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Abstract: In the existing system, the iris anti-spoofing methods 

have explored hardcoded features through image-quality 

metrics, texture patterns, bags-of-visual words and noise 

artifacts due to the recapturing process. The performance of 

such solutions vary significantly from dataset to dataset. In the 

case of face anti-spoofing method, the available solutions  in  

the  literature  mostly  deal  with the face spoofing detection 

problem through texture patterns (e.g., LBP-like detectors), 

acquisition telltales (noise), and image quality metrics. In this 

method we approach the problem by extracting meaningful 

features directly from the data regard- less of the input. This 

project focuses on the automatically extract vision meaningful 

features directly from the data using deep representation. 

Assuming a very limited knowledge about biometric spoofing at 

the sensor to derive outstanding spoofing detection systems for 

iris, face and  fingerprint  modalities  based  on  two deep 

learning approaches. The first approach consists of learning 

suitable convolutional network architectures for each domain, 

whereas the second approach focuses on learning the weights of 

the network via back propagation. We consider nine biometric 

spoofing benchmarks—each one containing real and fake 

samples of a given biometric modality and attack type— and 

learn deep representations for each benchmark by combining 

and contrasting the two learning approaches. The results 

strongly indicate that spoofing detection systems based on 

convolution networks can be robust to attacks already known 

and possibly adapted, with little effort, to image-based  attacks 

that  are yet  to come. 
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I. INTRODUCTION 

     Biometrics human characteristics and traits can successfully 

allow people identification and authentication and have been 

widely used for access control, surveillance, and also in national 

and global security systems [1]. In the last few years, due to the 

recent technological improvements for data acquisition, storage 

and processing, and also the scientific advances in computer 

vision, pattern recognition, and machine learning, several 

biometric modalities have been largely applied to person 

recognition, ranging from traditional fingerprint to face, to iris, 

and, more recently, to vein and blood flow. Simultaneously, 

various spoofing attacks techniques have been created to defeat 

such biometric systems. There are several ways to spoof a 

biometric system [2], [3]. Indeed, previous studies show at least 

eight different points of attack [4], [5] that can be divided into 

two main groups: direct and indirect attacks. The former 

considers the possibility to generate synthetic biometric samples, 

and is the first vulnerability point of a biometric security system 

acting at the sensor level. The latter includes all the remaining 

seven points of attacks and requires different levels of 

knowledge about the system, e.g., the matching algorithm used, 

the specific feature extraction procedure, database access for 

manipulation, and also possible weak links in the 

communication channels within the system.  

 
Fig. 1. Schematic diagram detailing how anti-spoofing 

systems are built from spoofing detection benchmarks. 

Architecture optimization (AO) is shown on the left and 

filter optimization (FO) on the right. 

 

    Given that the most vulnerable part of a system is its 

acquisition sensor, attackers have mainly focused on direct 

spoofing. This is possibly because a number of biometric traits 

can be easily forged with the use of common apparatus and 

consumer electronics to imitate real biometric readings (e.g., 

stampers, printers, displays, audio recorders). In response to that, 

several biometric spoofing benchmarks have been recently 

proposed, allowing researchers to make steady progress in the 

conception of anti-spoofing systems. Three relevant modalities 

in which spoofing detection has been investigated are iris, face, 

and fingerprint. Benchmarks across these modalities usually 

share the common characteristic of being image or video-based. 

In the context of irises, attacks are normally performed using 
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printed iris images [6] or, more interestingly, cosmetic contact 

lenses [7], [8]. With faces, impostors can present to the 

acquisition sensor a photography, a digital video [9], or even a 

3D mask [10] of a valid user. For fingerprints, the most common 

spoofing method consists of using artificial replicas [11] created 

in a cooperative way, where a mold of  

 

    In this work, we not only evaluate AO and FO in separate, but 

also in combination, as indicated by the crossing dotted lines. 

The fingerprint is acquired with the cooperation of a valid user 

and is used to replicate the user’s fingerprint with different 

materials, including gelatin, latex, play-doh or silicone. The 

success of an anti-spoofing method is usually connected to the 

modality for which it was designed. In fact, such systems often 

rely on expert knowledge to engineer features that are able to 

capture acquisition telltales left by specific types of attacks. 

