ON DOUBLE REPRESENTATION OF QUATERNION QUASI-NORMAL MATRICES

${ }^{1}$ Dr. K. Gunasekaran, ${ }^{2}$ J. Rajeswari
${ }^{(1,2)}$ Ramanujan Research Centre, PG and Research Department of Mathematics, Government Arts College(Autonomous), Kumbakonam.
Tamil Nadu, India.

Abstract

In this paper, the properties of quaternion quasi-normal matrices in the form of double representation of complex matrices. The normal product of the quaternion quasi-normal matrices are derived.

AMS Classification: 15A99, 15A04, 15A15, 15A116, 15A48
Key words: Quaternion unitary, quaternion normal, hermitian, unitary, normal

INTRODUCTION:

A normal matrix $A=\left(a_{i j}\right)$ with complex elements is a matrix such that $A A^{C T}=A^{C T} A$ where $A^{C T}$ denotes the (complex) conjugate transpose of A. In an article by K. Morita[5] a quasi-normal matrix is defined to be a complex matrix A which is such that $A A^{C T}=A^{T} A^{C}$, where T denotes the transpose of A and A^{C} the matrix in which each element is replaced by its conjugate, and certain basic properties of such a matrix are developed there.

Based on the bi-complex form of quaternion matrix Junliang Wu and Pingping Zhang [4] presented some new concept to quaternion division algebra. The new concepts could perfect the theory of Wu in [9]. The complex representation method for the quaternion matrices on explore the relation between the quaternion matrices and complex matrices.

In this paper, quaternion quasi-normal matrix is defined. The further properties of quaternion quasi-normal are developed, their relation in a sense, to a quaternion normal matrices are consider and further results concerning quaternion normal products are obtained for quaternion quasi-normal.

Theorem: 1

A matrix A is double representation of quaternion quasi-normal iff a quaternion unitary matrix U such that $U A U^{T}$ is a direct sum of non-negative real numbers and of 2×2 matrices of the form $\left[\begin{array}{cc}a & b \\ -b & a\end{array}\right]$ where a and b are non-negative real numbers.

Proof:

Let A be a double representation of quaternion quasi-normal where $A=X+Y$. [Where $X=X_{0}+X_{1} j$ and $\left.Y=Y_{0}+Y_{1} j\right]$, Where $X=X^{T}=X_{0}^{T}+X_{1}^{T} j$ and $Y=-Y^{T}=-\left(Y_{0}^{T}+Y_{1}^{T} j\right)$. Then $A A^{C T}=A^{T} A^{C}$ where $A=X+Y$.

$$
\begin{aligned}
A A^{C T} & =(X+Y)(X+Y)^{C T} \\
& =\left[\left(X_{0}+Y_{0}\right)+\left(X_{1}+Y_{1}\right) j\right]\left[\left(X_{0}+X_{1} j\right)+\left(Y_{0}+Y_{1} j\right)\right]^{C T} \\
& =\left[\left(X_{0}+Y_{0}\right)+\left(X_{1}+Y_{1}\right) j\right]\left[\left(X_{0}+X_{1} j\right)^{C T}+\left(Y_{0}+Y_{1} j\right)^{C T}\right] \\
& =\left[\left(X_{0}+Y_{0}\right)+\left(X_{1}+Y_{1}\right) j\right]\left[\left(X_{0}^{C}-X_{1}^{C} j\right)+\left(-Y_{0}^{C}+Y_{1}^{C} j\right)\right]
\end{aligned}
$$

$$
\begin{align*}
& =\left[\left(X_{0}+Y_{0}\right)+\left(X_{1}+Y_{1}\right) j\right]\left[\left(X_{0}^{C}-Y_{0}^{C}\right)-\left(X_{1}^{C}-Y_{1}^{C}\right) j\right] \\
& =\left[\left(X_{0}+Y_{0}\right)\left(X_{0}^{C}-Y_{0}^{C}\right)\right]-\left[\left(X_{1}+Y_{1}\right)\left(X_{1}^{C}-Y_{1}^{C}\right) j\right] \\
& =\left[X_{0} X_{0}^{C}-X_{0} Y_{0}^{C}+Y_{0} X_{0}^{C}-Y_{0} Y_{0}^{C}\right]+\left[X_{1} Y_{1}^{C}-X_{1} X_{1}^{C}-Y_{1} X_{1}^{C}+Y_{1} Y_{1}^{C}\right] j \tag{1}
\end{align*}
$$

