Comparative analysis of Internet of Things Techniques

Sagar shinde¹, Sachin kole², Nilesh Gawade³ 1,2,3,4 E & TC Department, JSPM, Narhe Technical Campus, Pune

Abstract

With the growing boom of IoT now a days. IoT systems is responsible for not only sensing things but also able to monitor specific users' behavior in different real time applications like tracking system. IoT can be explored to different synergetic activities conducted in different fields such as social, healthcare and agriculture. The main objective of this paper is to provide comparative analysis of the most relevant protocols, technologies and application of IoT which will enable researchers and application developers to develop application in emerging trends on IoT. The various paradigm of Internet of Things are analyzed and enabling technologies reviewed thoroughly.

Keywords

Internet of Things, Pervasive computing, Cloud computing, MQTT, AMQP, Raspberry pi, Arduino Uno, Artificial Neural Network, Big data, DNS, Machine learning, Star topology.

Introduction:

With the growing urge to make smart world, IoT becomes talk of town. Motivated towards smart world Internet of Things (IoT) connects everything in the smart world. Internet of Things (IoT) provides ability to sense and collect data from devices, and then share it through Internet where it can be refined, analyzed and utilized for various real time applications. The IoT includes smart machines which are interacting and communicating with other machines, objects, environments and infrastructures through internet. IoT applications provide real time responses and therefore it can deal with real time application. Considering the example of smart homes one might want to receive timely alert about the gas reaches below some threshold value. With the growth of internet in today's era IoT will be helpful to solve many problems and so it is gaining popularity day by day. Through IoT we can communicate between

sensor and actuator, Actuator and sensor are the input and output interfacing of controller or processor. Basically internet of things is a collaboration of hardware and software .The hardware can consist of sensor, actuator, relay, zigbee, RFID, Bluetooth, GPRS, controller, processor and software may comprise of some protocols in IoT such as Message queue telemetry transport (MQTT), Advance message queue protocols, TCP/IP, LORA technology etc.

G N	m : 1	A .1	NZ C		•		.
Sr.No	Title	Author	Year of	Technique	Accuracy	Advantages	Limitations
			publications				
1	Intelligent			• Wireless Sensor Network.		• It is automatic traffic	• This system is valid
	traffic			• Infra Red Sensor.		system that's why	only in ideal
	information	Hasan Omar		Global positioning		less time consuming.	conditions; practically
	system based	Al- Sakran	2015	system.	Medium	No manual	result is not very good.
	on integration			• Active RF-ID tags.		intervention.	
	of internet of			Cloud Computing.			
	things and			error error error.			
	agent						
	technology						
2	Home	Vin <mark>ay sa</mark> gar	2015	• Internet of Things.		Automatically	• Limited range of
	automation	K N,		Cloud networking.		operated electronic	communications
	using Internet	Kusuma S M		• Wi-Fi.	Medium	devices using Wi–Fi.	because of Wi-Fi.
	of Things			Intel Galileo		• Free from electrically	• Need static IP address.
				Microcontroller.		shocks.	• Always need to type
							URL in web browser.
							• System cost is very
							high.
3	Environment	Venkatesh	2015	• Zigbee		Monitor wireless	• This system is
-	monitoring	Neelapala,		 Wireless sensor Network 	Low	data.	compatible only FTP
	system based	Dr. S.		Arduino Uno.		 All hardware is open 	server.
	on wireless	Malarvizhi		Raspberry pi.		source.	 Need static IP address.
	sensor			1 1 1		 Open source software 	
	–			Apache server.	The such te di	1	67
	open source	IJCRT1802507	Internation	a Jompsupfishterise Research	i noughts (IJ	CKIP <u>adawagqoratorg</u> 5	67
	open source						

