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Abstract: Mathematics is the queen of science in our daily life, planning is required on various occasions, especially when the 

resources are limited. Any planning is meant for attaining certain objectives the best strategy is one that gives a maximum output from 

a minimum input. Linear programming problem used in transportation problem . The Transportation is the movement of people and 

goods, from one place to another the term is derived from the Latin trans (“across”) and portare (“to carry”) industries. which have the 

business of providing equipment, actual transport goods and services used in transport of goods or people make up a large broad and 

important sector of most national economic and are collectively referred  to as  transport industries. 
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I.   Introduction 

Operation Research is a relatively new discipline. The contents and the boundaries of the OR are not yet fixed. Therefore, to 

give a formal definition of the term Operations Research is a difficult task. The OR starts when mathematical and quantitative 

techniques are used to substantiate the decision being taken. The main activity of a manager is the decision making. In our daily life 

we make the decision seven without noticing them. The decisions are taken simply by common sense, judgment and expertise without 

using any mathematical or any other model in simple situations. But the decision we are concerned here with are complex and heavily 

responsible. Examples are public transportation network planning in a city having its own layout of factories, residential blocks or 

finding the appropriate product mix when there exists a large number of products with different profit contributions and production 

requirement etc. 

Operations Research tools are not from any one discipline. Operations Research takes tools from different discipline such as 

mathematics, statistics, economics, psychology, engineering etc and combines these tools to make a new set of knowledge for 

decision making. Today, O.R. became a professional discipline which deals with the application of scientific methods for making 

decision, and especially to the allocation of scarce resources. The main purpose of O.R. is to provide a rational basis for decisions 

making in the absence of complete information, because the systems composed of human, machine, and procedures may do not have 

complete information. 

Operations Research can also be treated as science in the sense it describing, understanding and predicting the systems 

behaviour, especially man-machine system. Thus O.R. specialists are involved in three classical aspect of science, they are as follows: 

i) Determining the systems behaviour. ii) Analyzing the systems behaviour by developing appropriate models, iii) Predict the future 

behaviour using these models. The emphasis on analysis of operations as a whole distinguishes the O.R. from other research and 

engineering. O.R. is an interdisciplinary discipline which provided solutions to problems of military operations during World War II, 

and also successful in other operations. Today business applications are primarily concerned with O.R. analysis for the possible 

alternative actions. The business and industry befitted from O.R. in the areas of inventory, reorder policies, optimum location and size 

of warehouses, advertising policies, etc. 

1.1 Definition of operation research: 

 Morse and Kimball have stressed O.R. is a quantitative approach and described it as “a scientific method of providing 

executive departments with a quantitative basis for decisions regarding the operations under their control”. 

 Saaty considers O.R. as tool of improving quality of answers. He says, “O.R. is the art of giving bad answers to problems 

which otherwise have worse answers”. 

 Miller and Starr state, “O.R. is applied decision theory, which uses any scientific, mathematical or logical means to attempt 

to cope with the problems that confront the executive, when he tries to achieve a thorough-going rationality in dealing with 

his decision problem”. 

II. Linear Programming: Linear programming is a powerful quantitative technique (or operational research technique) designs to 

solve allocation problem. The term ‘linear programming’ consists of the two words ‘Linear’ and ‘Programming’. The word ‘Linear’ is 

used to describe the relationship between decision variables, which are directly proportional. For example, if doubling (or tripling) the 

production of a product will exactly double (or triple) the profit and required resources, then it is linear relationship. The word 

‘programming’ means planning of activities in a manner that achieves some ‘optimal’ result with available resources. A programme is 
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‘optimal’ if it maximises or minimises some measure or criterion of effectiveness such as profit, contribution (i.e. sales-variable cost), 

sales, and cost. Thus, ‘Linear Programming’ indicates the planning of decision variables, which are directly proportional, to  achieve 

the ‘optimal’ result considering the limitations within which the problem is to be solved. 

2.1:  Step Involved in the Formulation of LP Problem 

The steps involved in the formation of linear programming problem are as follows: 

Step 1: Identify the Decision Variables of interest to the decision maker and express them as X1, X2, X3 

Step 2: Ascertain the Objective of the decision maker whether the wants to minimize or to maximize. 

Step 3: Ascertain the cost (in case of minimization problem) or the profit (in case of maximization problem) per unit of each of the 

decision variables. 