Now,

$$
\begin{align*}
A^{T} A^{C} & =(X+Y)^{T}(X+Y)^{C} \\
& =\left(X_{0}+X_{1} j+Y_{0}+Y_{1} j\right)^{T}\left(X_{0}+X_{1} j+Y_{0}+Y_{1} j\right)^{C} \\
& =\left[\left(X_{0}+Y_{0}\right)+\left(X_{1}+Y_{1}\right) j\right]^{T}\left[\left(X_{0}+X_{1} j\right)+\left(Y_{0}+Y_{1} j\right)\right]^{C} \\
& =\left[\left(X_{0}^{T}+Y_{0}^{T}\right)+\left(X_{1}^{T}+Y_{1}^{T}\right) j\right]\left[\left(X_{0}^{C}+Y_{0}^{C}\right)-\left(X_{1}^{C}+Y_{1}^{C}\right) j\right] \\
& =\left[\left(X_{0}^{T}+X_{1}^{T} j\right)+\left(Y_{0}^{T}+Y_{1}^{T}\right) j\right]\left[\left(X_{0}^{C}+Y_{0}^{C}\right)-\left(X_{1}^{C}+Y_{1}^{C}\right) j\right] \\
& =\left[\left(X_{0}-Y_{0}\right)\left(X_{0}^{C}+Y_{0}^{C}\right)\right]-\left[\left(X_{1}-Y_{1}\right)\left(X_{1}^{C}+Y_{1}^{C}\right)\right] j \\
& =\left[X_{0} X_{0}^{C}+X_{0}^{C} Y_{0}^{C}-Y_{0} X_{0}^{C}-Y_{0} Y_{0}^{C}\right]+\left[Y_{1} X_{1}^{C}+Y_{1} Y_{1}^{C}-X_{1} X_{1}^{C}-X_{1} Y_{1}^{C}\right] j \tag{2}
\end{align*}
$$

Since A is double representation of quaternion quasi-normal.

$$
\begin{array}{rlrl}
A A^{C T} & = & A^{T} A^{C} \\
{\left[X_{0} X_{0}^{C}-X_{0} Y_{0}^{C}+Y_{0} X_{0}^{C}-Y_{0} Y_{0}^{C}\right]+\left[X_{1} Y_{1}^{C}\right.} & \left.-X_{1} X_{1}^{C}-Y_{1} X_{1}^{C}+Y_{1} Y_{1}^{C}\right] j=\left[X_{0} X_{0}^{C}+X_{0} Y_{0}^{C}-Y_{0} X_{0}^{C}\right. \\
& & \left.-Y_{0} Y_{0}^{C}\right]+\left[Y_{1} X_{1}^{C}+Y_{1} Y_{1}^{C}-X_{1} X_{1}^{C}-X_{1} Y_{1}^{C}\right] j \\
Y_{0} X_{0}^{C}+Y_{0} X_{0}^{C}+X_{1} Y_{1}^{C} j+X_{1} Y_{1}^{C} j & = & X_{0} Y_{0}^{C}+X_{0} Y_{0}^{C}+Y_{1} X_{1}^{C} j+Y_{1} X_{1}^{C} j \\
2 Y_{0} X_{0}^{C}+2 X_{1} Y_{1}^{C} j & = & 2 X_{0} Y_{0}^{C}+2 Y_{1} X_{1}^{C} j \\
Y_{0} X_{0}^{C}-Y_{1} X_{1}^{C} j & = & X_{0} Y_{0}^{C}-X_{1} Y_{1}^{C} j \\
\left(Y_{0}+Y_{1} j\right)\left(X_{0}^{C}-X_{1}^{C} j\right) & = & \left(X_{0}+X_{1} j\right)\left(Y_{0}^{C}-Y_{1}^{C} j\right) \\
Y X^{C} & = & X Y^{C}
\end{array}
$$

There exists a quaternion unitary matrix $U=U_{0}+U_{1} j^{\text {such that }} U_{0}+U_{1} j[7], U X U^{T}=$ $\left(U_{0} X_{0} U_{0}^{T}\right)+\left(U_{1} X_{1} U_{1}^{T}\right)=D$ is a diagonal matrix with non-negative real. Therefore,

$$
\begin{aligned}
\left(U Y U^{T}\right)\left(U X U^{T}\right)^{C} & = \\
U_{0} Y_{0} U_{0}^{T} U_{0}^{C} X_{0}^{C} U_{0}^{T C}-U_{1} Y_{1} U_{1}^{T} U_{1}^{C} X_{1}^{C} U_{1}^{T C} j= & =U_{0} X_{0} U_{0}^{T} U_{0}^{C} Y_{0}^{C} U_{0}^{T C}-U_{1} X_{1} U_{1}^{T} U_{1}^{C} X_{1}^{C} U_{1}^{T C} j
\end{aligned}
$$

Or $W D=D W^{C}$, where $W=-W^{T}$. Let $U_{0}+U_{1} j$ be chosen so that D is such that $d_{s} \geq d_{t} \geq 0$ for $s<t$ where d_{s} is the $s^{\text {th }}$ diagonal element of D.