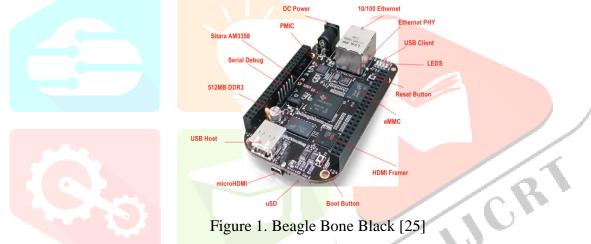
	hardware.					available.	
4	Research directions for the Internet of Things.	John A. Stankovic.	2014	 Internet of Things. Mobile Computing. Pervasive computing Wireless Sensor Network. Cyber Physical System. Machine learning. 	Medium	 Massive scaling architecture, big data is explained. Architecture and dependencies. Creating knowledge and big data. Robustness. Openness. Security. Privacy and humans in the loop. 	• Not practical oriented only theoretically approach.
5	Review on IOT Technologies.	Govinda K, Saravanaguru R. A. K	2016	 Internet of Things. RF-ID. Actuator. Wireless Sensor Network. 	Medium	• Core architecture of Internet of Things has been given.	• Not practical oriented
6	Green IOT Agriculture and Healthcare Applications (GAHA)	Chandra Sukanya Nandyala, Haeng-Kon Kim	2016	 Internet of Things. Cloud Computing. Sensor Cloud. 	Medium	 Users can easily access required sensory data from cloud anytime and anywhere if there is network. The sensor- Cloud infrastructure is a cost effective approach. 	• Broker is essential to execute this system.

7	Smart hospital using Internet of Things (IOT)	Pooja Kanase, Sneha Gaikwad	2016	 Internet of Things. Arduino Uno. Ultra sonic sensors (HC-SR04). Temperature sensor. Message queue telemetry transport protocols. 	Low	 It assure data transmission and efficient distribution. No manual intervention. Power consumption is less. 	 Data transmission is not secure over the internet. Trigger is required.
8	RF based node location and mobility tracking in IOT	J. Ann Roseela, Dr. S. Ravi, Dr. M. Anand	2016	 RF server. Received signal strength indicator. Wireless Sensor Network. Arduino Uno. Artificial Neural Network. 	low	Proved by using mathematical model.	 When IOT nodes going far away from RF server, then signal strength become weak, not able to achieve good communication due to interference. Given path of IOT node is static we cannot change once system install.
9	Challenges in IOT Networking via TCP/IP Architecture.	Wentao Shang, Yingdi Yu, Ralph Droms, Lixia Zhang	2016	 Internet of Things. TCP/IP. Network architecture. 	medium	 The challenges of applying TCP/IP to IOT network that arise from the network and transport layers. Direction, how to use application layer protocols. 	• Not practical oriented only theoretically approach.
10	Devlopment of	Τ.	2016	• Advance Risk Machine 7.	low	• It provide advantages	• Data transmission rate

	ARM& based sensor interface for industrial wireless sensor network (WSN) in IOT environment.	Balakrishna, R. Naga Swetha		 Wireless Sensor Network. GPRS module. ZIGBEE wireless technology. in deployment, cost, size and distributed intelligence when compared with wired network. Allow users to set up a network quickly. 	 is low as compare to other. Limited communication range of nodes (i.e 100 feet).
11	Smart city implementation model based on IOT technology	Jaehak Byun, Sooyeop Kim, Jaehun Sa, Sangphil Kim, Yong-Tae Shin, Jong Bae Kim	2016	 Network Architecture. Wireless Senor Network. Internet of Things Cashless transaction. 	Practical oriented results not available.
12	Internet of Things: A survey on enabling Technologies, Protocols and Applications	Ala Al- Fuqaha, Mohsen Guizani, Mehdi Mohammadi, Mohammed Aledhari, Moussa Ayyash	2015	 RF-ID. Smart Sensor. Internet Protocols. Big data analytics. Message queue telemetry transport. Advance message queue protocol. Cloud Computing. High Address the research and practical gaps. It presents the need for better horizontal integration among IOT services. Addressing the IOT objects is critical to differentiate between object ID and it's 	• For Message queue telemetry transport and Advance message queue protocols broker is third party.

