\alpha}$, $(\xi, \eta) \rightarrow \hat{m}(\sigma)(\xi, \eta)$ is a continuous and sesquilinear [2]This generates a certain number of interesting spaces S $_{p}(\Sigma, FS_{\alpha})$ that we specify as follows.

We write $\prod_{\sigma \in \Sigma} S(H_{\sigma} X H_{\sigma}, FS_{\alpha}) = S(\Sigma, FS_{\alpha})$ is space of continuous sequilinear mapping from $H_{\sigma} \times H_{\sigma}$ into FS_{α} . S(Σ, FS_{α}) is a linear space with addition and multiplication by scalars, defined coordinate wise. For $\in S(\Sigma, FS_{\alpha})$, we put:

$$\|\phi\|_{\infty} = \sup \{\|\phi(\sigma)\| / \sigma \in \Sigma\}$$

With $\|\phi(\sigma)\| = \sup\{\|\phi(\sigma)(\xi,\eta)\|/\|\xi\| \le 1, \|\eta\| \le 1\}$ we denote by $S_{\infty}(\Sigma, FS_{\alpha})$, the space $\{\phi \in S(\Sigma, FS_{\alpha})/\|\phi\|_{\infty} < \infty\}$

 $S_{00}(\Sigma, FS_{\alpha})$, the space $\{\phi \in S_{\infty}(\Sigma, FS_{\alpha}) | \{\sigma \in \Sigma | \phi(\sigma) \neq 0\}$ is finite and $S_0(\Sigma, FS_{\alpha})$ is the space $\{\phi \in S_{\infty}(\Sigma, FS_{\alpha}) \forall \varepsilon > 0, \{\sigma \in \Sigma | \|\phi(\sigma)\| > \varepsilon\}$ is finite $\{\phi \in S_{\infty}(\Sigma, FS_{\alpha}) \forall \varepsilon > 0, \{\sigma \in \Sigma | \|\phi(\sigma)\| > \varepsilon\}$

In[3] the author proved that:

- (1) The mapping $\phi \to \|\phi\|_{\infty}$ is a norm on $S_{\infty}(\Sigma, A)$, and $S_{\infty}(\Sigma, A)$ is a banach space with respect to this norm.
- (2) $S_{00}(\Sigma, A)$ is dense in $S_0(\Sigma, A)$.
- (3) Every $\phi(\sigma) \in S(H_{\sigma} \times H_{\sigma}, A)$ is determined by the d_{σ}^{2} elements $a_{ij}^{\sigma} = \phi(\sigma)(\xi_{j}^{\sigma}, \xi_{i}^{\sigma})$ of A. More precisely, we have: $\phi(\sigma) = \sum_{i=1}^{d_{\sigma}} d_{\sigma} a_{ij}^{\sigma} \hat{u}_{ij}^{\sigma}(\sigma), \hat{u}_{ij}^{\sigma}$ being Fourier transform of u_{ij}^{σ}

2. DEFINITIONS

2.1. Test Function Space: The Space FS_α

A function f defined on $0 \le t \le \infty$, $0 \le x \le \infty$ is said to be member of FS_a if ϕ (t, x) is smooth for each non-negative integer l, q.

$$\gamma_{k,p,l,q}\phi(t,x) = \sup_{I} \left| t^{k} (1+x)^{p} D_{t}^{l} (xD_{x})^{q} \phi(t,x) \right|$$

$$\leq C_{t} A^{p} p^{p} = 1 2 3$$
(2.1)

Where the constant A and C $_{1q}$ depend on the testing function ϕ .

The space FS α are equiparallel with their natural Housdoff locally topology τ_{α} . This topology is respectively generated by the total families of semi norms { $\gamma_{k, p, l, q}$ } given by (2.1).

2.2. Distributional Fourier-Stieltjes transform of generalized function in FS_{α}^{*}

Let FS_{α}^* is the dual space FS $_{\alpha}$. This space FS_{α}^* consists of continuous linear function on FS $_{\alpha}$.