However, the need of custom-tailored solutions for the myriad 

possible attacks might be a limiting constraint. Small changes in 

the attack could require the redesign of the entire system. In this 

paper, we do not focus on custom-tailored solutions. Instead, 

inspired by the recent success of Deep Learning in several vision 

tasks [12]–[16], and by the ability of the technique to leverage 

data, we focus on two general-purpose approaches to build 

image-based anti-spoofing systems with convolutional networks 

for several attack types in three biometric modalities, namely 

iris, face, and fingerprint. The first technique that we explore is 

hyper parameter optimization of network architectures [17], [18] 

that we henceforth call architecture optimization, while the 

second lies at the core of convolutional networks and consists of 

learning filter weights via the well-known back-propagation [19] 

algorithm, hereinafter referred to as filter optimization. 

      Fig. 1 illustrates how such techniques are used. The 

architecture optimization (AO) approach is presented on the left 

and is highlighted in blue while the filter optimization (FO) 

approach is presented on the right and is highlighted in red. As 

we can see, AO is used to search for good architectures of 

convolutional networks in a given spoofing detection problem 

and uses convolutional filters whose weights are set at random 

in order to make the optimization practical. This approach 

assumes little a priori knowledge about the problem, and is an 

area of research in deep learning that has been successful in 

showing that the architecture of convolutional networks, by 

themselves, is of extreme importance to performance [17], [18], 

[20]–[23]. In fact, the only knowledge AO assumes about the 

problem is that it is approachable from a computer vision 

perspective. 

Still in Fig 1, FO is carried out with back-propagation in 

predefined network architecture. This is a longstanding approach 

for building convolutional networks that has recently enabled 

significant strides in computer vision, specially because of an 

understanding of the learning process, and the availability of 

plenty of data and processing power [13], [16], [24]. Network 

architecture in this context is usually determined by previous 

knowledge of related problems. In general, we expect AO to 

adapt the architecture to the problem in hand and FO to model 

important stimuli for discriminating fake and real biometric 

samples.  

      We evaluate AO and FO not only in separate, but also in 

combination, i.e., architectures learned with AO are used for FO 

as well as previously known good performing architectures are 

used with random filters. This explains the crossing dotted lines 

in the design flow of Fig 1. As our experiments show, the 

benefits of evaluating AO and FO apart and later combining 

them to build anti-spoofing systems are twofold. First, it enables 

us to have a better comprehension of the interplay between these 

approaches, something that has been largely underexplored in 

the literature of convolutional networks. Second, it allows us to 

build systems with outstanding performance in all nine publicly 

available benchmarks considered in this work. The first three of 

such benchmarks consist of spoofing attempts for iris 

recognition systems, Biosec [25], Warsaw [26], and 

MobBIOfake [27]. Replay-Attack [9] and 3DMAD [10] are the 

benchmarks considered for faces, while Biometrika, 

CrossMatch, Italdata, and Swipe are the fingerprint benchmarks 

here considered, all them recently used in the 2013 Fingerprint 

Liveness Detection Competition (LivDet’13) [11]. Results 

outperform state-of-the-art counterparts in eight of the nine 

cases and observe a balance in terms of performance between 

AO and FO, with one performing better than the other 

depending on the sample size and problem difficulty.  

       In some cases, we also show that when both approaches are 

combined, we can obtain performance levels that neither one can 

obtain by itself. Moreover, by observing the behaviour of AO 

and FO, we take advantage of domain knowledge to propose a 

single new convolutional architecture that push performance in 

five problems even further, sometimes by a large margin, as in 

CrossMatch (68.80% v. 98.23%). The experimental results 

strongly indicate that convolutional networks can be readily 

used for robust spoofing detection. Indeed, we believe that data-

driven solutions based on deep representations might be a 

valuable direction to this field of research, allowing the 

construction of systems with little effort even to image-based 

attack types yet to come. We organized the remainder of this 

work into five sections. Section II presents previous anti-

spoofing systems for the three biometric modalities covered in 

this paper, while Section III presents the considered 

benchmarks. Section IV describes the methodology adopted for 

architecture optimization (AO) and filter optimization (FO) 

while Section V presents experiments, results, and comparisons 

with state-of-the-art methods. Finally, Section VI concludes the 

paper and discusses some possible future directions. 

II. RELATED WORK 

        In this section, we review anti-spoofing related work for 

iris, face, and fingerprints, our focus in this paper. 

 

A. Iris Spoofing 

   Daugman [28, Sec. 8—Countermeasures against Subterfuge]1 

was one of the first authors to discuss the feasibility of some 

attacks on iris recognition systems. The author proposed the use 

of Fast Fourier Transform to verify the high frequency spectral 

magnitude in the frequency domain. The solutions for iris 

liveness detection available in the literature range from active 

solutions relying on special acquisition hardware [30]–[32] to 

software-based solutions relying on texture analysis of the 

effects of an attacker using color contact lenses with someone 
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else’s pattern printed onto them [33]. Software-based solutions 

have also explored the effects of cosmetic contact lenses [7], [8], 

[34], [35]; pupil constriction[36]; and multi biometrics of 

electroence-phalogram (EEG) and iris together [37], among 

others. Galbally et al. [38] investigated 22 image quality 

measures (e.g., focus, motion, occlusion, and pupil dilation). The 

best features are selected through sequential floating feature 

selection (SFFS) [39] to feed a quadratic discriminant classifier. 