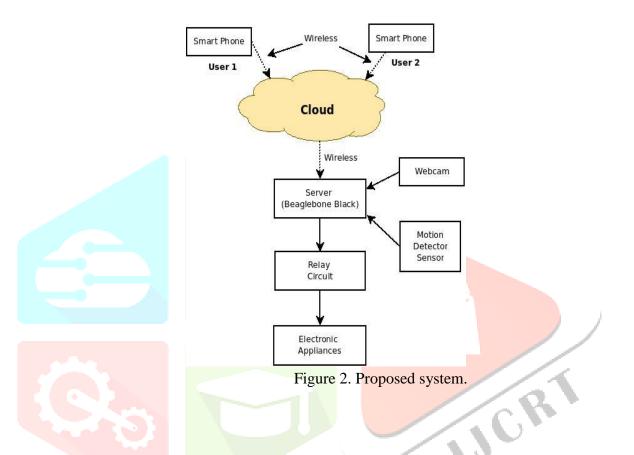
			•	Domain Name Server.		 address. IOT divided into Identity related services, information aggregation, collaboration aware services and ubiquitous services. 	
13	Advanced Message Queuing Protocol	Steve 200 Vinoski	006	Synchronous messaging. Internet Inter ORB protocol. Remote method innovation.	low	 The AMQP implementation is the open source Qpid project, which is currently a poding project under apache software. Water fall approach is used. 	 AMQP implantation must obey to be interoperable with other implementation. Always fallow First In First Out order.
14	An Ingestion and analytics architecture for IOT applied to Smart city use cases	Paula Ta201shma,AdananAkbar,Guy Gerson,Guy Hadash,FrancoisCarrez,KlausMoessner	017	Big data. Complex event processing. Context aware. Energy management. Internet of things. Machine learning.	medium	 It allow data to be captured and ingested autonomously avoiding the human data entry bottleneck. System is flexible with respect to the choice of specific analysis algorithm. Support real time problems of 	• Message broker is essential.

						transportation and	
						1	
15	Performance and interoperability evaluation of radio frequency home automation protocols and Bluetooth low energy for smart grid and smart home	S. Courrege, S. Oudji, V. Meghdadi, C. Brauers. R. Kays.	2016	 Radio frequency. Zigbee. Bluettoth. Linky e-meter. 	high	 energy management. It allows powering the system either by a combination of batteries and AC main power or by batteries only. Simulated practical results. 	 Limited range between e- meter and radio frequency box. Low data speed.
16	applications. Realisation of a smart plug device based on Wi-Fi technology for use in home automation systems.	Sava jakovljev, Milos subotic, Istvan papp	2017	 TCP/IP. Microcontroller. Star topology. Bluetooth. Message Queue Telemetry Transport. 	high	 Practically proved, communication time latency of Wi-Fi devices is less than zigbee devices. High security and high data rate (11Mbps). Practical results are given based on response time. 	 Maximum 30 devices communicate at a time to system. Communication range is limited (10 to 30 meter).
17	Evaluating publish/	Trude H. Bloebaum,	2015	Web services.Publish/Subscribe.	Medium	• Addressing performance of the	• AMQP exhibited large delay due to poor


	subscribe	Frank T.		•	Service oriented			MQTT, WS		networking
	approaches for	Johsen			architecture.			notifications, and		connections and
	use in tactical							AMQP protocols.		correspondingly high
	broadband						•	Determined publish/		packet loss.
								subscribe approach		
								could used in the		
								tactical broadband.		
18	The	Ching chuan	2015	•	Z-wave.	Low	•	Low power	•	Communication range
	implementation	wei,		•	Raspberry pi.			consumption.		of system is limited to
	of smart	Yan ming		•	Domain name service.		•	No need of static IP		local area network.
	electronic	chen,		•	Remote control.			address.		
	locking system	Chao chieh					•	It is wireless lock		
	based on Z –	chang ,					<u> </u>	system.		
	wave and	chi han yu								
	internet.									
19	Cost analysis	Giuseppe	2017	•	Heuristics.	Medium	•	Dimming light	•	The street lighting
	of smart	Cac <mark>ciato</mark> re,		•	Internet of Things.			intensity in absence		solutions practically
	lighting	Cla <mark>udi</mark> o 📀		•	Lampposts.			of users in the		implanted in cities are
	solutions for	Fia <mark>ndrino</mark> ,						vicinity.		not energy efficient.
	smart cities.	Dzymitry					•	Smart lighting		
		Kliazovich,), ¹	solution can		
		Fabrizio						significantly decrease		
		Granelli,						energy costs of street		
		Pascal						lighting		
		Bouvry						municipalities.		
20	Improving		2016	•	Identity management	High	•	Highlights security	•	Number of client and
	home				system.	(97.93%)		issue associated with		devices (mobiles) are
	automation			•	Fingerprint.			home automation.		fixed.
	security;			•	JavaScript.		•	Good security		

