
www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1802742 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 412

Modeling Energy Consumption of a Parallel

Application on a Computational Grid

Nandini S1, Chithra Apoorva D A2, Mala B M3
1,2,3 Assistant Professor, Dept of CS & E, GITAM School of Technology, Bangalore.

Abstract : Energy, non-renewable resource has at-most global importance. Conserving this energy in computational grids especially

in large data centers has been a hot topic of discussion since many years. A small amount of reduction in energy consumption in a

single node would add up resulting in a significant amount energy savings in the data centers. In this paper the energy model is

derived based on various parameters that are obtained using PAPI and Perf, a Linux profiler. The work also concentrate on scaling

Central Processing Unit frequency and obtain results for various workload. Molecular dynamics a systolic approach is the program

that is used. The program is run at different workloads and at different CPU frequencies. Based on that, energy equation is derived

and graphical representation of the results are shown for different frequency ranges and workloads. The result can be utilized to

identify the CPU frequency for running the applications which can provide better performance in acceptable amount of time with

reduced energy consumption.

Key terms: Grid, PAPI, Perf, Molecular Dynamics

1INTRODUCTION

Measuring performance of any of the programs or applications is very much important because the system resources are very

expensive. Especially while running programs in grid environment it must be given higher importance. Higher the usage of Central

processing Unit and other resources of computers connected might result in higher power dissipation and consume lot of energy.

Higher energy use is not just waste of expensive energy but it will effect environment. Higher the release of carbons to the

environment will result in greenhouse effect. So, it is very much important to analyze the performance of any applications or

programs especially in Grid or cloud. So, the programs and applications must be optimized.

 Grid computing is a collection of multiple computer and computer resources spread across different geographical locations,

must be connected by a computer network and all working towards a goal simultaneously. The systems can be heterogeneous with

different operating systems, different RAM (Random Access Memory) capacity and different cache, that is systems with different

hardware and software configurations. But all must be connected by a computer network.

 The grid can be used for solving intensive scientific computations, mathematical and analytical problems. It can be used for

solving computations that might require very less or no communication between the running processes.

Optimization: Optimization of programs helps in reducing the time and resources utilized in executing the program. To optimize a

program, that is to find the points in the program where large number of CPU cycles or any other system resources are being

consumed is very much important. This can be done with the help of Profilers.

PAPI (Performance Application Programming Interface) provides operating system independent access to CPU hardware

performance counters. It has 2 layers a machine dependent layer and a machine independent layer which will access the hardware

counters of the system and provide details such as number of instructions executed, number of clock cycles, cache hits, cache misses

etc.

2 RELATED WORK

In the previous work [1], “Measuring Energy and Power with PAPI ” by, Vincent M. Weaver, Matt Johnson, Kiran Kasichayanula,

James Ralph, Piotr Luszczek, Dan Terpstra, and Shirley Moore Innovative Computing Laboratory University of Tennessee. In this

paper author explains how PAPI can be used to measure energy and power values for CPUs and GPUs internally and externally with

external power meters. It also explains usage of available new APIs of PAPI can be used to obtain any particular event of interest to

the user. They also explained how PAPI supports reading measurement data of running processes. The author explains about the

external power measurement devices like Watt’s Up Pro meter and PowerMon2. Watt’s Up Pro Meter is an external measurement

device the system can plug into. It provides power measurement and time using which energy can be calculated. PAPI is used to

provide measurements every second irrespective of whether it is requested or not. PAPI component for PowerMon2 is not available

yet.

 The author also explains about internal measurement of power where energy and power consumption are measured

internally. Here the author discuss about Intel RAPL (Running Average Power Limit), AMD Application Power management and

NVIDIA Management library. RAPL’s internal circuitry can estimate current energy usage based on a model driven by hardware

counters, temperature, and leakage models. The results of this model are available to the user via a model specific register (MSR).

