Fixed point theorems in Partially ordered metric space

Ganesh kumar soni
Govt.P.G.College,Narsinghpur(M.P.)

Abstract-In this paper, we prove fixed point theorem in a partially ordered metric space.
Keywords-Coupled fixed point,partially ordered metric space, Continuous mapping.

Introduction

A number of authors generalize of the Banach contraction principle in fixed point theorems. Recently, Bhaskar and Lakshmikantham[1] Ciric and Lakshmikantham[2] [3]Sabetghadam,Masiha and Sanatpour[4] Luong and Thuan[5] have worked in this field.

Some Definitions

Definition[1]- An Element (x, y) $\in X x X$ is said to be coupled fixed point of the mapping $F: X x X \rightarrow X$ if $F(x, y)=x$ and $F(y, x)=y$.

Definition[2]- Let (X, \leq) be a partially ordered set and $F: X x X \rightarrow X$, we say that F has the mixed monotonic property if $F(x, y)$ is monotonic non-decreasing in x and is monotonic non-increasing in y, i.e.; for any $x, y \in X$.

$$
\begin{aligned}
& x_{1}, x_{2} \in x_{,} x_{1} \leq x_{2} \Rightarrow F\left(x_{1}, y\right) \leq F\left(x_{2}, y\right) \\
& \text { and } y_{1}, y_{2} \in x, x_{1} \leq x_{2} \Rightarrow F\left(x, y_{1}\right) \leq F\left(x, y_{2}\right)
\end{aligned}
$$

Theorem: Let (X, \leq) be a partially set endowed with a metric d such that (X, d) is complete. Let $F: X x X \rightarrow X$ be a mapping having the mixed monotone property on X. Suppose there exist non-negative real numbers $c \in[0,1)$ with $c<1$ for each $x, y, u, v \in X$ we have

$$
d(F(x, y), F(u, v)) \leq \frac{c d(x, u)\left[1+2\left\{\sqrt{ } d(x, u)+\overline{\left.d(u, F(u, v))\}^{2}\right]}\right.\right.}{\left[1+\left\{\sqrt{d}(x, F(u, v)+d(u, F(x, \bar{y}))\}^{2}+\{\sqrt{d}(x, F(x, y))+d(u, F(u, v))\}^{2}\right.\right.}
$$

[^0](ii) X has the following properties (a) if a non- decreasing sequence $\left\{x_{n}\right\}$ in X converges to some points $x \in X$, then $x_{n} \leq x \forall n(b)$ if a non-increasing sequence $\left\{y_{n}\right\}$ in X converges to some points $y \in X$, then $y_{n} \geq y \forall n$.Then F has a coupled fixed point.