Let $\phi(t, x) \in FS_{\alpha}^{*}$, for some s >0 and k > Re p, then distributional Fourier-Stieltjes Transform F(s, y) of FS {f (t, x)} = F(s, y) = $\langle f(t, x), e^{-ist}(x + y)^{-p} \rangle$ (2.2)

Where for each fixed t ($0 \le t \le \infty$), x ($0 \le x \le \infty$) the right side of above equation has same as an application of $f(t, x) \in FS_{\alpha}^{*}$ to $e^{-ist}(x+y)^{-p} \in FS_{\alpha}$.

3. MAIN RESULTS:

3.1 The Space $S_p(\Sigma, FS_\alpha) \ 1 \le p \le \infty$

We define:

$$\mathbf{S}_{\mathbf{p}}(\Sigma, \mathrm{FS}_{\alpha}) = \{ \phi \in S(\Sigma, FS_{\alpha}) \mid \sum_{\sigma} d_{\sigma} \sum_{ij} \left\| \phi(\sigma)(\xi_{j}^{\sigma}, \xi_{i}^{\sigma}) \right\|^{p} < \infty \}, \quad 1 \le p < \infty,$$

and $S_{\infty}(\Sigma, FS_{\alpha})$ as in the introduction. They are linear spaces for point wise operations.

We define a norm on $S_p(\Sigma, FS_\alpha)$ by

$$\left\|\phi\right\|_{p} = \left(\sum_{\sigma \in \Sigma} d_{\sigma} \sum_{i,j} \left\|\phi(\sigma)(\xi_{j}^{\sigma}, \xi_{i}^{\sigma})\right\|\right)^{1/p}$$

Theorem 3.1: For each p, $1 \le p \le \infty$, the space **S**_p (Σ , FS_{α}) is a Banach space.

Proof. The space $p = \infty$ was in done in [2]

Let (ϕ_n) be a Cauchy sequence from the space $S_p(\Sigma, FS_\alpha)$. Then $\sigma \in \Sigma$, the sequence $(\phi_n(\sigma))_n$ is a Cauchy sequence from the space $S(H_{\sigma} \times H_{\sigma}, FS_\alpha)$ which is known to be a Banach space. Thus there exists $\phi(\sigma) \in S(H_{\sigma} \times H_{\sigma}, FS_\alpha)$ such that

$$\lim_{n \to \infty} \left\| \phi(\sigma_n) - \phi(\sigma) \right\| = 0 \tag{1}$$

Set $\alpha_{ij} = \phi(\sigma)(\xi_j, \xi_i)$ and for all n, $a_{ij}^n = \phi_n(\sigma)(\xi_j, \xi_i)$.

We consider $\varepsilon > 0$. Since (ϕ_n) is a Cauchy sequence, then there exist $n_0 \in N$ such that

$$\forall r, s \ge n_0, \left\| \phi_r - \phi_s \right\|_p < \varepsilon^{1/p} \tag{2}$$

i.e.
$$\sum_{\sigma} d_{\sigma} \sum_{i,j} \left\| a_{ij}^{\sigma,r} - a_{ij}^{\sigma,s} \right\|^{p} < \varepsilon$$
 (3)

Letting s tends to infinity in (3), we have

$$\sum_{\sigma} d_{\sigma} \sum_{i,j} \left\| a_{ij}^{\sigma,r} - a_{ij}^{\sigma} \right\|^{p} < \varepsilon (4)$$

i. e. $\left\| \phi_r - \phi \right\|_p < \varepsilon$ Pour $r \le n_0$ (5)

We have $\|\boldsymbol{\phi}\|_{p} = \|\boldsymbol{\phi} - \boldsymbol{\phi}_{r} + \boldsymbol{\phi}_{r}\|_{p}$

$$\leq \left\| \phi - \phi_r \right\|_p + \left\| \phi_r \right\|_p$$
$$\leq \varepsilon + \left\| \phi_r \right\|_p < \infty$$

Hence $\phi \in S_p(\Sigma, FS_{\alpha})$. Finally (5) shows that (ϕ_n) converges to ϕ in $S_p(\Sigma, FS_{\alpha})$.