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1802742 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 413

Accessing MSRs requires ring-0 access to the hardware; which can be done only by operating system kernel. So accessing RAPL

values require a kernel driver, which is not available with Linux. To solve this the MSR driver is enabled and given proper read-only

permissions then PAPI can access these registers directly without kernel support. AMD Application power management, AMD family

15h processors report power in Watts via the processor power in TDP. PAPI support for this is yet to be available. NVIDIA GPU’s

report power via the NVIDIA Management Library. The nvmlDeviceGetPowerUsage() routine exports the current power.

In [2], “Collecting Performance Data with PAPI-C” by Dan Terpstra, Heike Jagode, Haihang You, Jack Dongarra, The University of

Tennessee. In paper[2], the author explains about Component PAPI or PAPI-C, which provides a way to collect multiple sources of

performance data simultaneously via a common software interface. The author describes about preset events-a single event native to a

given CPU, native events of PAPI and LM-Sensors Component, this component allows PAPI to access computer health monitoring

sensors that are provided by lm_sensors library. The author demonstrates how PAPI-C was used to measure CPU fan speed

monitoring, CPU temperature monitoring on an Intel Nehalem (core i7) machine using the LM-SENSORS component.

In [3,4], “Complete System Power Estimation: A Trickle-Down Approach Based on Performance Events” by W. Lloyd Bircher and

Lizy K. John, Laboratory for Computer Architecture, Department of Electrical & Computer Engineering, University of Texas at

Austin. The researchers make use of microprocessor performance counters for online measurement of complete system power

consumption. They make use of actual system running scientific and commercial workloads to develop and validate power models for

memory, chipset, Input/Output, disk and microprocessor. Memory power model is done using the number of read/write cycles. These

are estimated by counting memory bus accesses by processor and other events. Disk power model is done by accurately modelling the

amount of time spent moving the disk read/write head and the speed of rotation. Input/output and chipset power model is done by

estimating dynamic power in the input/output and chipset subsystems through the number of interrupts, DMA(Direct Memory

Access) and un-cacheable accesses. Author makes use of on-chip performance counters reading through CPU (Central Processing

Unit) register accesses. They make use of dynamic adaptation which involves reconfiguring hardware dynamically to match software

demands. By this high performance and low power consumption can be achieved. To do this phase detection needs to be done that is

identifying performance insensitive phases of program execution. Their subsystem consists of resistors connected in series with the

power source, the voltage drop across resistor is used to measure power consumed by the subsystem since voltage drop across resistor

is directly proportional to the power consumed. Performance events in the processor are recorded at rate of once per second.

 For experimenting eleven workload were considered which involve eight workloads form the SPEC CPU 2000 benchmark.

SPEC workloads include computationally intensive scientific applications intended to stress the CPU and memory subsystems. Events

such as cycles, halted cycles, fetched uops, level 3 cache misses, TLB misses, DMA accesses, processor memory bus transactions,

un-cacheable accesses and interrupts were noted down and the power consumed in Watts were tabulated for all the eleven workloads

namely idle, gcc, mcf, vortex, art, lucas, mesa, mgrid, wupwise, dbt-2, SPECjbb and DiskLoad. The below equations were derived.

SMP Processor power model derived using gcc workload is given by:

Cache miss memory power model derived using mesa workload is given by:

Input/output power model using synthetic workload is given by:

3 PROPOSED WORK

The below figure 3.1 depicts the flow chart of the proposed work

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1802742 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 414

Figure 3.1 Flowchart of proposed work

A. Setting a Beowulf cluster: Beowulf is a method of creating clusters. It is not a software but a way of building a

supercomputer. We can make use of any computer hardware resources that are available like memory disks, Central Processing Units,

Monitors that are not being used a supercomputer can be built even with a single mouse and keyboard. This way by using waste

computer resources a super computer can be built.

B. Selecting benchmark program: By using benchmarks we can compare the performance of various subsystems across

multiple chip or system architecture. The benchmark selected is molecular dynamics systolic process.

Molecular dynamics a cpp program, is a computation that involves following the particles path which exert a distant dependent force

on each other. If particles meet, they pass through other. In the molecular dynamics program, the temperature and energy consumed

by systems are calculated by varying the number of particles.