The authors validated the work on the BioSec [25], [40] 

benchmark. Sequeira et al. [41] also explored image quality 

measures [38] and three classification techniques validating the 

work on the BioSec [25], [40] and Clarkson [42] benchmarks 

and introducing the MobBIOfake benchmark comprising 800 

iris images from the MobBIO multimodal database [27]. 

       Sequeira et al. [43] extended upon previous works also 

exploring quality measures. They first used a feature selection 

step on the features of the studied methods to obtain the “best 

features” and then used well-known classifiers for the decision 

making. In addition, they applied iris segmentation [44] to 

obtaining the iris contour and adapted the feature extraction 

processes to the resulting non-circular iris regions. The 

validation considered five datasets (BioSec [25], [40], 

MobBIOfake [27], Warsaw [26], Clarkson [42] and NotreDame 

[45]. Textures have also been explored for iris liveness 

detection. In the recent MobILive2 [6] iris spoofing detection 

competition, the winning team explored three texture 

descriptors: Local Phase Quantization (LPQ) [46], Binary Gabor 

Pattern [47], and Local Binary Pattern (LBP) [48]. Analyzing 

printing regularities left in printed irises, Czajka [26] explored 

some peaks in the frequency spectrum were associated to 

spoofing attacks. For validation, the authors introduced the 

Warsaw dataset containing 729 fake images and 1,274 images of 

real eyes. In [42], The First Intl. Iris Liveness Competition in 

2013, the Warsaw database was also evaluated; however, the 

best reported result achieved 11.95% of FRR and 5.25% of FAR 

by the University of Porto team. Sun et al. [49] recently 

proposed a general framework for iris image classification based 

on a Hierarchical Visual Codebook (HVC). The HVC encodes 

the texture primitives of iris images and is based on two existing 

bag-of-words models. The method achieved state-of-the-art 

performance for iris spoofing detection, among other tasks. 

       In summary, iris anti-spoofing methods have explored 

hardcoded features through image-quality metrics, texture 

patterns, bags-of-visual-words and noise artifacts due to the 

recapturing process. The performance of such solutions vary 

significantly from dataset to dataset. Differently, here we 

propose the automatically extract vision meaningful features 

directly from the data using deep representations. 

 

B. Face Spoofing  

       We can categorize the face anti-spoofing methods into four 

groups [50]: user behavior modeling, methods relying on extra 

devices [51], methods relying on user cooperation and, finally, 

data-driven characterization methods. In this section, we review 

data-driven characterization methods proposed in literature, the 

focus of our work herein. Määttä et al. [52] used LBP operator 

for capturing printing artifacts and micro-texture patterns added 

in the fake biometric samples during acquisition. Schwartz et al. 

[50] explored color, texture, and shape of the face region and 

used them with Partial Least Square (PLS) classifier for deciding 

whether a biometric sample is fake or not. Both works validated 

the methods with the Print Attack benchmark [53]. Lee et al. 

[54] also explored image-based attacks and proposed the 

frequency entropy analysis for spoofing detection. Pinto et al. 

[55] pioneered research on video-based face spoofing detection. 

They proposed visual rhythm analysis to capture temporal 

information on face spoofing attacks. Mask-based face spoofing 

attacks have also been considered thus far. Erdogmus et al. [56] 

dealt with the problem through Gabor wavelets: local Gabor 

binary pattern histogram sequences [57] and Gabor graphs [58] 

with a Gabor-phase based similarity measure [59]. Erdogmus & 

Marcel [10] introduced the 3D Mask Attack database (3DMAD), 

a public available 3D spoofing database, recorded with 

Microsoft Kinect sensor.  

      Kose et al. [60] demonstrated that a face verification system 

is vulnerable to mask-based attacks and, in another work, Kose 

et al. [61] evaluated the anti-spoofing method proposed by 

Määttä et al. [52] (originally proposed to detect photo based 

spoofing attacks). Inspired by the work of Tan et al. [62], Kose 

et al. [63] evaluated a solution based on reflectance to detect 

attacks performed with 3D masks. Finally, Pereira et al. [64] 

proposed a score-level fusion strategy in order to detect various 

types of attacks. In a follow up work, Pereira et al. [65] proposed 

an anti-spoofing solution based on the dynamic texture, a spatio-

temporal version of the original LBP. Results showed that LBP-

based dynamic texture description has a higher effectiveness 

than the original LBP. In summary, similarly to iris spoofing 

detection methods, the available solutions in the literature 

mostly deal with the face spoofing detection problem through 

texture patterns (e.g., LBP-like detectors), acquisition telltales 

(noise), and image quality metrics. Here, we approach the 

proplem by extracting meaningful features directly from the data 

regardless of the input type (image, video, or 3D masks). 