3.2 Duality in spaces $S_p(\Sigma, FS_{\alpha})$

Theorem 3.2. Let p, q be such $1 \le p \le \infty$, $\frac{1}{p} + \frac{1}{q} = 1$ and FS_{α}^* be the dual of FS_{α}. Then the space (S _p (Σ , FS_{α}))^{*} is isometric to S _q (Σ , FS_{α}^*).

Proof: The proof of the case p = 1 (which implies $q = \infty$) can found in [9]. Now let $1 . Let T:Sq <math>(\Sigma, FS_{\alpha}^*) \rightarrow (\Sigma, FS_{\alpha}))^*$, $\varphi \mapsto T_{\varphi}$ be defined by $\langle T_{\varphi}, \psi \rangle = \sum_{\sigma \in \Sigma} d_{\sigma} \sum_{i,j} \langle b_{ij}^{\sigma}, a_{ij}^{\sigma} \rangle, \psi \in S_{p}(\Sigma, FS_{\alpha})$

Where $b_{ij}^{\sigma} = \varphi(\sigma)(\xi_j^{\sigma}, \xi_i^{\sigma})$ and $a_{ij} = \psi(\sigma)(\xi_j^{\sigma}, \xi_i^{\sigma})$. Then theorem is the consequence of the following three lemmas.

Lemma 3.3 The mapping is linear and bounded.

Proof. The linearity of T is trivial. Let us show that it is bounded.

We have
$$\left|\left\langle T_{\varphi},\psi\right\rangle\right| = \left|\sum_{\sigma\in\Sigma}d_{\sigma}\sum_{i,j}\left\langle b_{ij}^{\sigma},a_{ij}^{\sigma}\right\rangle\right|$$

$$\leq \sum_{\sigma \in \Sigma} d_{\sigma} \sum_{i,j} \left| \left\langle b_{ij}^{\sigma}, a_{ij}^{\sigma} \right\rangle \right|$$

$$\leq \sum_{\sigma \in \Sigma} d_{\sigma} \sum_{i,j} \left\| b_{ij}^{\sigma} \right\| \left\| a_{ij}^{\sigma} \right\|$$

$$\leq \sum_{\sigma \in \Sigma} \sum_{i,j} d_{\sigma}^{1/q} \left\| b_{ij}^{\sigma} \right\| d_{\sigma}^{1/p} \left\| a_{ij}^{\sigma} \right\|$$

$$\leq \left(\sum_{\sigma \in \Sigma} \sum_{i,j} d_{\sigma} \left\| b_{ij}^{\sigma} \right\|^{q} \right)^{1/q} \left(\sum_{\sigma \in \Sigma} \sum_{i,j} d_{\sigma} \left\| a_{ij}^{\sigma} \right\|^{p} \right)^{1/p}$$

$$\leq \left\| \varphi \right\|_{q} \left\| \psi \right\|_{p}$$

So that $||T_{\varphi}|| \le ||\varphi||_q$ and therefore T is bounded with $||T|| \le 1$.

Lemma 3.4 The equality ||T|| = 1 holds.

Proof. From part 1; we have $||T|| \le 1$. Let us show that $||T|| \ge 1$.

Take a \in FS $_{\alpha}$, Such that ||a|| = 1. Since a $\neq 0$, we know from Functional analysis that there exists $b^* \in FS^*_{\alpha}$ such that $||b^*|| = 1$ and $\langle b^*, a \rangle = ||a|| = 1$.

Given $\tau \in \Sigma$ we use the Kronecker symbol δ_{ij} to define $\psi_{\tau} \in S_p(\Sigma, FS_{\alpha})$ by

$$\psi_{\tau}(\sigma)(\xi_{j}^{\sigma},\xi_{i}^{\sigma}) = a_{ij}^{\sigma} = \begin{cases} d_{\tau}^{\frac{-2}{p}} a \delta i j \text{ if } \sigma = \sigma \\ 0 i f \sigma \neq \tau \end{cases}$$

and ϕ_{τ} in $S_q(\Sigma, FS^*_{\alpha})$ by :

$$\varphi_{\tau}(\sigma)(\xi_{j}^{\sigma},\xi_{i}^{\sigma}) = b_{ij}^{\sigma} = \begin{cases} \frac{-\tau}{q} b^{*} \delta j & \text{if } \sigma = \tau \\ 0 & \text{if } \sigma \neq \tau \end{cases}$$