Proof:- Choose $x_{0}, y_{0} \Theta X$ and set $x_{1}=F\left(x_{0}, y_{0}\right)$ and $y_{1}=F\left(y_{0}, x_{0}\right)$. In this process, We get set $x_{n+1}=F\left(x_{n}, y_{n}\right)$ and $y_{n+1}=F\left(y_{n}, x_{n}\right)$ Then by inequality we have
$d\left(X_{n}, X_{n+1}\right)=d\left(F\left(X_{n-1}, y_{n-1}\right), F\left(x_{n}, y_{n}\right)\right)$
$\leq \frac{\left.c d\left(x_{n-1}, X_{n}\right)+\left[1+2\left\{\sqrt{d\left(X_{n-1}, X_{n}\right)+d\left(X_{n}, F\right.} F_{n}\left(X_{n}, y_{n}\right)\right)\right\}^{2}\right]}{\left.\left.\left[1+\left\{\sqrt{d\left(X_{n-1}, F\left(X_{n}, Y_{n}\right)\right)+d\left(X_{n}, F\left(X_{n-1}, Y_{n-1}\right)\right.}\right)\right\}^{2}+\left\{\sqrt{d\left(X_{n-1}, F\left(X_{n-1}, Y_{n-1}\right)\right)+d\left(X_{n}, F\left(X_{n}, Y_{n}\right)\right.}\right)\right\}^{2}\right]}$
$\left.\leq \mathrm{c} d\left(x_{n-1}, X_{n}\right)+\left[1+2\left\{\sqrt{d\left(x_{n-1}, X_{n}\right)+d\left(x_{n}, X_{n}+1\right.}\right)\right\}{ }^{2}\right]$
$\left[1+\left\{\sqrt{d\left(X_{n-1}, X_{n+1}\right)+d\left(X_{n}, X_{n}\right)}\right\}^{2}+\left\{\sqrt{d\left(X_{n-1}, X_{n}\right)+d\left(X_{n}, X_{n+1}\right)}\right\}^{2}\right]$
$\leq \mathrm{c} d\left(x_{\mathrm{n}-1,}, x_{\mathrm{n}}\right)+\left[1+2\left\{\sqrt{d}\left(\mathrm{X}_{\mathrm{n}-1,}, \mathrm{X}_{\mathrm{n}}+1\right)\right\}^{2}\right]$
$\left[1+\left\{\sqrt{d\left(X_{n-1}, X_{n+1}\right)}\right\}^{2}+\left\{\overline{\left.\sqrt{d\left(X_{n-1}, X_{n+1}\right.}\right)}\right\}^{2}\right]$
$\leq \mathrm{c} d\left(\mathrm{x}_{\mathrm{n}-1,1} \mathrm{X}_{\mathrm{n}}\right)+\left[1+2 \mathrm{~d}\left(\mathrm{X}_{\mathrm{n}-1}, \mathrm{X}_{\mathrm{n}+1}\right)\right]$
[1+2 $\left.d\left(X_{n-1,} X_{n+1}\right)\right]$
$\leq \mathrm{C} \quad \mathrm{d}\left(\mathrm{X}_{\left.\mathrm{n}-1,1, \mathrm{X}_{\mathrm{n}}\right)}\right.$
Similarly,
$d\left(y_{n}, y_{n+1}\right)=d\left[F\left(y_{n-1}, X_{n-1}\right), F\left(y_{n}, X_{n}\right)\right]$
$\leq c d\left(y_{n-1}, y_{n}\right)+\left[1+2\left\{\sqrt{d\left(y_{n-1}, y_{n}\right)+d\left(y_{n}, F\left(y_{n}, x_{n}\right)\right.}\right\}^{2}\right]$
$\left.\left[1+\left\{\sqrt{d\left(y_{n-1}, F\left(y_{n}, X_{n}\right)\right)+d\left(y_{n}, F\left(y_{n-1}, X_{n-1}\right)\right.}\right)\right\}+\left\{\sqrt{d\left(y_{n-1}, F\left(y_{n-1}, X_{n-1}\right)\right)+d\left(y_{n}, F\left(y_{n}, X_{n}\right)\right.}\right\}^{2}\right]$
$\leq c \quad d\left(y_{n-1}, y_{n}\right)+\left[1+2\left\{\sqrt{d}\left(y_{n-1}, y_{n}\right)+d\left(y_{n,}, y_{n+1}\right)\right\}{ }^{2}\right]$
$\left[1+\left\{\sqrt{d\left(y_{n-1}, y_{n+1}\right)+d\left(y_{n}, y_{n}\right)}\right\}^{2}+\left\{\sqrt{d\left(y_{n-1}, y_{n}\right)+d\left(y_{n}, y_{n+1}\right)}\right\}^{2}\right]$
$\leq c d\left(y_{n-1}, y_{n}\right)+\left[1+2\left\{\sqrt{d}\left(y_{n-1}, y_{n+1}\right)\right\}^{2}\right]$
$\left[1+\left\{\sqrt{d\left(y_{n-1}, y_{n+1}\right)}\right\}^{2}+\left\{\sqrt{d\left(y_{n-1}, y_{n+1}\right)}\right\}^{2}\right]$
$\leq \mathrm{c} d\left(y_{n-1}, y_{n}\right)+\left[1+2 d\left(y_{n-1}, y_{n+1}\right)\right]$
$\left[1+2 d\left(y_{n-1}, y_{n+1}\right)\right]$
$\leq \mathrm{C} \quad \mathrm{d}\left(\mathrm{y}_{\mathrm{n}-1,1} \mathrm{y}_{\mathrm{n}}\right)$

Which implies that
$d\left(y_{n,} y_{n+1}\right) \leq c d\left(y_{n-1}, y_{n}\right)$
Adding equation (i) and (ii) we have
$\mathbf{d}_{\mathrm{n}} \leq \mathrm{Cl}_{\mathrm{n}-1}$

Let $d_{n}=d\left(x_{n}, x_{n+1}\right)+d\left(y_{n,} y_{n+1}\right)$.In this manner we get
$d_{n} \leq \mathbf{C} d_{n-1} \leq$ \qquad $\leq C^{n} \mathrm{~d}_{0}$ \qquad -(iv)