 

TABLE I: Main Features of the Benchmarks Considered 

Herein 

 
 

C. Fingerprint Spoofing 

        We can categorize fingerprint spoofing detection methods 

roughly into two groups: hardware-based (exploring extra 

sensors) and software-based solutions (relying only on the 

information acquired by the standard acquisition sensor of the 

authentication system) [11]. Galbally et al. [66] proposed a set 

of feature for fingerprint liveness detection based on quality 

measures such as ridge strength or directionality, ridge 

continuity, ridge clarity, and integrity of the ridge-valley 

structure. The validation considered the three benchmarks used 

in LivDet 2009 – Fingerprint competition [67] captured with 
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different optical sensors: Biometrika,  CrossMatch, and Identix. 

Later work [68] explored the method in the presence of gummy 

fingers. Ghiani et al. [69] explored LPQ [46], a method for 

representing all spectrum characteristics in a compact feature 

representation form. The validation considered the four 

benchmarks used in the LivDet 2011 – Fingerprint competition 

[70]. Gragnaniello et al. [71] explored the Weber Local Image 

Descriptor (WLD) for liveness detection, well suited to high 

contrast patterns such as the ridges and valleys of fingerprints 

images. In addition, WLD is robust to noise and illumination 

changes. The validation considered the LivDet 2009 and LivDet 

2011 – Fingerprint competition datasets. Jia et al. [72] proposed 

a liveness detection scheme based on Multi-scale Block Local 

Ternary Patterns (MBLTP).  

        Differently of the LBP, the Local Ternary Pattern operation 

is done on the average value of the block instead of the pixels 

being more robust to noise. The validation considered the 

LivDet 2011 – Fingerprint competition benchmarks. Ghiani et 

al. [73] explored Binarized Statistical Image Features (BSIF) 

originally proposed by Kannala et al. [74]. The BSIF was 

inspired in the LBP and LPQ methods. In contrast to LBP and 

LPQ approaches, BSIF learns a filter set by using statistics of 

natural images [75]. The validation considered the LivDet 2011 

– Fingerprint competition benchmarks. Recent results reported 

in the LivDet 2013 Fingerprint Liveness Detection Competition 

[73] show that fingerprint spoofing attack detection task is still 

an open problem with results still far from a perfect 

classification rate. We notice that most of the groups approach 

the problem with hard-coded features sometimes exploring 

quality metrics related to the modality (e.g., directionality and 

ridge strength), general texture patterns (e.g., LBP-, MBLTP-, 

and LPQ-based methods), and filter learning through natural 

image statistics. This last approach seems to open a new 

research trend, which seeks to model the problem learning 

features directly from the data. We follow this approach in this 

work, assuming little a priori knowledge about acquisition-level 

biometric spoofing and exploring deep representations of the 

data. 

 

D. Multi-Modalities  

    Recently, Galbally et al. [76] proposed a general approach 

based on 25 image quality features to detect spoofing attempts in 

face, iris, and fingerprint biometric systems. Our work is similar 

to theirs in goals, but radically different with respect to the 

methods. Instead of relying on prescribed image quality features, 

we build features that would be hardly thought by a human 

expert with AO and FO. Moreover, here we evaluate our 

systems in more recent and updated benchmarks. 

 

III. BENCHMARKS 

       In this section, we describe the benchmarks (datasets) that 

we consider in this work. All of them are publicly available 

upon request and suitable for evaluating countermeasure 

methods to iris, face and fingerprint spoofing attacks. Table I 

shows the major features of each one and in the following we 

describe their details. 

 

A. Iris Spoofing Benchmarks 

Biosec: This benchmark was created using iris images from 50 

users of the BioSec [25]. In total, there are 16 images for each 

user (2 sessions × 2 eyes × 4 images), totalizing 800 valid access 

images. To create spoofing attempts, the original images from 

Biosec were preprocessed to improve quality and printed using 

an HP Deskjet 970cxi and an HP LaserJet 4200L printers. 

Finally, the iris images were recaptured with the same iris 

camera used to capture the original images. 