C. Measuring energy and power: Energy and power are the most important resources. To compute energy and power we are

using number of instruction, number of cpu-cycles executed, L1 cache misses, L2 cache misses and execution time parameters of

program execution. PAPI and perf are used to obtain the above parameters of program execution. PAPI provides APIs to compute

these parameters and perf provide these values by directly reading the LINUX events.

PAPI comes with 2 layers, a machine dependent layer and a machine independent layer. By compiling and statically linking

independent layer with hardware specific layer, PAPI library instance will be produced for specific operating system and hardware

architecture. PAPI portable layer calls the substrate, the internal PAPI layer which handles machine dependent specifics of accessing

counters. Substrate uses all the available methods that are appropriate to facilitate counter access. When particular hardware event

exceeds specific threshold, it calls user-defined handlers. Using PAPI almost all hardware counters can be measured by using the

APIs.

The APIs provided by PAPI that are utilized in this paper are:

 PAPI_TOT_INS: Gives the number of instructions executed or the number of instructions completed. Number of

instructions a computer can execute depend on the instruction type, order of execution and the presence of branch

instructions.

 PAPI_TOT_CYC: Gives the number of CPU cycles used in executing the program. Every instruction goes 5 phases during

execution. Each instruction undergoes a fetch, decode, execute, memory access and write back cycle. 1 clock cycle is the

time between 2 pulses of an oscillation. This can be used to determine speed of a computer processor.

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1802742 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 415

 PAPI_L1_DCM: Gives number of cache hits of L1 level. L1 cache is usually built into microprocessor chip of the processor

itself. It will be smaller in size.

 PAPI_L2_DCM: Gives number of cache hits of L2 level. L2 cache is on a separate chip and it will be of larger size than L1

 PAPI_get_real_cyc(): Gives the real time counter value in clock cycles. It returns the total amount of real time that is

passed since some arbitrary starting point. This time is returned in clock cycles.

 PAPI_get_real_usec():Gives the real time counter value in microseconds. It is same as PAPI_get_real_cyc but returns time

in microseconds

 PAPI_library_init():Initializes the PAPI library. It needs to be called mandatorily before using any of the low level PAPI

functions.

 PAPI_num_counters():Which returns the hardware counters that are available on the system.

 PAPI_num_events(): Returns the number of events that are mentioned in the eventset.

 PAPI_start_counters(): High level API which starts counting hardware events. It will start counting events in event array

whenever it is called for.

 PAPI_stop_counters(): High level API which stops counting hardware events. It will stop counting events in event array

whenever it is called for.

The below figure 3.2 illustrates the structure of PAPI

Figure 3.2: PAPI Structure

 PERF is Linux profiler, which is also called as Performance counters for Linux. The events reported by perf are called perf

events. While PAPI provides only hardware events, Perf can provide software, hardware, hardware PMU events and trace back

events. Perf tool is available in linux-tools-common package. It can be installed by executing command sudo apt-get install linux-

tools-version. The version should match the kernel . All the events that can be measured PERF are provided by perf list command.

Option u is used along with perf stat to obtain program specific performance parameters. The events that are used in the molecular

dynamics program are:

 CPU-cycles

 Instructions

 L1-dcache-misses

 LLC

CPU-cycles is used to obtain total number of cycles used for program execution. Instruction gives the total number of instructions.

Utilizing CPU-cycles and instructions, cycles per instruction can be calculated. But perf provides number of instructions by default.

L1 cache and L2 cache values can be used to show that increase in L1 and L2 cache misses will increase the number of cpu-

cycles.L1-dcache-misses provides the data cache misses and LLC provides the last level cache misses. Execution time is provided by

perf automatically.

Using the CPU-cycles and the time elapsed during program execution, the energy consumption of the program can be obtained.

Number of CPU-cycles is directly proportional to the amount of energy consumed.

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1802742 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 416

4 SYSTEM MODEL
The system model shows the number of processor elements in a cluster. For a system of n clusters with m nodes in each cluster, the

processing elements of a cluster is given by:

𝐶 = ∑ ∑ 𝑃𝑖𝑗𝑚
𝑗=1

𝑛
𝑖=1 ………………………………...................... Eqn 4.1

Where,

n=number of clusters

m=number of nodes in each cluster and

p = number of cores per node

The below figure 4.1 shows the system model

Figure 4.1 (a) System Model

4.1 Energy Model

By performing the experiment it is observed that the energy consumption is directly inversely proportional to the number of clock

cycles. Based on this Energy equation can be derived using power, clock cycles utilized during execution and the base speed of the

processor.