If $W=\left(e_{s t}\right)$ where $e_{t s}=-e_{s t}$, then $e_{s t} d_{t}=d_{t} \bar{e}_{s t}$ for $t>s$ and three possibilities may occur: if $\quad d_{s}=d_{t} \neq 0$, the $e_{s t}$ is real; if $d_{s}=d_{t}=0, e_{s t}$ is arbitrary (though $W=-W^{T}$ still holds); and if $d_{s} \neq d_{t}$, then $e_{s t}=0$ for if $e_{s t}=$ $a+i b$ then $(a+i b) d_{t}=d_{s}(a-i b)$ and $a\left(d_{t}-d_{s}\right)=0$ implies that $a=0$ and $b\left(d_{s}+d_{t}\right)=0$ implies that $d_{s}=-d_{t}$ (which is not possible since d_{s} are real and non-negative and $d_{s} \neq d_{t}$) or $b=0$ so $e_{s t}=0$.

So if $U X U^{T}=\left(U_{0} X_{0} U_{0}^{T}\right)+\left(U_{1} X_{1} U_{1}^{T}\right) j=d_{1} I_{1} \oplus d_{2} I_{2} \oplus \ldots \ldots \ldots . \oplus d_{k} I_{k}$ where \oplus denotes the direct sum, then $U Y U^{T} \quad=\left(U_{0} Y_{0} U_{0}^{T}\right)+\left(U_{1} Y_{1} U_{1}^{T}\right) j=Y_{1} \oplus Y_{2} \oplus \ldots \ldots \oplus Y_{k}$ where $Y_{s}=-Y_{s}^{T}$ is real and $Y_{k}=-Y_{k}^{T}$ is quaternion if
and only if $d_{k}=0$. For each real Y_{s} there exists a real orthogonal matrix V_{s} so that $V_{s} Y_{s} V_{s}^{T}$ is a direct sum of zero matrices and matrices of the form $\left[\begin{array}{cc}0 & b_{1}+b_{2} j \\ -b_{1}-b_{2} j & 0\end{array}\right]$ where b_{1} and b_{2} are real.

If $Y_{k}=\left(Y_{0(k)}+Y_{1(k)} j\right)=-\left(Y_{0(k)}+Y_{1(k)} j\right)^{T}$ is quaternion, there exists a quaternion unitary matrix $\quad V_{k}=$ $V_{0(k)}+V_{1(k)} j$ such that $V_{0(k)} Y_{0(k)} V_{0(k)}+V_{1(k)} Y_{1(k)} V_{1(k)} j, Y_{0}+Y_{1} j$ is a direct sum of matrices of the some form, so that if $V=$ $V_{1} \oplus V_{2} \oplus \ldots \ldots V_{k}$, then $V=V_{0}+V_{1} j$, then $V U X U^{T} V^{T}=\left(V_{0} U_{0} X_{0} U_{0}^{T} V_{0}^{T}\right)+\left(V_{1} U_{1} X_{1} U_{1}^{T} V_{1}^{T}\right) j=D$ and $V U Y U^{T} V^{T}$ $=\left(V_{0} U_{0} Y_{0} U_{0}^{T} V_{0}^{T}\right)+\left(V_{1} U_{1} Y_{1} U_{1}^{T} V_{1}^{T}\right) j=F$ the direct sum described. Therefore, $V U A U^{T} V^{T}=V U(X+Y) U^{T} V^{T}$ $=\left[\left(V_{0} U_{0} X_{0} U_{0}^{T} V_{0}^{T}\right)+\left(V_{1} U_{1} X_{1} U_{1}^{T} V_{1}^{T}\right) j\right]+\left[\left(V_{0} U_{0} Y_{0} U_{0}^{T} V_{0}^{T}\right)+\left(V_{1} U_{1} Y_{1} U_{1}^{T} V_{1}^{T}\right) j\right]=D+F$ Which is the desired form.