	Integrating			•	Access control.			because of firewall is		
	device							used.		
	fingerprinting									
	into smart									
	home.									
21	Practical	Pablo Sotres,	2017	•	Wireless Sensor Network.	High	•	It presents practical	•	The amount of
	lessons from	Juan Ramon		•	Near field			solution to the main		information that can be
	the deployment	Santana,			communication.			challenges faced		sent to the air by
	and	Luis		•	LORA Technology.			during the		battery- powered
	management of	Sanchesz,		•	Internet of Things.			deployment and		devices is not only
	a smart city	Jorge Lanza						management of city		limited by bandwidth,
	Internet of							scale IoT		but is also limited by
	Things							infrastructure.		the battery capacity.
	infrastructure:						•	Addressing different		
	The smart							functionalities within		
	Santander							smart city: Security,		
	testbed case							Resource subsystem,		
							ſ.,	Information		
							-	subsystem.		
22	Network –	Kyunf chang	2004	•	Control Area Network.	High	•	Response time is very	•	A weakness to noise of
	based fire	lee,		•	Internet of Things.		P.C	small in microsecond		various form including
	detection	Hong hee lee		•	Gateway.			(10-100us).		impulses or short
	system via				·					circuit and a lack of
	controller area									awareness of the actual
	network for									location of a fire.
	smart home									
	automation.									

Proposed system:


Using Internet of Things we can control any electronic devices over the world. As in detailed we have explained our proposed system

Beagle Bone Black: Beagle bone black is a minicomputer and heart of the system. In BBB there is ARM processor which has 2GB on board flash memory. Beagle bone black support Linux operating system. There are total 92 GPIO pins available for input output operation. Beagle bone black has its own cloud for server application. BBB has on chip ADC and DAC.BBB is one of the best controlling units in embedded system . BBB is acting as a server in IoT. It has an Ethernet port. The interfacing of the Ethernet cable is very easy to use. When we connect an Ethernet cable to BBB then it will automatically connected to the internet, but for Wi-Fi connection there is some configuration is required.

Smart phone: This is client side remote access. In smart phone, first you have to install application software, which is developed in Java language. In application there are different radio buttons available for different operation Like ON/OFF. When ON radio button is pressed then high signal is send to the cloud using internet. Then cloud is connected to the server using the same.

Server: In our system Beagle Bone Block is a server which can control all the operation of our systems. When sending high signal from client mobile to the server, then BBB can receive that high signal in the form of 3.3V. The BBB analyzes this data and decide which operation is to be performed. Suppose at client side user has pressed ON radio button, then high signal is getting on server side with the help of internet. BBB sets the GPIO pins and send it relay circuit.

Relay circuit. It is an electronic component and acts as a switch. The principle of relay is based on right hand thumb rules. According to right hand thumb rule, folded finger indicate the direction of the magnetic field and thumb indicates the direction of current.