Power equation is given by:

𝑃 = 𝐷𝑤 ∗ [(
𝑓𝑚𝑖𝑛

𝑓𝑚𝑎𝑥
) ∗ (

𝑉𝑚𝑖𝑛

𝑉𝑚𝑎𝑥
)]2………………………………..........Eqn 4.2

Where,

P = Power consumed

Dw = Default voltage =64Watts,

fmin = minimum frequency = 1.6GHz

fmax = maximum frequency = 2.6GHz

Vmin = minimum voltage = 0.85V and

Vmax = maximum voltage = 1.36V

Energy equation is given by:

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1802742 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 417

𝐸 = 𝑃 ∗ ∆𝑡/(𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟) ……………………………………….Eqn 4.3

 Where,

E = Energy consumed in joules

P = power obtained by previous equation and

∆t = number of clock cycles

5 PERFORMANCE EVALUATION

The results obtained using PAPI and Perf for 1.6GHz and 2.6GHz are analyzed for 3 different workloads at 300, 400 and 500

particles. The graphs are drawn for response time and energy consumed against different workloads

(a) (b)

Figure 5.1(a):Graph representing response time of different workloads in a single system using perf. (b) Graph representing

response time of different workloads in cluster using perf.

The graph 5.1(a) shows the response time of different workloads in a single system using perf with 1.6 GHz and 2.6 GHz . With 1.6

GHz the response time is high when compared to 2.6 GHz. As the number of particles increases the response time also increases in a

single system using perf. But the response time is low in cluster with respect to perf. Hence using perf the response time is reduced in

cluster.

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1802742 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 418

 (a) (b)

Figure 5.2 (a): Graph 3 representing energy consumption of different workloads in a single system using perf. (b) Graph

representing energy consumption of different workloads in a cluster using perf.

The graph 5.2(a) shows the energy consumption in a single system using perf with different number of particles. Here, the energy

consumption does not vary much as the number of particles increase with different CPUs of 1.6 GHz and 2.6 GHz. In graph 5.2(b),

the energy consumption in cluster with perf remains almost same with two different processors as the number of particles increases.

But the energy consumption in reduced when perf is used in cluster which is considered to be an important factor in clusters

 (a) (b)

Figure 5.3(a): Graph representing response time of different workloads in a single system using PAPI. (b) Graph representing

response time of different workloads in a cluster using PAPI.

The graph 5.3(a) shows the response time of different workloads in a single system using PAPI with 1.6 GHz and 2.6 GHz . With 1.6

GHz the response time is high when compared to 2.6 GHz. As the number of particles increases the response time also increases in a

single system using PAPI. But the response time is low in cluster with respect to PAPI. Hence using PAPI the response time is reduced

in cluster. Using PAPI in cluster the response time is very much reduced when compared to perf. as well as the energy consumption is

also reduced

The graph 5.4(a) shows the energy consumption in a single system using PAPI with different number of particles. Here, the energy

consumption does not vary much as the number of particles increase with different CPUs of 1.6 GHz and 2.6 GHz. In graph 5.4(b),

the energy consumption in cluster with PAPI remains almost same with two different processors as the number of particles increases.

But the energy consumption in reduced when PAPI is used in cluster when compared with single system using PAPI which is

considered to be an important factor in clusters

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1802742 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 419

 (a) (b)

Figure 5.4(a): Graph representing energy consumption of different workloads in a single system using PAPI.(b) Graph

representing energy consumption of different workloads in a cluster using PAPI.

5. CONCLUSION AND FUTURE WORK

The energy consumption in cluster in an important factor and hence it is analyzed using perf and PAPI. It can be concluded that using

perf and PAPI in clusters can reduce the response time and energy consumption.