Properties of double representation of quaternion quasi-normal matrices:

If $A_{0}+A_{1} j$ and $B_{0}+B_{1} j$ are two quaternion quasi-normal matrices such that that $A B^{C}=B A^{C}$, that is $A_{0} B_{0}^{C}-A_{1} B_{1}^{C} j \quad=B_{0} A_{0}^{C}-B_{1} A_{1}^{C} j$ then $A_{0}+A_{1} j$ and $B_{0}+B_{1} j$ can be simultaneously brought into the above quaternion normal form under the same $U_{0}+U_{1} j$ (with a generalization to a finite number) but not conversely; if $\left(A_{0}+A_{1} j\right)$ is quaternion quasi-normal $A A^{C} \quad=A_{0} A_{0}^{C}-A_{1} A_{1}^{C} j$ is quaternion normal in the usual sense, but not conversely; and if $\left(A_{0}+A_{1} j\right)$ is quaternion quasi-normal and $A A^{C}$ is real, there is a real orthogonal matrix which gives the above form.

Properties of double representation of quaternion quasi-normal matrices not obtained in this section but of subsequent use are the following:

a) $A=A_{0}+A_{1} j$ is both quaternion normal and quaternion quasi-normal matrices if and only if $A_{0}+A_{1} j=$ $H_{0} U_{0}+H_{1} U_{1} j \quad=U_{0} H_{0}+U_{1} H_{1} j=U_{0} H_{0}^{T}+U_{1} H_{1}^{T} j$ so $H=H_{0}+H_{1} j=H_{0}^{T}+H_{1}^{T} j=$ $H_{0}^{C T}-H_{1}^{C T} j$ so that H is real.
b) If $A_{0}+A_{1} j=H_{0} U_{0}+H_{1} U_{1} j=U_{0} H_{0}^{T}+U_{1} H_{1}^{T} j$ is quaternion quasi-normal matrices, then $U_{0} H_{0}+U_{1} H_{1} j$ is quaternion quasi-normal matrices, if and only if $H_{0} U_{0}^{2}+H_{1} U_{1}^{2} j=U_{0}^{2} H_{0}+U_{1}^{2} H_{1} j$, that is if and only if $H_{0} U_{0}^{2}+H_{1} U_{1}^{2} j$ is quaternion normal.

For if $U_{0} H_{0}+U_{1} H_{1} j$ is quaternion quasi-normal matrices, $U_{0} H_{0}+U_{1} H_{1} j=H_{0}^{T} U_{0}+H_{1}^{T} U_{1} j$ so that $H_{0} U_{0}^{2}+H_{1} U_{1}^{2} j \quad=U_{0} H_{0}^{T} U_{0}+U_{1} H_{1}^{T} U_{1} j=U_{0}^{2} H_{0}+U_{1}^{2} H_{1} j$ and if $H_{0} U_{0}^{2}+H_{1} U_{1}^{2} j=U_{0}^{2} H_{0}+U_{1}^{2} H_{1} j$, then HUU $=\left(H_{0}+H_{1} j\right)\left(U_{0}+U_{1} j\right)\left(U_{0}+U_{1} j\right)=U_{0} U_{0} H_{0}+U_{1} U_{1} H_{1} j=U U H$ and $H^{T} U=H_{0}^{T} U_{0}+H_{1}^{T} U_{1} j=U_{0} H_{0}+U_{1} H_{1} j \quad=U H$

Theorem: 2

If $A_{0}+A_{1} j$ and $B_{0}+B_{1} j$ are quaternion quasi-normal matrices, then $A_{0} B_{0}+A_{1} B_{1} j$ is quaternion normal if and only if $A_{0}^{C T} A_{0} B_{0}-A_{1}^{C T} A_{1} B_{1} j=B_{0} A_{0} A_{0}^{C T}-B_{1} A_{1} A_{1}^{C T} j$ and $A_{0} B_{0} B_{0}^{C T}-A_{1} B_{1} B_{1}^{C T} j=B_{0}^{C T} B_{0} A_{0}-B_{1}^{C T} B_{1} A_{1} j$ (that is if and only if each is "quaternion normal relative to the other").

Proof:

If $A_{0} B_{0}+A_{1} B_{1} j$ is quaternion normal, from the above, $D=D_{0}+D_{1} j$, $D^{C T} D B_{2}=D_{0}^{C T} D_{0} B_{0(2)}-D_{1}^{C T} D_{1} B_{1(2)} j=B_{0(2)} D_{0} D_{0}^{C T}-B_{1(2)} D_{1} D_{1}^{C T} j=B_{2} D D^{C T}$ so that $F_{0}^{C T} F_{0} B_{0(1)}-F_{1}^{C T} F_{1} B_{1(1)} j$ $=B_{0(1)} F_{0} F_{0}^{C T}-B_{1(1)} F_{1} F_{1}^{C T} j$ or $A^{C T} A B=A_{0}^{C T} A_{0} B_{0}-A_{1}^{C T} A_{1} B_{1} j=B_{0} A_{0} A_{0}^{C T}-B_{1} A_{1} A_{1}^{C T} j$.