Warsaw: This benchmark contains 1274 images of 237 

volunteers representing valid accesses and 729 printout images 

representing spoofing attempts, which were generated by using 

two printers: (1) a HP LaserJet 1320 used to produce 314 fake 

images with 600 dpi resolution, and (2) a Lexmark C534DN 

used to produce 415 fake images with 1200 dpi resolution. Both 

real and fake images were captured by an IrisGuard AD100 

biometric device. 

MobBIOfake: This benchmark contains live iris images and 

fake printed iris images captured with the same acquisition 

sensor, i.e., a mobile phone. To generate fake images, the 

authors first performed a preprocessing in the original images to 

enhance the contrast. The preprocessed images were then printed 

with a professional printer on high quality photographic paper. 

 

B. Video-Based Face Spoofing Benchmarks 

Replay-Attack: This benchmark contains short video 

recordings of both valid accesses and video-based attacks of 50 

different subjects. To generate valid access videos, each person 

was recorded in two sessions in a controlled and in an adverse 

environment with a regular webcam.  Then, spoofing attempts 

were generated using three techniques:  

 Print attack, which presents to the acquisition sensor 

hard copies of high-resolution digital photographs 

printed with a Triumph-Adler DCC 2520 color laser 

printer; 

 Mobile attack, which presents to the acquisition sensor 

photos and videos taken with an iPhone using the 

iPhone screen; and high-definition attack, in which 

high resolution photos and videos taken with an iPad 

are presented to the acquisition sensor using the iPad 

screen. 

 3DMAD: This benchmark consists of real videos and 

fake videos made with people wearing masks. A total 

of 17 different subjects were recorded with a Microsoft 

Kinect sensor, and videos were collected in three 

sessions. For each session and each person, five videos 

of 10 seconds were captured. 3D masks were produced 

by ThatsMyFace.com using one frontal and two profile 

images of each subject. 

   All videos were recorded by the same acquisition sensor. 

 

C. Fingerprint Spoofing Benchmarks 

 LivDet2013: This dataset contains four sets of real and fake 

fingerprint readings performed in four acquisition sensors: 

Biometrika FX2000, Italdata ET10, Crossmatch L Scan 

Guardian, and Swipe. For a more realistic scenario, fake samples 

in Biometrika and Italdata were generated without user 
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cooperation, while fake samples in Crossmatch and Swipe were 

generated with user cooperation. Several materials for creating 

the artificial fingerprints were used, including gelatin, silicone, 

latex, among others. 

 

D. Remark 

       Images found in these benchmarks can be observed in Fig. 5 

of Section V. As we can see, variability exists not only  

across how operations are stacked in a layer (left) and how the 

network is instantiated and evaluated according to possible 

hyper parameter values (right). Note that a three-layered 

convolutional network of this type has a total of 25 hyper 

parameters governing both its architecture and its overall 

behavior through a particular instance of stacked operation 

modalities, but also within modalities. Moreover, it is rather 

unclear what features might discriminate real from spoofed 

images, which suggests that the use of a methodology able to 

use data to its maximum advantage might be a promising idea to 

tackle such set of problems in a principled way. 

 

IV. METHODOLOGY 

       In this section, we present the methodology for architecture 

optimization (AO) and filter optimization (FO) as well as details 

about how benchmark images are preprocessed, how AO and 

FO are evaluated across the benchmarks, and how these methods 

are implemented. 

Fig. 2. Schematic diagram for architecture optimization 

(AO) illustrating. 
 

A. Architecture Optimization (AO) 

      Our approach for AO builds upon the work of Pinto et al. 

[17] and Bergstra et al. [23], i.e., fundamental, feedforward 

convolutional operations are stacked by means of hyper 

parameter optimization, leading to effective yet simple 

convolutional networks that do not require expensive filter 

optimization and from which prediction is done by linear 

support vector machines (SVMs). Operations in convolutional 

networks can be viewed as linear and non-linear transformations 

that, when stacked, extract high level representations of the 

input. Here we use a well-known set of operations called (i) 

convolution with a bank of filters, (ii) rectified linear activation, 

(iii) spatial pooling, and (iv) local normalization. Appendix 

provides a detailed definition of these operations. We denote as 

layer the combination of these four operations in the order that 

they appear in the left panel of Fig. 2. Local normalization is 

optional and its use is governed by an additional “yes/no” hyper 

parameter. In fact, there are other six hyper parameters, each of 

a particular operation, that have to be defined in order to 

instantiate a layer. They are presented in the lower part of the 

left panel in Fig. 2 and are in accordance to the definitions of 

Appendix. Considering one layer and possible values of each 

hyper parameter, there are over 3,000 possible layer 

architectures, and this number grows exponentially with the 

number of layers, which goes up to three in our case (Fig. 2 right 

panel). 