The energy is modeled considering the default wattage, minimum frequency, maximum frequency, minimum voltage, maximum

voltage, baseline frequency of the system and the number of clock cycles. Energy model is derived by varying CPU frequency and

executing the program at different workloads.

This work can also be extended for other more number of particles and can be implemented with different program as in this paper it

is concentrated on molecular dynamics.

 The above work can be carried out on multiple nodes cluster. In this paper we have used 2 nodes in a cluster. By carrying out

the experiment in more nodes the values can be much accurate, experiment can also be carried out at multiple frequency levels. To

obtain the optimal frequency for operation. In the energy model temperature of the system is not considered. Increase in temperature

will increase energy consumption of system. So, in the future temperature can also be used as a parameter to model energy.

REFERENCES

[1] “Measuring Energy and Power with PAPI ” by, Vincent M. Weaver, Matt Johnson, Kiran Kasichayanula, James Ralph, Piotr

Luszczek, Dan Terpstra, and Shirley Moore Innovative Computing Laboratory University of Tennessee

[2] “Collecting Performance Data with PAPI-C” by Dan Terpstra, Heike Jagode, Haihang You, Jack Dongarra, The University of

Tennessee

[3] “Complete System Power Estimation: A Trickle-Down Approach Based on Performance Events” by W. Lloyd Bircher and Lizy

K. John, Laboratory for Computer Architecture, Department of Electrical & Computer Engineering, University of Texas at Austin.

[4] “Power-Aware Predictive Models of Hybrid (MPI/OpenMP) Scientific Applications on Multicore Systems” by Charles Lively ·

Xingfu Wu · Valerie Taylor · Shirley Moore · Hung-Ching Chang · Chun-Yi Su · Kirk Cameron

[5]] "Energy and performance characteristics of different parallel implementations of scientific applications on multicore systems” by

Charles Lively, Xingfu Wu, Valerie Taylor, Shirley Moore, Hung-Ching Chang and kirk Cameron

[6] “An energy-efficient scheduling algorithm using dynamic voltage scaling for parallel applications on clusters” by Xiaojun Ruan,

Xiao Qin, Ziliang Zong, Kiranmai Bellam, Mais Nijim, Department of Computer Science and software Engineering, Auburn

University, Auburn and Department of Computer Science, University of Southern Mississippi, Hattiesburg

[7] “Profile-based Dynamic Voltage and Frequency Scaling for a multiple clock Domain Microprocessor” by Grigorios Maglis,

Michael L Scott, Greg Semeraro, David H Albonesi and Steven Dropsho, Department of Computer Science, Department of Electrical

and Computer Engineering, University of Rchester, Rochester,NY.

[8] "The new Linux ‘perf’ tools” by Arnaldo Carvalho de Melo, Red Hat Inc, Brazil

[9] Perf Tool: Performance Analysis Tool for Linux

[10] PAPI: Performance Application Programming Interface, Walt Mankowski

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1802742 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 420

[11] "Energy consumption model over parallel programs implemented on multicore architectures" by Ricardo Isidro-Ramfrez,

Amilcar Meneses Viveros Erika Hernandez Rubio, SEPI-ESCOM Mexico, D.F.

[12] "Energy Consumption on Heterogeneous Computing Platforms" by Savina Bansal, Kaushal Bansal, R K Bansal, Department of

Electronics and communication engineering, Punjab Tech University Campus, India

[13] "A Parallel Model and Runtime System for Approximation-aware Heterogeneous Computing" by Ioannis Parnassos, Nikolaos

Bellas, Nikolaos Katsaros, Nikolaos Patsiatzis, Athanasios Gkaras, Konstantinos Kanellis, Christos D. Antonopoulos, Michalis

Spyrou and Manolis Maroudas University of Thessaly Volos, Greece

[14] "A Formal Approach to the Mapping of tasks on an Heterogeneous Multicore, Energy-aware architecture", by Emilien Kofman,

Robert de Simone, Inria

[15] "An efficient dynamic energy-aware application mapping algorithm for multicore processors", by Thomas Canhao Xu, Ville

Leppanen, Department of Information Technology, University of Turky, Finland

http://www.ijcrt.org/