We have
$$\|\varphi\|_{q}^{q} = \sum_{\sigma} d_{\sigma} \sum_{ij} \|b_{ij}^{\sigma}\|^{q} = \sum_{\sigma} d_{\sigma} \sum_{ij} \|d_{\tau}^{\frac{-2}{q}} b^{*} \delta_{ij}\|^{q} = d_{\tau} d_{\tau} d_{\tau}^{-2} = 1$$

And
$$\left\|\psi\right\|_{p}^{p} = \sum_{\sigma} d_{\sigma} \sum_{ij} \left\|a_{ij}^{\sigma}\right\|^{p} = \sum_{\sigma} d_{\sigma} \sum_{ij} \left\|d_{\tau}^{\frac{-2}{p}} a \delta_{ij}\right\|^{p} = 1$$

As such, $\left\langle T_{\varphi}, \psi_{\tau} \right\rangle = \sum_{\sigma} d_{\sigma} \sum_{ij} \left\langle b_{ij}^{\sigma}, a_{ij}^{\sigma} \right\rangle$

$$=\sum_{\sigma}d_{\sigma}\sum_{ij}\left\langle d_{\tau}^{\frac{-2}{q}}b^{*}\delta_{ij}, d_{\tau}^{\frac{-2}{p}}a\delta_{ij}\right\rangle$$

$$= d_{\tau} \sum_{i} \left\langle d_{\tau}^{\frac{-2}{q}} b^{*}, d_{\tau}^{\frac{-2}{p}} a \right\rangle$$
$$= d_{\tau}^{2} \left(d_{\tau}^{\frac{1}{p+q}} \right)^{-2} \left\langle b^{*}, a \right\rangle = 1 = \left\| \varphi \right\|_{q} \left\| \psi \right\|_{p}$$

Hence $||T|| \ge 1$. Finally ||T|| = 1.

Lemma 3.5. The mapping T is surjective.

Proof: In fact $f \in (S_p(\Sigma, FS_\alpha))^*$. for $\tau \in \Sigma$, let

$$V_{\tau} = \{ \psi \in S_{p}(\Sigma, FS_{\alpha}) \mid \psi(\sigma) = 0 \text{ if } \sigma \neq \tau, \sigma \in \Sigma \}$$

For $\psi \in V_{\tau}$, let $a_{ij}^{\tau} = \psi(\tau)(\xi_{j}^{\tau}, \xi_{i}^{\tau}), i, j = 1, 2, \dots, d_{\tau}$. There exist linear forms $b_{ij} \in FS_{\alpha}^{*}, i, j = 1, 2, \dots, d_{\tau}$ such that $\langle f, \psi \rangle = d_{\tau} \sum_{ij} \langle b_{ij}^{\tau}, a_{ij}^{\tau} \rangle$. In fact, given d_{τ}^{2} scalars λ_{ij}^{τ} such that $\sum_{i,j} \lambda_{ij}^{\tau} = \frac{\langle f, \psi \rangle}{d_{\tau}}$, there exists $b_{ij} \in FS_{\alpha}^{*}$ with $\langle b_{ij}, a_{ij}^{\tau} \rangle = 1$; denoting $b_{ij}^{\tau} = \lambda_{ij}^{\tau} b_{ij}$, we have what is required.

Now let us consider an element ϕ of $S_{00}(\Sigma, FS_{\alpha})$

Since $S_{00}(\Sigma, FS_{\alpha})$ is subset of $S_2(\Sigma, FS_{\alpha})$, one can write according to Riesz-Fischer theorem,

 $\phi = \sum_{\tau \in \Sigma} d_{\tau} \sum_{ij} a_{ij}^{\tau} \hat{u}_{ij}^{\tau}$ In fact, there exists a finite subset Σ' of Σ such that $\phi = \sum_{\tau \in \Sigma'} d_{\tau} \sum_{ij} a_{ij}^{\tau} \hat{u}_{ij}^{\tau}$