Step 4: Ascertain the constraints representing the maximum vailability or minimum commitment or equality and represent them as 

less than or equal to (<) type inequality or greater than or equal to (>) type inequality or ‘equal to’ (=) type equality respectively. 

Step 5: Put non-negativity restriction as under: Xj > 0; j = 1, 2… n (non-negativity restriction) 

Step 6: Now formulate the LP problem as under: Subject Maximize (or Minimize) 

 

                                                                   Figure 2.1: linear program in a standard form 

 Objective Function: is a linear function of the decision variables representing the objective of the manager/ decision maker. 

 Constraints: are the linear equations or inequalities arising out of practical limitations. 

 Decision Variables: are some physical quantities whose values indicate the solution. 

 Feasible Solution: is a solution which satisfies all the constraints (including the non-negative) presents in the problem. 

 Feasible Region: is the collection of feasible solutions. 

 Multiple Solutions: are solutions each of which maximize or minimize the objective function. 

 Unbounded Solution: is a solution whose objective function is infinite. 

 Infeasible Solution:   means no feasible solution. 

Example 2.1: A toy company manufactures two types of doll, a basic version-doll A and a deluxe version-doll B. Each doll of type B 

takes twice as long to produce as one of type A, and the company would have time to make a maximum of 2000 per day. The supply 

of plastic is sufficient to produce 1500 dolls per day (both A and B combined). The deluxe version requires a fancy dress of which 

there are only 600 per day available. If the company makes a profit of Rs. 3.00 and Rs. 5.00 per doll, respectively on doll A and B, 

then how many of each dolls Should  be produced per day in order to maximize the total profit. Formulate this problem. 

Formulation:    Let X 1 and X2 be the number of dolls produced per day of type A and B, respectively. Let the doll A require t hrs so 

that the doll B require 2t hrs. So the total time to manufacture X1 and X2 dolls should not exceed 2000t hrs. Therefore, tX1 + 2tX2 < 

2000t, other constraints are simple. Then the linear programming problem become 

Maximise               p=3x1+5x2 

Subject to the restriction                               X1+2x2 ≤2000              (time constraint) 

X1+X2≤1500                (plastics constraints) 

X2≤600                       (dress constraints) 

And non negative restrictions                        X1≥0, X2≥0 

2.12.Graphical method: 

Example2.2: solve the given problem by using graphical methods. 

                                          Max Zx = 3x1 + 2x2 

                                                          x1 + x2 ≤80 

                                                         2x1+ x2 ≤100 

                                                         x1 ≤ 40 

                                                         x1, x2  ≥  0 

Find the feasible region. 

• Plot each constraint as an equation _ line in the plane 

• Feasible points on one side of the line – plug in (0,0) to find out which 
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                                                                          Figure.2.12 graphical representation 

A corner (extreme) point X of the region R= every line through X intersects R in a segments whose one endpoint is X. solving a linear 

program amounts to finding a best corner point by the following theorem. 

III. Simplex method 

The process consists of two steps 

1. Find a feasible solution (or determine that none exists). 

2. Improve the feasible solution to an optimal solution. 

                                      

                                               Figure 3.1 Simplex method variable following 

3.1 Canonical form: 

Linear program (LP) is in a canonical form if 

• all constraints are equations.  

• all variables are non-negative. 

 

 

 

3.2 Slack variables: To change a inequality to an equation, we add a new non-negative variable called a slack variable. 

                                   x1 + x2 ≤80            →                      x1 + x2 + s1 = 80 

                                   x1 + x2  ≥80             →                    x1+ x2 – e1 = 80 
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Notes: 

 the variable e1 is sometimes called an excess variable. 

 We can use xi for slack variables (where i is a new index)   

3.3 Simplex method   

Example:3.31 Consider the 2.2 example toyshop example above .convert to equalities by adding slack variables 

 

 

Figure 3.31 graphical representation of simplex method  

       

           Step  Starting feasible solution 

 Set variables x1, x2 to zero and set slack variables to the values on the right-hand side  yields a feasible solution x1 = x2 = 0, x3 

= 80, x4 = 100, x5 = 40 

 Recall that the solution is feasible because all variables are non-negative and satisfy all equations.(we get a feasible solution 

right away because the right-hand side is non-negative; this may not always work) 

 Note something interesting: in this feasible solution two variables (namely x1, x2) are zero. Such a solution is called a basic 

solution of this problem, because the value of at least two variables is zero. 