If $d_{0}=0$, Then $\left(x_{0}, y_{0}\right)$ is a coupled fixed point of F.Suppose that $d_{0} \geq 0$, Then for each $r \boldsymbol{N}$ We obtain by the triangle inequality we have

$$
\begin{aligned}
& d\left(X_{n}, X_{n+r}\right)+d\left(y_{n,} y_{n+r}\right) \leq\left[d\left(X_{n}, X_{n+1}\right)+d\left(X_{n+1}, X_{n+2}\right)+\ldots \ldots \ldots+\ldots+d\left(X_{n+r-1}, X_{n+r}\right)\right]+ \\
& {\left[d\left(y_{n}, y_{n+1}\right)+d\left(y_{n+1}, y_{n+2}\right)+\ldots \ldots+\ldots+\ldots\left(y_{n+r-1}, y_{n+r}\right)\right]} \\
& =\left[d\left(X_{n}, X_{n+1}\right)+d\left(y_{n}, y_{n+1}\right)\right]+\left[d\left(X_{n+1}, X_{n+2}\right)+d\left(y_{n+1}, y_{n+2}\right)\right]+\ldots \ldots+\ldots+ \\
& {\left[d\left(X_{n+r-1}, X_{n+r}\right)+d\left(y_{n+r-1}, y_{n+r}\right)\right]} \\
& \leq d_{n}+d_{n+1}+\ldots-\ldots-\ldots+d_{n+r-1} \\
& \leq c^{n}\left(1-c^{r}\right) \text { dol (1-c) tends to } 0 \text { as } n \rightarrow \infty \\
& \text { (v) }
\end{aligned}
$$

Therefore $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are Cauchy sequence. Since X is a complete then there exist x, y $\boldsymbol{E} \mathbf{X}$ such that
$\operatorname{Lim}_{n \rightarrow \infty} x_{n}=x$ and $\operatorname{Lim}_{n \rightarrow \infty} y_{n}=y$

Now we show that if the inequality (i) holds then (x, y) is a coupled fixed point .
We have,
$x=\operatorname{Lim} x_{n+1}=\operatorname{Lim} F\left(x_{n}, y_{n}\right)=F\left(\operatorname{Lim} \quad x_{n}, \operatorname{Lim} \quad y_{n}\right)=F(x, y)$
$\mathbf{n} \rightarrow \infty$
$\mathbf{n} \rightarrow \infty$
$\mathbf{n} \rightarrow \infty$
$\mathbf{n} \rightarrow \infty$
and
$y=\operatorname{Lim} y_{n+1}=\operatorname{Lim} F\left(X_{n}, y_{n}\right)=F\left(\operatorname{Lim} \quad y_{n}, \operatorname{Lim} \quad x_{n}\right)=F(y, x)$
$\mathbf{n} \rightarrow \infty$
$\mathbf{n} \rightarrow \infty$
$\mathbf{n} \rightarrow \infty$
$\mathbf{n} \rightarrow \infty$

Therefore (x, y) is coupled fixed point of F.Suppose that the condition (a) and (b) holds. The sequence $\left\{x_{n}\right\} \rightarrow x,\left\{y_{n}\right\} \rightarrow y$.
$d\left(F(x, y), F\left(x_{n}, y_{n}\right)\right)$

$$
\leq \frac{c d\left(x, x_{n}\right)\left[1+2\left\{\sqrt{d\left(x, x_{n}\right)+d\left(x_{n}, F\left(x_{n}, y_{n}\right)\right.}\right\}^{2}\right]}{\left.\left[1+\left\{\sqrt{d\left(x, F\left(x_{n}, y_{n}\right)\right)+d\left(x_{n}, F(x, y)\right)}\right\}^{2}+\left\{\sqrt{d(x, F(x, y))+d\left(x_{n}, F\left(x_{n}, y_{n}\right)\right.}\right)\right\}^{2}\right]}
$$

$\leq c \underline{d(x, x)}\left[1+2\{\sqrt{d(x, x)+d(x, x)}\}^{2}\right]$

$$
\left[1+\{\sqrt{d(x, x)+d(x, x)}\}^{2}+\{\sqrt{d(x, x)+d(x, x)}\}^{2}\right]
$$

Letting $n \rightarrow \infty$ we have $d(F(x, y), x) \leq 0$
This shows that $F(x, y)=x$, Similarly we can show that $F(y, x)=y$.

REFERENCES

[1] T.G.Bhaskar, V. Lakshmikantham(2006):: Fixed point theorems in partially ordered metric spaces and applications, Non linear analysis : Theory methods and applications, 65 (7), 1379-1393
[2] L.Ciric, V. Lakshmikantham(2009): : Coupled random fixed point theorems for nonlinear contractions in partially ordered metric spaces, stochastic and applications, 27, 1246-1259
[3] L.Ciric, V. Lakshmikantham (2009): Coupled fixed point theorems for non-linear contractions in partially ordered metric spaces, Non-linear analysis, theory methods and applications, 70(12), 4341-4349
[4] F.Sabetghadam, H.P.Masiha, A.H.Sanatpour(2009): Some couple fixed point theorems in cone metric spaces, fixed point theory and applications, article ID 125426
[5] N.V.Luong, N.X.Thuan(2011): Couple fixed point in parcially ordered metric spaces and application, Non linear analysis : Theory methods and applications,74,983-992

[^0]: Suppose either(i)F is continuous or