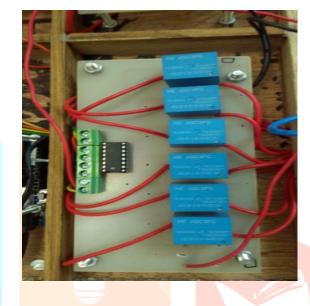


Fig. Relay circuit

Conclusion:

There are many different protocol are available in Internet of Things. Thus, we have studied few of them as namely message queue telemetry transport protocol. It is light weighted protocol same as _le transfer protocols but there are some problem regarding to security. This problem is overcome by protocol, message queue telemetry transport security protocol. In that some security is provided in such way that third party will not able to see the data. It is advance version of message queue telemetry transport protocol. In that data is transfer in the form of character and receiver side they will compare and perform defined operation. Another protocol is Advance message queue protocol. The data transfer in MQTT and MQTTs is in the form of character we cannot send string over the protocol. In AMQP we have studied that we can send string over the internet using these protocols. The main issue of Internet of Things is that security. Now currently we have to focus on security.

References:

[1] Hasan Omar Al-Sakran," Information System Based on Integration of Internet of Things and Agent Technology", IJACSA, 2015, vol.6.

[2] Trude H. Bloebaum, Frank T. Johnsen," Evaluating publish/subscribe approaches for use in tactical broadband networks", IEEE, 2015.

[3] John A. Stankovic, Life Fellow," Research direction for the Internet of Things", IEEE, 2014.

[4] T. BALAKRISHNA, R. NAGA SWETHA," Development of ARM7 based sensor interfacing for industrial wireless sensor network", IJEET, 2016, vol.4.

[5] Ms. Sejal V. Gawande, Dr. Prashant R. Deshmukh," Raspberry pi Technology", IJIERE, 2015, vol.2.

[6] Chaitanya More," efficient garbage collection using IOT", IJRET, 2016, vol.5.

[7] Vinay sagar K N, Kusuma S M," Home Automation Using Internet of Things", IRJET, 2015, vol.2.

[8] Nannan He, Han-Way Huang, Brian David Woltman," The Use of BeagleBoneBlack Board in Engineering Design and Development", ASEE, 2014.

[9] Chandra Sukanya Nandyala," Green IoT Agriculture and Healthcare Application", IJSM, 2016, vol.10, pp 289-300.

[10] Jaehak Byun," Smart City Implementation Models Based on IoT Technology", ASTL, 2016, vol.129, pp 209-212.

[11] Swati H Chungde," A Smart City Approach for Child Tracking with Video Streaming", International Journal of Innovative Research in Science, Engineering and Technology, 2016, vol.5.

[12] Govinda K," Review on IOT Technologies", International Journal of Applied Engineering Research, 2016, vol.11.

[13] J. Ann Roseela, Dr. S. Ravi," RF Based Node Location and Mobility Tracking in IoT", International Journal of Applied Engineering Research, 2016.

[14] K. Ashton," Internet of Things", Thing, RFID Journal, 2009.

[15] Pooja Kanase, Sneha Gaikwad, "Smart Hospitals Using Internet of Things (IoT)", IRJET, 2016, vol.03.

[16] Nannan He, Han-Way Huang, Brian David Woltman," The Use of BeagleBone Black Board in Engineering Design and Development", ASEE, 2014.

[17] L. Atzori, A. Iera and G. Morabito, "The Internet of Things: A survey", Computer. Netetwork, 2010, vol. 54, pp. 2787-2805.

[18] L. Da Xu, W. He and S. Li, \Internet of Things in industries: A survey", IEEE,12014, vol. 10, pp. 2233-2243.

[19] C.Zhu, V.Leung, L.Shu and E. C. H Ngai," Green Internet of Things for smart world", IEEE, 2015, vol. 3, pp.2151-2162.

[20] A. Jules, "security and privacy: a research survey", IEEE, 2006, pp 381-394.

[21] Ala Al-Fuqaha, "Internet of Things: A survey on enebling Technologies, protocols and applications ", IEEE, 2015, pp 1553-8773.

[22] Steve Vinoski," Advance Message Queue protocol ", IEEE, 2016.

[23] Paula Ta-Shma, Adnan Akbar," An ingesion and analytics architecture for IoT applied to smart city use cases", IEEE, 2017.

[24] Sava jakovljev," Realisation of a smart plug device based on wi – fi Technology for use in home automation system", IEEE, 2017.

[25] https://beagleboard.org/black.