 In a problem with n variables and m constraints, a solution where at least (n − m) variables are zero is a basic solution. 

A basic solution that is also feasible is called a basic feasible solution (BFS). The importance of basic solutions is revealed                     

by the following observation. 

 Basic solutions are precisely the corner points of the feasible region. Recall that we have discussed that to find an optimal 

solution to an LP, it suffices to find a best solution among all corner points. The above tells us how to compute them. they 

are the basic feasible solutions. 

 A variable in a basic solution is called a non-basic variable if it is chosen to be zero. Otherwise, the variable is basic. 

              The basic variables we collectively call a basis 

3.4. Dictionary 

To conveniently deal with basic solutions, we use the so-called dictionary. A dictionary lists values of basic variables as a function of 

non-basic variables. The correspondence is obtained by expressing the basic variables from the initial set of equations. (We shall 

come back to this later; for now, have a look below.).Express the slack variables from the individual equations 

 
  x1, x2 independent (non-basic) variables 

  x3, x4, x5 dependent (basic) variables 

 {x3, x4, x5} is a basis set x1 = x2 = 0 the corresponding (feasible) solution is x3 = 80, x4 = 100, x5 = 40 with value z = 0 

Improving the solution: 

Try to increase x1 from its current value 0 in hopes of improving the value of   try x1=20,x2=0 and substitute into the dictionary to 

obtain the values of x3, x4, x5 and  Z→x3=60,x4=60,x5=20 with the value  of  z=60 → feasible 

Try again x1=40, x2=0→x3=40, x4=20,x5=0 with the value z=120→feasible. 

http://www.ijcrt.org/


www.ijcrt.org                                   © 2018 IJCRT | Volume 6, Issue 1 February 2018 | ISSN: 2320-2882 

IJCRT1802367 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 250 

 

Now try x1=50, x2=0→   x3=30,x4=0,x5=10→ not feasible. 

 
Maximal value is x1 = 40 at which point the variable x5 becomes zero x1 is incoming variable and x5 is outgoing variable 

(we say that x1 enters the dictionary/basis, and x5 leaves the dictionary/basis) 

Ratio test 

The above analysis can be streamlined into the following simple “ratio” test 

                                                          
(watch-out: we only consider this ratio because the coefficient of x1 is negative (−2). . .more on that in the later steps) 

Minimum achieved with x5 =) outgoing variable 

Express x1 from the equation for x5 

x5 = 40 – x1                                                       x1 = 40 − x5 

Substitute x1 to all other equations new feasible dictionary 

 
now x2, x5 are independent variables and x1, x3, x4 are dependent→{x1, x3, x4} is a basis. 

we repeat: we increase x2 →incoming variable, ratio test: 

x1 : does not contain x2 →no constraint 

 
Minimum achieved for x4 → outgoing variable 

                                                         x4=20-x2+2x5                                                     →               x2=20-x4+2x5 

 
X5 incoming variable, ratio test  

 

 
X2 : positive coefficient  → no constant   

 
Minimum achieved for x3→ outgoing variable 

                                                               x3=20+x4-x5                                           →                   x5=20+x4-x3 

http://www.ijcrt.org/


www.ijcrt.org                                   © 2018 IJCRT | Volume 6, Issue 1 February 2018 | ISSN: 2320-2882 

IJCRT1802367 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 251 

 

 
No more improved possible →optimal solution. 

                                     x1=20,x2=60,x3=0,x4=0,x5=20 of the value z=180 

Why setting   x3 , x4  to any non zero values results in a smaller value of z. 

Each dictionary is equivalent to the original system (the two have the same set of solutions. 

3.5 Simplex algorithm: 

Preparation: find a starting feasible solution/dictionary 

                       1. Convert to the canonical form (constraints are equalities) by adding slack variables xn+1, . . . , xn+m 

                       2. Construct a starting dictionary - express slack variables and objective function z 

                       3. If the resulting dictionary is feasible, then we are done with preparation 

                           If not, try to find a feasible dictionary using the Phase I. method. 