Similarly, since $\quad D B_{2}=\quad D_{0} B_{0(2)}+D_{1} B_{1(2)} j \quad$ is quaternion normal, $\quad D B_{2} B_{2}^{C T} D^{C}=$ $D_{0} B_{0(2)} B_{0(2)}^{C T} D_{0}^{C}+D_{1} B_{1(2)} B_{1(2)}^{C T} D_{1}^{C} j=B_{0(2)}^{C T} D_{0}^{C} D_{0} B_{0(2)}+B_{1(2)}^{C T} D_{1}^{C} D_{1} B_{1(2)} j=B_{2}^{C T} D^{C} D B_{2}$ so, $D B_{2} B_{2}^{C T}=$ $D_{0} B_{0(2)} B_{0(2)}^{C T}-D_{1} B_{1(2)} B_{1(2)}^{C T} j=B_{0(2)}^{C T} B_{0(2)} D_{0}-B_{1(2)}^{C T} B_{1(2)} D_{1} j$ or $F B_{1} B_{1}^{C T}=$ $F_{0} B_{0(1)} B_{0(1)}^{C T}-F_{1} B_{1(1)} B_{1(1)}^{C T} j=B_{0(1)}^{C T} B_{0(1)} F_{0}-B_{1(1)}^{C T} B_{1(1)} F_{1} j$ or $A_{0} B_{0} B_{0}^{C T}-A_{1} B_{1} B_{1}^{C T} j=B_{0}^{C T} B_{0} A_{0}-B_{1}^{C T} B_{1} A_{1} j$. That is $A B B^{C T}=B^{C T} B A$. The converse is directly verifiable.

Double Representation Of Quaternion Quasi-Normal Products of Matrices:

It is possible if $A_{0}+A_{1} j$ is quaternion normal and $B_{0}+B_{1} j$ is quaternion quasi-normal that $A_{0} B_{0}+A_{1} B_{1} j$ is quaternion quasi-normal.

For example

Any quaternion quasi-normal matrix $C=H_{0} U_{0}+H_{1} U_{1} j=U_{0} H_{0}^{T}+U_{1} H_{1}^{T} j$ is such a product with $A=$ $A_{0}+A_{1} j \quad=H_{0}+H_{1} j$ and $B_{0}+B_{1} j=U_{0}+U_{1} j$ or if $C=H_{0} U_{0}+H_{1} U_{1} j=U_{0} H_{0}^{T}+U_{1} H_{1}^{T} j$ and $A_{0}+A_{1} j=H_{0}+H_{1} j$ then $\quad A C=\left(H_{0}+H_{1} j\right)\left(H_{0} U_{0}+H_{1} U_{1} j\right)=\left(H_{0}+H_{1} j\right)\left(H_{0} U_{0}+H_{1} U_{1} j\right)=$ $\left(H_{0} U_{0}+H_{1} U_{1} j\right)\left(H_{0}^{T}+H_{1}^{T} j\right)=U_{0}\left(H_{0}^{T}\right)^{2}+U_{1}\left(H_{1}^{T}\right)^{2} j$. Therefore $A C$ is quaternion quasi-normal.

Theorem: 3

If $A=G_{0} W_{0}+G_{1} W_{1} j=W_{0} G_{0}+W_{1} G_{1} j$ is quaternion normal and $B=S_{0} V_{0}+S_{1} V_{1} j=V_{0} S_{0}^{T}+V_{1} S_{1}^{T} j$ is quaternion quasi-normal (where $G_{0}, G_{1}, S_{0}, S_{1}$ are hermitian and $W_{0}, W_{1}, V_{0}, V_{1}$ are unitary) then $A B$ is quaternion quasi-normal if and only if $G_{0} S_{0}+G_{1} S_{1} j \quad=S_{0} G_{0}+S_{1} G_{1} j, G_{0} V_{0}+G_{1} V_{1} j=V_{0} G_{0}^{T}+V_{1} G_{1}^{T} j$ and $W_{0} S_{0}+W_{1} S_{1} j=S_{0} W_{0}+S_{1} W_{1} j$.

Proof:

If the three relations hold, then $A B=G_{0} W_{0} S_{0} V_{0}+G_{1} W_{1} S_{1} V_{1} j=G_{0} S_{0} W_{0} V_{0}+G_{1} S_{1} W_{1} V_{1} j$ on one hand, and $A B$ $=W_{0} G_{0} S_{0} V_{0}+W_{1} G_{1} S_{1} V_{1} j=W_{0} S_{0} V_{0} G_{0}^{T}+W_{1} S_{1} V_{1} G_{1}^{T} j=W_{0} V_{0} S_{0}^{T} G_{0}^{T}+W_{1} V_{1} S_{1}^{T} G_{1}^{T} j=W_{0} V_{0}\left(G_{0} S_{0}\right)^{T}+W_{1} V_{1}\left(G_{1} S_{1}\right)^{T} j$ is quaternion quasi-normal, since $G_{0} S_{0}+G_{1} S_{1} j$ is hermitian and $W_{0} V_{0}+W_{1} V_{1} j$ is unitary.