       In addition, there are network-level hyper parameters, such 

as the size of the input image, that expand possibilities to 

amyriad potential architectures. The overall set of possible hyper 

parameter values is called search space, which in this case is 

discrete and contains variables that are only meaningful in 

combination with others. For example, hyper parameters of a 

given layer are just meaningful if the candidate architecture has 

actually that number of layers. In spite of the intrinsic difficulty 

in optimizing architectures in this space, random search has 

played and important role in problems of this type [17], [18] and 

it is the strategy of our choice due to its effectiveness and 

simplicity. We can see in Fig. 2 that a three-layered network has 

a total of 25 hyper parameters, seven per layer and four at 

network level. They are all defined in Appendix with the 

exception of input size, which seeks to determine the best size of 

the image’s greatest axis (rows or columns) while keeping its 

aspect ratio. Concretely, random search in this paper can be 

described as follows:  

 Randomly — and uniformly, in our case — sample 

values from the hyper parameter search space; 

 Extract features from real and fake training images with 

the candidate architecture; 

 Evaluate the architecture according to an optimization 

objective based on linear SVM scores; 

 Repeat steps 1–3 until a termination criterion is met; 

 Return the best found convolutional architecture. 

 

       Even though there are billions of possible networks in the 

search space (Fig. 2), it is important to remark that not all 

candidate networks are valid. For example, a large number of 

candidate architectures (i.e., points in the search space) would 

produce representations with spatial resolution smaller than one 

pixel. Hence, they are naturally unfeasible. Additionally, in 

order to avoid very large representations, we discard in advance 

candidate architectures whose intermediate layers produce 

representations of over 600K elements or whose output 

representation has over 30K elements. Filter weights are 

randomly generated for AO. This strategy has been successfully 

used in the vision literature [17], [20], [21], [79] and is essential 

to make AO practical, avoiding the expensive filter optimization 
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(FO) part in the evaluation of candidate architectures. We 

sample weights from a uniform distribution U(0, 1) and 

normalize the filters to zero mean and unit norm in order to 

ensure that they are spread over the unit sphere. When coupled 

with rectified linear activation (Appendix), this sampling 

enforces sparsity in the network by discarding about 50% of the 

expected filter responses, thereby improving the overall 

robustness of the feature extraction. A candidate architecture is 

evaluated by first extracting deep representations from real and 

fake images and later training hard-margin linear SVMs 

(C=105) on these representations. 

 

        We observed that the sensitivity of the performance 

measure was saturating with traditional 10-fold cross validation 

(CV) in some benchmarks. Therefore, we opted for a different 

validation strategy. Instead of training on nine folds and 

validating on one, we train on one fold and validate on nine. 

Precisely, the optimization objective is the mean detection 

accuracy obtained from this adapted cross-validation scheme, 

which is maximized during the optimization. For generating the 

10 folds, we took special care in putting all samples of an 

individual in the same fold to enforce robustness to cross-

individual spoofing detection in the optimized architectures. 

Moreover, in benchmarks where we have more than one attack 

type (e.g., Replay-Attack and LivDet2013, see Section III), we 

evenly distributed samples of each attack type across all folds in 

order to enforce that candidate architectures are also robust to 

different types of attack. Finally, the termination criterion of our 

AO procedure simply consists of counting the number of valid 

candidate architectures and stopping the optimization when this 

number reaches 2,000. 

 

 
Fig. 3. Architecture of convolutional network found in the 

Cuda-convnet library [80] and here used as reference for 

filter optimization (cf10-11, top). 

 

B. Filter Optimization (FO) 

        We now turn our attention to a different approach for 

tackling the problem. Instead of optimizing the architecture, we 

explore the filter weights and how to learn them for better 

characterizing real and fake samples. Our approach for FO is at 

the origins of convolutional networks and consists of learning 

filter weights via the well-known back-propagation algorithm 

[19]. Indeed, due to a refined understanding of the optimization 

process and the availability of plenty of data and processing 

power, back-propagation has been the gold standard method in 

deep networks for computer vision in the last years [13], [24], 

[81]. For optimizing filters, we need to have an already defined 

architecture. We start optimizing filters with a standard public 

convolutional network and training procedure. This network is 

available in the Cuda-convnet library [80] and is currently one 

of the best performing architectures in CIFAR-10,3 a popular 

computer vision benchmark in which such network achieves 

11% of classification error. Hereinafter, we call this network 

cuda-convnet-cifar10-11pct, or simply cf10-11. Fig. 3 depicts 

the architecture of cf10-11 in the top panel and is a typical 

example where domain knowledge has been incorporated for 

increased performance. We can see it as a three-layered network 

in which the first two layers are convolutional, with operations 

similar to the operations used in architecture optimization (AO). 