3.6 Simplex step (maximization LP): try to improve the solution 

1. (Optimality test): If no variable appears with a positive coefficient in the equation for z→ STOP, current solution is optimal 

                            • set non-basic variables to zero 

• read off the values of the basic variables and the objective function z→ Hint: the values are the    constant           

terms in respective equations 

                            • report this (optimal) solution 

2. Else pick a variable xi having positive coefficient in the equation for z xi ≡ incoming variable 

3. Ratio test: in the dictionary, find an equation for a variable xj in which 

                             • xi appears with a negative coefficient −a 

                            • the ratio b/ a is smallest possible .(where b is the constant term in the equation for xj) 

4. If no such such xj exists → stop, no optimal solution, report that LP is unbounded 

5. Else xj ≡ outgoing variable→ construct a new dictionary by pivoting: 

                              • express xi from the equation for xj , 

                               • add this as a new equation, 

                              • remove the equation for xj, 

                               • substitute xi to all other equations (including the one for z) 

6. Repeat from 1. 

3.7.Two phase Simplex method 

Canonical form = equations, non-negative variables 

n = number of variables 

m = number of equations 

basic solution = at least (n − m) variables are zero 

basic solutions = dictionaries 

basic feasible solutions = corner/extreme points = feasible dictionaries 

 
Figure 3.7.Two phase simplex method 

 

                                   

    

 

Example: 3.71: 
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Figure 3.7.Graphical representation  of two phase simplex method example 

IV.Transportations problem: 

A special class of linear programming problem is Transportation Problem, where the objective is to  minimize the cost of distributing 

a product from a number of sources (e.g. factories) to a number of destinations  (e.g. warehouses) while satisfying both the supply 

limits and the demand requirement. Because of the special structure of the Transportation Problem the Simplex Method of solving is 

unsuitable for the Transportation Problem. The model assumes that the distributing cost on a given rout is directly proportional to the 

number of units distributed on that route. Generally, the transportation model can be extended to areas other than the direct 

transportation of a commodity, including among others, inventory control, employment scheduling, and personnel assignment. The 

transportation problem special feature is illustrated here with the help of following Example 1.1. 

Example 4.1: 

Suppose a manufacturing company owns three factories (sources) and distribute his products to five different retail agencies 

(destinations). The following table shows the capacities of the three factories, the quantity of products required by the various retail 

agencies and the cost of shipping one unit of the product from each of the three factories to each of the five retail agencies. 

 
Usually the above table is referred as Transportation Table, which provides the basic information regarding the transportation 

problem. The quantities inside the table are known as transportation cost per unit of product. The capacity of the factories 1, 2, 3 is 50, 

100 and 150 respectively. The requirement of the retail agency 1, 2, 3, 4, 5 is 100,60,50,50, and 40 respectively. 

In this case, the transportation cost of one unit 

from factory 1 to retail agency 1 is 1, 

from factory 1 to retail agency 2 is 9, 

from factory 1 to retail agency 3 is 13, and so on 

A transportation problem can be formulated as linear programming problem using variables with two subscripts. 

Let    X11=Amount to be transported from factory 1 to retail agency 1 

         X12= Amount to be transported from factory 1 to retail agency 2 

         …….. 

         …….. 

         …….. 

         …….. 

          X35= Amount to be transported from factory 3 to retail agency 5. 

 Let the transportation cost per unit be represented by C11, C12, …..C35 that is C11=1, C12=9, and so on. 

Let the capacities of the three factories be represented by a1=50, a2=100, a3=150. 

Let the requirement of the retail agencies are b1=100, b2=60, b3=50, b4=50, and b5=40. 

Thus, the problem can be formulated as 

                                                Minimize 
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                                                              C 11x11+C 12x12+…………+ C35X35 

                         Subject to the constraints            X11+X12+X13+X14+X15=a1 

                                                                              X21+X22+X23+X24+X25=a2 

                                                                              X31+X32+X33+X34+X35=a3 

X11+X21+X31=b1 

X12+X22+X32=b2 

X13+X23+X33=b3 

X14+X24+X34=b4 

X15+X25+X35=b5 

X11,X12, X13………….X35 ≥0 

 

Thus, the problem has 8 constraints and 15 variables. So, it is not possible to solve such a problem using simplex method. This is the 

reason for the need of special computational procedure to solve transportation problem. There are varieties of procedures, which are 

described in the next section. 

4.1Transportation Algorithm 

The steps of the transportation algorithm are exact parallels of the simplex algorithm, they are: 

Step 1: Determine a starting basic feasible solution, using any one of the following three methods 

1. North West Corner Method 

2. Least Cost Method 

3. Vogel Approximation Method 

Step 2: Determine the optimal solution using the following method 

             MODI (Modified Distribution Method) or UV Method. 