Conversely, let $A=U_{0}^{C T} D_{0} U_{0}-U_{1}^{C T} D_{1} U_{1} j=G_{0} W_{0}+G_{1} W_{1} j$ and $B=U_{0}^{C T} B_{0(1)}^{T} U_{0}^{C}+U_{1}^{C T} B_{1}^{T} U_{1}^{C} j$ $=\left(U_{0}^{C T} S_{0(1)} U_{0}-U_{1}^{C T} S_{1(1)} U_{1} j\right)\left(U_{0}^{C T} V_{0(1)} U_{0}^{C}+U_{1}^{C T} V_{1(1)} U_{1}^{C} j\right)=V_{0} S_{0}^{T}+V_{1} S_{1}^{T} j$, where $S_{0(1)}, S_{1(1)}$ and $V_{0(1)}, V_{1(1)}$ are hermitian and unitary and direct sums conformable to $B_{0(1)}^{T}+B_{1(1)}^{T} j$ and $D_{0}+D_{1} j$.

A direct check shows that $G_{0} S_{0}+G_{1} S_{1} j=S_{0} G_{0}+S_{1} G_{1} j$ and $G_{0} V_{0}+G_{1} V_{1} j=V_{0} G_{0}^{T}+V_{1} G_{1}^{T} j$ also $W_{0} S_{0}+W_{1} S_{1} j$ $=U_{0}^{C T} D_{0(u)} K_{0(1)} U_{0}-U_{1}^{C T} D_{1(u)} K_{1(1)} U_{1} j=U_{0}^{C T} K_{0(1)} D_{0(u)} U_{0}-U_{1}^{C T} K_{1(1)} D_{1(u)} U_{1} j=S_{0} W_{0}+S_{1} W_{1} j$. Since
$D_{0(u)} B_{0(1)} B_{0(1)}^{C T}-D_{1(u)} B_{1(1)} B_{1(1)}^{C T} j \quad=\quad B_{0(1)} B_{0(1)}^{C T} D_{0(u)}-B_{1(1)} B_{1(1)}^{C T} D_{1(u)} j \quad$ implies \quad that $\quad D_{0(u)} K_{0(1)}+D_{1(u)} K_{1(1)} j$ $=K_{0(1)} D_{0(u)}+K_{1(1)} D_{1(u)} j$.

Theorem: 4

If $A_{0}+A_{1} j$ is quaternion normal, $B_{0}+B_{1} j$ is quaternion quasi-normal, and $A_{0} B_{0}+A_{1} B_{1} j=B_{0} A_{0}^{T}+B_{1} A_{1}^{T} j$, then $W_{0} A_{0} W_{0}^{C T}-W_{1} A_{1} W_{1}^{C T} j=D_{0}+D_{1} j$ and $W_{0} B_{0}^{T} W_{0}+W_{1} B_{1}^{T} W_{1} j=F_{0}+F_{1} j$, the quaternion normal form of Theorem 1, where $W_{0}+W_{1} j$ is a quaternion unitary matrix; also $A_{0} B_{0}+A_{1} B_{1} j$ is quaternion quasi-normal .

Proof:

Let $U_{0} A_{0} U_{0}^{C T}-U_{1} A_{1} U_{1}^{C T} j=D_{0}+D_{1} j$ quaternion diagonal and $U_{0} B_{0} U_{0}^{T}+U_{1} B_{1} U_{1}^{T} j=B_{0(2)}+B_{1(2)} j$ which is quaternion quasi-normal. Then $A_{0} B_{0}+A_{1} B_{1} j=B_{0} A_{0}^{T}+B_{1} A_{1}^{T} j$ implies $\quad D_{0} B_{0(2)}+D_{1} B_{1(2)} j$ $=U_{0} A_{0} U_{0}^{C T} U_{0} B_{0} U_{0}^{T}-U_{1} A_{1} U_{1}^{C T} U_{1} B_{1} U_{1}^{T} j=U_{0} B_{0} U_{0}^{T} U_{0}^{C} A_{0}^{T} U_{0}^{T}-U_{1} B_{1} U_{1}^{T} U_{1}^{C} A_{1}^{T} U_{1}^{T} j \quad=B_{0(2)} D_{0}^{T}+B_{1(2)} D_{1}^{T} j$ $=B_{0(2)} D_{0}+B_{1(2)} D_{1} j$