Putting $\phi_{\tau} = d_{\tau} \sum_{ij} a_{ij}^{\tau} \hat{u}_{ij}^{\tau}$ we have $\phi = \sum_{\tau \in \Sigma'} \phi_{\tau}$. It is clear that ϕ_{τ} belongs to V_{τ} because for $\sigma \neq \tau$, $\hat{u}_{ij}^{\sigma}(\sigma) = 0$ (Schur'sorthogonally property), so $\phi_{\tau} = \sum_{ij} a_{ij}^{\tau} \hat{u}_{ij}^{\tau}(\sigma) = 0$. Thus there exists linear forms $b_{ij} \in FS_{\alpha}^{*}, i, j = 1, 2, \dots, d_{\tau}$ such that

$$\left\langle f, \phi_{\tau} \right\rangle = d_{\tau} \sum_{i,j} \left\langle b_{ij}^{\tau}, a_{ij}^{\tau} \right\rangle$$

Now by linearity of f

$$\left\langle f,\phi\right\rangle = \sum_{\tau\in\Sigma'} d_{\tau} \sum_{i,j} \left\langle b_{ij}^{\tau},a_{ij}^{\tau}\right\rangle$$

Defining φ by:

 $\varphi(\tau)(\xi_j^{\tau},\xi_i^{\tau}) = b_{ij}^{\tau}$ if $\tau \in \Sigma'$ and $\varphi(\tau)(\xi_j^{\tau},\xi_i^{\tau}) = 0$ otherwise, we have $\varphi \in S_{00}(\Sigma,FS_{\alpha}^{*})$ and $\langle f,\phi \rangle = \langle T_{\varphi},\phi \rangle$. This means that the continuous linear forms of f and T_{φ} coincide on $S_{00}(\Sigma,FS_{\alpha})$ which is dense subset of $S_p(\Sigma,FS_{\alpha})$.

Hence $f = T_{\phi}$.

The three lemmas show that T is an isometry from $S_p(\Sigma, FS_{\alpha}^*)$ onto $(S_p(\Sigma, FS_{\alpha}))^*$.

REFERENCES

[1] AssiamouaV.S.K., 1989, L₁ (G, A)-multipliers, Acta Sci. Math., 53, pp.309-318.

[2] AssiamouaV.S.K., OlubummoA., 1989, Fourier-Stieltjes Transform of Vector Measures on Compact Groups, Acta Sci. Math., 53, pp.301-307.

[3] Assiamoua V.S.K., Mansah Y., The Fourier Algebra A₁ (G,A) of vector -valued functions on compact groups, Contemporary Problems in Mathematical Physics, pp.223-230.

[4]Diestel J., Uhl Jr. J. J., 1977, Vector Measures, Amer. Math-Soc, Math surveys, n15.

[5]Effros E., 1991, A new approach to operator spaces, Canadian Math., Bull., 34, pp.329-337.

[6]Gaikwad S.B., 2015Generalized Fourier-Modified Stieltjes Transforms, Proceedings of Role of Mathematics in Science Engineering and Technology.

[7]Hewitt E.,Ross K.A., 1970, Abstract Harmonic Analysis, Volume I and II,Springer-Verlag, New-York-Berlin-Heidelberg.

[8]Mensah Y., Assiamoula V,S.K., 2009, The dual of Fourier Algebra A₁(G,A) of vector- valued functions on compact groups, Afr. Diaspora J.Math., Vol. 8, Number 1, pp.28-34.

[9]Mensah Y., V, S.K., Assiamoula, 2010,On Spaces of Fourier-Stieltjes Transform of Vector Measures on Compact Groups,Mathematical Sciences,Vol.4,No.1,pp.1-8,

[10]Pathak R.S., 2001, A Course in Distribution Theory and Applications, CRC Press.

[11] Pisier G., 1998, Non-commutative vector valued L_p -spaces and completely p-summing maps, Asterisque 247. SocMath.France,.

[12]Sharma V.D. and Dolas P.D., 2012, Analyticity of Distribution Generalized Fourier-Stieltjes Transforms, International Journal of Mathematical Analysis, Vol.6, No.9, pp.447-451,.