Basic Feasible Solution of a Transportation Problem 

The computation of an initial feasible solution is illustrated in this section with the help of the Example4.1 discussed in the previous 

section. The problem in the example 1.1 has 8 constraints and 15 variables we can eliminate one of the constraints since a1 + a2 + a3 = 

b1 + b2 + b3 + b4 +b5. Thus now the problem contains 7 constraints and 15 variables. Note that any initial (basic) feasible solution has 

at most 7 non-zero Xij. Generally, any basic feasible solution with m sources (such as factories) and n destination (such as retail 

agency) has at most m + n -1 non-zero Xij.The special structure of the transportation problem allows securing a non artificial basic 

feasible solution using one the following three methods. 

 North West Corner Method 

 Least Cost Method 

 Vogel Approximation Method 

The difference among these three methods is the quality of the initial basic feasible solution they produce, in the sense that a better 

that a better initial solution yields a smaller objective value. Generally the Vogel Approximation Method produces the best initial 

basic feasible solution, and the North West Corner Method produces the worst, but the North West Corner Method involves least 

computations. 

4.2 North West Corner Method :The method starts at the North West (upper left) corner cell of the tableau (variable x11). 

Step -1: Allocate as much as possible to the selected cell, and adjust the associated amounts of capacity (supply) and requirement 

(demand) by subtracting the allocated amount. 

Step -2: Cross out the row (column) with zero supply or demand to indicate that no further assignments can be made in that row 

(column). If both the row and column becomes zero simultaneously, cross out one of them only, and leave a zero supply or demand in 

the uncrossed out row (column). 

Step -3: If exactly one row (column) is left uncrossed out, then stop. Otherwise, move to the cell to the right if a column has just been 

crossed or the one below if a row has been crossed out. Go to step -1. 

Example 4.2: 

Consider the problem discussed in Example 4.1 to illustrate the North West Corner Method of determining basic feasible solution: 

 
The allocation is shown in the following tableau: 

http://www.ijcrt.org/


www.ijcrt.org                                   © 2018 IJCRT | Volume 6, Issue 1 February 2018 | ISSN: 2320-2882 

IJCRT1802367 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 254 

 

                                                    
The arrows show the order in which the allocated (bolded) amounts are generated. The starting basic solution is given as 

x11 = 50, 

x21 = 50, x22 = 50 

x32 = 10, x33 = 50, x34 = 50, x35 = 40 

The corresponding transportation cost is 50 * 1 + 50 * 24 + 50 * 12 + 10 * 33 + 50 * 1 + 50 * 23 + 40 * 26 = 4420 

It is clear that as soon as a value of Xij is determined, a row (column) is eliminated from further consideration. The last value of Xij 

eliminates both a row and column. Hence a feasible solution computed by North West Corner Method can have at most m + n – 1 

positive Xij if the transportation problem has m sources and n destinations. 

4.3 Least Cost Method 

The least cost method is also known as matrix minimum method in the sense we look for the row and the column corresponding to 

which Cij is minimum. This method finds a better initial basic feasible solution by concentrating on the cheapest routes. Instead of 

starting the allocation with the northwest cell as in the North West Corner Method, we start by allocating as much as possible to the 

cell with the smallest unit cost. If there are two or more minimum costs then we should select the row and the column corresponding 

to the lower numbered row. If they appear in the same row we should select the lower numbered column. We then cross out the 

satisfied row or column, and adjust the amounts of capacity and requirement accordingly. If both a row and a column is satisfied 

simultaneously, only one is crossed out. Next, we look for the uncrossed-out cell with the smallest unit cost and repeat the process 

until we are left at the end with exactly one uncrossed-out row or column. 

Example 4.4: 

The least cost method of determining initial basic feasible solution is illustrated with the help of problem presented in the section 4.1. 

 
The Least Cost method is applied in the following manner: 

We observe that C11=1 is the minimum unit cost in the table. Hence X11=50 and the first row is crossed out since the row has no more 

capacity. Then the minimum unit cost in the uncrossed-out row and column is C25=1, hence X25=40 and the fifth column is crossed 

out. Next C33=1is the minimum unit cost, hence X33=50 and the third column is crossed out. Next C22=12 is the minimum unit cost, 

hence X22=60 and the second column is crossed out. Next we look for the uncrossed-out row and column now C31=14 is the minimum 

unit cost, hence X31=50 and crossed out the first column since it was satisfied. Finally C34=23 is the minimum unit cost, hence X34=50 

and the fourth column is crossed out. So that the basic feasible solution developed by the Least Cost Method has transportation cost is             

1 * 50 + 12 * 60 + 1 * 40 + 14 * 50 + 1 * 50 + 23 * 50 = 2710 

Note that the minimum transportation cost obtained by the least cost method is much lower than the corresponding cost of the solution 

developed by using the north-west corner method. 