Let $D_{0}+D_{1} j=C_{1} I_{1} \oplus C_{2} I_{2} \oplus \ldots \ldots \ldots . \oplus C_{m} I_{m}$, where the C_{p} are quaternion and $C_{p} \neq C_{q}$ for $p \neq q$ and $C_{0(p)}, C_{1(p)}, B_{0(2)}+B_{1(2)} j=C_{1} \oplus C_{2} \oplus \ldots \ldots \ldots \oplus C_{m}$. Let V_{p} be unitary such that $V_{0(p)} C_{0(p)} V_{0(p)}^{T}+V_{1(p)} C_{1(p)} V_{1(p)}^{T} j=$ $F_{0(p)}+F_{1(p)} j=$ the real quaternion normal form of Theorem 1, and let $V_{0}+V_{1} j=V_{1} \oplus V_{2} \oplus \ldots \ldots \ldots . \oplus V_{m}$. Then $V_{0} U_{0} A_{0} U_{0}^{C T} V_{0}^{C T}+V_{1} U_{1} A_{1} U_{1}^{C T} V_{1}^{C T} j \quad=D_{0}+D_{1} j, V_{0} U_{0} B_{0} U_{0}^{T} V_{0}^{T}+V_{1} U_{1} B_{1} U_{1}^{T} V_{1}^{T} j=F_{0}+F_{1} j=\quad$ a direct sum of the $F_{0(p)}+F_{1(p)} j$.

Also $A_{0} B_{0}+A_{1} B_{1} j=B_{0} A_{0}^{T}+B_{1} A_{1}^{T} j$ implies that $B_{0}^{T} A_{0}^{T}+B_{1}^{T} A_{1}^{T} j=A_{0} B_{0}^{T}+A_{1} B_{1}^{T} j$ and so $A_{0} B_{0} B_{0}^{C T} A_{0}^{C T}+A_{1} B_{1} B_{1}^{C T} A_{1}^{C T} j=A_{0} B_{0}^{T} B_{0}^{C} A_{0}^{C T}+A_{1} B_{1}^{T} B_{1}^{C} A_{1}^{C T} j=B_{0}^{T} A_{0}^{T} A_{0}^{C} B_{0}^{C}+B_{1}^{T} A_{1}^{T} A_{1}^{C} B_{1}^{C} j$ $=\left(A_{0} B_{0}\right)^{T}\left(A_{0} B_{0}\right)^{C}+\left(A_{1} B_{1}\right)^{T}\left(A_{1} B_{1}\right)^{C} j$ (The fact that $A_{0}+A_{1} j$ is quaternion normal is not used in the latter.)

It is also possible for the product of two quaternion normal matrices $A_{0}+A_{1} j$ and $B_{0}+B_{1} j$ to be quaternion quasinormal. Let $Q_{0}+Q_{1} j=H_{0} U_{0}+H_{1} U_{1} j=U_{0} H_{0}^{T}+U_{1} H_{1}^{T} j$ is quaternion quasi-normal and if $A_{0}+A_{1} j=U_{0}+U_{1} j$ and $B_{0}+B_{1} j \quad=H_{0}+H_{1} j$ this is so or if $S_{0} V_{0}+S_{1} V_{1} j=V_{0} S_{0}^{T}+V_{1} S_{1}^{T} j$ is quaternion quasi-normal and if $A_{0}+A_{1} j=U_{0} S_{0}+U_{1} S_{1} j \quad=S_{0} U_{0}+S_{1} U_{1} j$ is quaternion normal with S_{0} and S_{1} are hermitian and $V_{0}+V_{1} j$ and $U_{0}+U_{1} j$ are unitary, for $B_{0}+B_{1} j \quad=V_{0}+V_{1} j$, we have $A_{0} B_{0}+A_{1} B_{1} j=$ $\left(U_{0} S_{0}+U_{1} S_{1} j\right)\left(V_{0}+V_{1} j\right)=\left(S_{0}+S_{1} j\right)\left(U_{0} V_{0}+U_{1} V_{1} j\right)=U_{0} V_{0} S_{0}^{T}+U_{1} V_{1} S_{1}^{T} j$. It is a quaternion quasi-normal.