In the third layer, cf10-11 has two sublayers of unshared local 

filtering and a final fully-connected sublayer on top of which 

softmax regression is performed. A detailed explanation of the 

operations in cf10-11 can be found in [80].  

      Proposed network architecture extending upon cf10-11 to 

better suiting spoofing detection problems (spoofnet, bottom). 

Both architectures are typical examples where domain 

knowledge has been incorporated for increased performance. In 

order to train cf10-11 in a given benchmark, we split the training 

images into four batches observing the same balance of real and 

fake images. After that, we follow a procedure similar to the 

original4 for training cf10-11 in all benchmarks, which can be 

described as follows: 

 For 100 epochs, train the network with a learning rate 

of 10−3 by considering the first three batches for 

training and the fourth batch for validation; 

 For another 40 epochs, resume training now 

considering all four batches for training; 

 Reduce the learning rate by a factor of 10, and train the 

network for another 10 epochs; 

 Reduce the learning rate by another factor of 10, and 

train the network for another 10 epochs. 

 

      After evaluating filter learning on the cf10-11 architecture, 

we also wondered how filter learning could benefit from an 

optimized architecture incorporating domain-knowledge of the 

problem. Therefore, extending upon the knowledge obtained 

with AO as well as with training cf10-11 in the benchmarks, we 

derived a new arc`hitecture for spoofing detection that we call 

spoofnet. Fig. 3 illustrates this architecture in the bottom panel 

and has three key differences as compared to cf10-11. First, it 

has 16 filters in the first layer instead of 64. Second, operations 

in the second layer are stacked in the same order that we used 

when optimizing architectures (AO). Third, we removed the two 

unshared local filtering operations in the third layer, as they 

seem inappropriate in a problem where object structure is 

irrelevant.  These three modifications considerably dropped the 

number of weights in the network and this, in turn, allowed us to 

increase of size of the input images from 32×32 to 128×128. 

This is the fourth and last modification in spoofnet, and we 
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believe that it might enable the network to be more sensitive to 

subtle local patterns in the images. 

 

TABLE II: Input Image Dimensionality After Basic 

Preprocessing On Face And Fingerprint Images 

(Highlighted) See Section Iv-C For Details 

 
 

          In order to train spoofnet, the same procedure used to train 

cf10-11 is considered except for the initial learning rate, which 

is made 10−4, and for the number of epochs in each step, which 

is doubled. These modifications were made because of the 

decreased learning capacity of the network. Finally, in order to 

reduce over fitting, data augmentation is used for training both 

networks according to the procedure of [13]. For cf10-11, five 

24 × 24 image patches are cropped out from the 32×32 input 

images. These patches correspond to the four corners and central 

region of the original image, and their horizontal reflections are 

also considered. Therefore, ten training samples are generated 

from a single image. For spoofnet, the procedure is the same 

except for the fact that input images have 128 × 128 pixels and 

cropped regions are of 112×112 pixels. During prediction, just 

the central region of the test image is considered. 

 

C. Elementary Preprocessing 

     A few basic preprocessing operations were executed on face 

and fingerprint images in order to properly learn representations 

for these benchmarks. This preprocessing led to images with 

sizes as presented in Table II and are described in the next two 

sections. 

Face Images: Given that the face benchmarks considered in this 

work are video-based, we first evenly subsample 10 frames from 

each input video. Then, we detect the face position using Viola 

& Jones [82] and crop a region of 200 × 200 pixels centered at 

the detected window. 

Fingerprint Images: Given the diverse nature of images 

captured from different sensors, here the preprocessing is 

defined according to the sensor type.  

 Biometrika: We cropped the central region of size in 

columns and rows corresponding to 70% of the original 

image dimensions. 

 Italdata and CrossMatch: We cropped the central 

region of size in columns and rows respectively 

corresponding to 60% and 90% of the original image 

columns and rows. 

 Swipe: As the images acquired by this sensor contain a 

variable number of blank rows at the bottom, the 

average number of non-blank rows M was first 

calculated from the training images. Then, in order to 

obtain images of a common size with non-blank rows, 

we removed their blank rows at the bottom and rescaled 

them to M rows. 