4.4 Vogel Approximation Method (VAM): 

VAM is an improved version of the least cost method that generally produces better solutions. The steps involved in this method are: 

Step 1: For each row (column) with strictly positive capacity (requirement), determine a penalty by subtracting the smallest unit cost 

element in the row (column) from the next smallest unit cost element in the same row (column). 

Step 2: Identify the row or column with the largest penalty among all the rows and columns. If the penalties corresponding to two or 

more rows or columns are equal we select the topmost row and the extreme left column. 

Step 3: We select Xij as a basic variable if Cij is the minimum cost in the row or column with largest penalty. We choose the 

numerical value of Xij as high as possible subject to the row and the column constraints. Depending upon whether ai or bj is the 

smaller of the two ith row or jth column is crossed out. 

Step 4: The Step 2 is now performed on the uncrossed-out rows and columns until all the basic variables have been satisfied. 

Example 4.5: 

Consider the following transportation problem 
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Note: ai=capacity (supply),bj=requirement (demand) 

Now, compute the penalty for various rows and columns which is shown in the following table 

 
Look for the highest penalty in the row or column, the highest penalty occurs in the second column and the minimum unit cost i.e. cij 

in this column is c12=22. Hence assign 40 to this cell i.e. x12=40 and cross out the second column (since second column was satisfied. 

This is shown in the following table 

 
The next highest penalty in the uncrossed-out rows and columns is 13 which occur in the first row and the minimum unit cost in this 

row is c14=4, hence x14=80 and cross out the first row. The modified table is as follows: 

 
The next highest penalty in the uncrossed-out rows and columns is 8 which occurs in the third column and the minimum cost in this 

column is c23=9, hence x23=30 and cross out the third column with adjusted capacity, requirement and penalty values. The modified 

table is as follows 

 
The next highest penalty in the uncrossed-out rows and columns is 17 which occurs in the second row and the smallest cost in this 

row is c24=15, hence x24=30 and cross out the fourth column with the adjusted capacity, requirement and penalty values. The modified 

table is as follows: 

 

 
The next highest penalty in the uncrossed-out rows and columns is 17 which occurs in the second row and the smallest cost in this 

row is c21=24, hence xi21=10 and cross out the second row with the adjusted capacity, requirement and penalty values. The modified 

table is as follows: 

 
The next highest penalty in the uncrossed-out rows and columns is 17 which occurs in the third row and the smallest cost in this row 

is c31=32, hence xi31=50 and cross out the third row or first column. The modified table is as follows: 

                                              
The transportation cost corresponding to this choice of basic variables is  

                                22 * 40 + 4 * 80 + 9 * 30 + 7 * 30 + 24 * 10 + 32 * 50 = 3520 
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V.CONCLUSION 

               Linear programming problem is like a vast ocean where many methods ,advantages ,uses requirement etc can seen .linear 

programming can be done in any sector where there is less waste and more profit .by this the production of anything is possible 

through the new method of L.P. Linear  programming is a goods techniques ,especially  in the business sector.  

              Transportation Problem is a special kind of linear programming problem. Because of the transportation problem special 

structure the simplex method is not suitable. But which may be utilized to make efficient computational techniques for its solution. 

Generally transportation problem has a number of origins and destination. A certain amount of consignment is available in each 

origin. Similarly, each destination has a certain demand/requirements. The transportation problem represents amount of consignment 

to be transported from different origins to destinations so that the transportation cost is minimized without violating the supply and 

demand constraints. 

There are two phases in the transportation problem. First is the determination of basic feasible solution and second is the 

determination of optimum solution. There are three methods available to determine the basic feasible solution, they are1.North West 

Corner Method 2. Least Cost Method or Matrix Minimum Method 3.Vogel’s Approximation Method (VAM) Transportation problem 

can be generalized into a Trans shipment Problem where transportation of consignment is possible from origin to origin or destination 

as well as destination to origin or destination. The Trans shipment problem may be result in an economy way of shipping in some 

situations. 
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