      Finally, we cropped the central region corresponding to 90% 

of original image columns and M rows. The rationale for these 

operations is based on the observation that fingerprint images in 

LivDet2013 tend to have a large portion of background content 

and therefore we try to discard such information that could 

otherwise mislead the representation learning process. The 

percentage of cropped columns and rows differs among sensors 

because they capture images of different sizes with different 

amounts of background. For architecture optimization (AO), the 

decision to use image color information was made according to 

10-fold validation (see Section IV-A), while for filter 

optimization (FO), color information was considered whenever 

available for a better approximation with the standard cf10-11 

architecture. Finally, images were resized to 32 × 32 or 128 × 

128 to be taken as input for the cf10-11 and spoofnet 

architectures, respectively. 

D. Evaluation Protocol 

      For each benchmark, we learn deep representations from 

their training images according to the methodology described in 

Section IV-A for architecture optimization (AO) and in Section 

IV-B for filter optimization (FO). We follow the standard 

evaluation protocol of all benchmarks and evaluate the methods 

in terms of detection accuracy (ACC) and half total error rate 

(HTER), as these are the metrics used to assess progress in the 

set of benchmarks considered herein. Precisely, for a given 

benchmark and convolutional network already trained, results 

are obtained by: 

 Retrieving prediction scores from the testing samples; 

 Calculating a threshold τ above which samples are 

predicted as attacks; 

 Computing ACC and/or HTER using τ and test 

predictions. 

      The way that τ is calculated differs depending on whether 

the benchmark has a development set or not (Table I). Both face 

benchmarks have such a set and, in this case, we simply obtain τ 

from the predictions of the samples in this set. Iris and 

fingerprint benchmarks have no such a set, therefore τ is 

calculated depending on whether the convolutional network was 

learned with AO or FO. In case of AO, we calculate τ by joining 

the predictions obtained from 10-fold validation (see Section IV-

A) in a single set of positive and negative scores, and τ is 

computed as the point that lead to an equal error rate (EER) on 

the score distribution under consideration. In case of FO, scores 

are probabilities and we assume τ = 0.5. ACC and HTER are 

then trivially computed with τ on the testing set. It is worth 

noting that the Warsaw iris benchmark provides a 

supplementary testing set that here we merge with the original 

testing set in order to replicate the protocol of [42]. Moreover, 

given face benchmarks are video-based and that in our 

methodology we treat them as images (Section IV-C), we 

perform a score-level fusion of the samples from the same video 

according to the max rule [83]. This fusion is done before 

calculating τ . 
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E. Implementation 

       Our implementation for architecture optimization (AO) is 

based on Hyperopt-convnet [84] which in turn is based on 

Theano [85]. LibSVM [86] is used for learning the linear 

classifiers via Scikit-learn.5 The code for feature extraction runs 

on GPUs due to Theano and the remaining part is multithreaded 

and runs on CPUs. We extended Hyperopt-convnet in order to 

consider the operations and hyper parameters as described in 

Appendix and Section IV-A and we will make the source code 

freely available in [87]. Running times are reported with this 

software stack and are computed in an Intel i7 @3.5GHz with a 

Tesla K40 that, on average, takes less than one day to optimize 

an architecture — i.e., to probe 2,000 candidate architectures — 

for a given benchmark. As for filter optimization (FO), Cuda-

convnet [80] is used. This library has an extremely efficient 

implementation to train convolutional networks via back-

propagation on NVIDIA GPUs. Moreover, it provides us with 

the cf10-11 convolutional architecture taken in this work as 

reference for FO. 

 

V. RESULT 

 
Fig4. Menu 

 
Fig5. Select Image 

 

 
Fig6. Image added to database. 

 

 
Fig7. Menu for Recognization  

 

 
Fig8. Select Image for Reorganization 
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Fig9. Image Matched with Database. 

 
Fig10. Select non-database Image  

 

 

Fig11. Image Not matched with database. 

 

Fig12. Image Visualization 

 
Fig13. Exit. 

VI. CONCLUSION 

     In this project,  investigated two deep representation research 

approaches for detecting spoofing in different biometric 

modalities. On one hand, approached the problem by learning 

representations directly from the data through architecture 

optimization with a final decision-making step atop the 

representations. On the other,   to learn the filter weights for a 

given architecture using the well-known back- propagation 

algorithm. As the two approaches might seem naturally 

connected, we also examined their interplay when taken 

together. Experiments showed that these approaches achieved 

outstanding classification results for all problems and modalities 

outperforming the state-of-the-art results in eight out of nine 

benchmarks. Interestingly, the only case for which our 

approaches did not achieve SOTA results is for the biosec 

benchmark. These results support our hypothesis that the 

conception of data-driven systems using deep representations 

able to extract semantic and vision meaningful features directly 

from the data. 
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