But if in the first example $U_{0}^{2} H_{0}+U_{1}^{2} H_{1} j$ is not quaternion normal, then $H_{0} U_{0}+H_{1} U_{1} j$ is not quaternion quasinormal. So that $B_{0} A_{0}+B_{1} A_{1} j$ is not necessarily quaternion quasi-normal though $A_{0} B_{0}+A_{1} B_{1} j$ is. When $A_{0}+A_{1} j$ alone is quaternion normal an analog of Theorem 2 can be obtained which states the following: If $A_{0}+A_{1} j$ is quaternion normal then $A_{0} B_{0}+A_{1} B_{1} j$ and $A_{0} B_{0}^{T}+A_{1} B_{1}^{T} j$ are quaternion quasi-normal if and only if $A_{0} B_{0} B_{0}^{C T}+A_{1} B_{1} B_{1}^{C T} j=$ $B_{0}^{T} B_{0}^{C} A_{0}-B_{1}^{T} B_{1}^{C} A_{1} j \quad=B_{0} B_{0}^{C T} A_{0}-B_{1} B_{1}^{C T} A_{1} j=A_{0} B_{0}^{T} B_{0}^{C}-A_{1} B_{1}^{T} B_{1}^{C} j=$ $B_{0}^{C} A_{0} A_{0}^{C T}+B_{1}^{C} A_{1} A_{1}^{C T}=A_{0}^{T} A_{0}^{C} B_{0}^{C}+A_{1}^{T} A_{1}^{C} B_{1}^{C} j$. (The proof is not included here because of its similarity to that above).

It is possible for the product of two quaternion quasi-normal matrices to be quaternion quasi-normal, but no such simple analogous necessary and sufficient conditions as exhibited above are available. This may be seen as follows. Two non-real quaternion commutative matrices $X_{0}+X_{1} j \quad=X_{0}^{T}+X_{1}^{T} j$ and $Y_{0}+Y_{1} j=Y_{0}^{T}+Y_{1}^{T} j$ can form a quaternion quasinormal (and non-real symmetric) matrix $X_{0} Y_{0}+X_{1} Y_{1} j$ (such that $Y_{0} X_{0}+Y_{1} X_{1} j$ is also quaternion quasi-normal) which need not be quaternion normal.

Then two symmetric matrices:

$$
X_{0}+X_{1} j=\left[\begin{array}{cc}
i & 1+i \\
1+i & -i
\end{array}\right], \quad Y_{0}+Y_{1} j=\left[\begin{array}{cc}
1+2 i & 3-4 i \\
3-4 i & -(1+2 i)
\end{array}\right]
$$

Are such that $X_{0} Y_{0}+X_{1} Y_{1} j=Z_{0}+Z_{1} j$ is real, quaternion normal and quaternion quasi-normal (and not symmetric). Finally, if $U_{0}+U_{1} j$ and $V_{0}+V_{1} j$ are two quaternion unitary matrices of the same order, they can be chosen so $U_{0} V_{0}+U_{1} V_{1} j$ is non-real quaternion, quaternion normal and quaternion quasi-normal.

If $A_{0}+A_{1} j=\left(X_{0}+X_{1} j\right)+\left(S_{0}+S_{1} j\right)+\left(U_{0}+U_{1} j\right), B_{0}+B_{1} j=\left(Y_{0}+Y_{1} j\right)+\left(T_{0}+T_{1} j\right)+\left(V_{0}+V_{1} j\right)$. Then $A_{0} B_{0}+A_{1} B_{1} j=\left(X_{0} Y_{0}+X_{1} Y_{1} j\right)+\left(S_{0} T_{0}+S_{1} T_{1} j\right)+\left(U_{0} V_{0}+U_{1} V_{1} j\right) \quad$ where $A_{0}+A_{1} j$ and $B_{0}+B_{1} j$ are quaternion quasi-normal as in $A_{0} B_{0}+A_{1} B_{1} j$ (but not symmetric).

A simple inspection of these matrices shows that relations on the order of $\quad\left(B_{0}^{T} B_{0}^{C}\right) A_{0}-\left(B_{1}^{T} B_{1}^{C}\right) A_{1} j$ $=A_{0}\left(B_{0} B_{0}^{C T}\right)-A_{1}\left(B_{1} B_{1}^{C T}\right) j=\left(B_{0} B_{0}^{C T}\right) A_{0}-\left(B_{1} B_{1}^{C T}\right) A_{1} j \quad$ and $\quad\left(A_{0}^{T} A_{0}^{C}\right) B_{0}^{C}+\left(A_{1}^{T} A_{1}^{C}\right) B_{1}^{C} j \quad=$ $\left(A_{0} A_{0}^{C T}\right) B_{0}^{C}+\left(A_{1} A_{1}^{C T}\right) B_{1}^{C} j=B_{0}^{C}\left(A_{0} A_{0}^{C T}\right)+B_{1}^{C}\left(A_{1} A_{1}^{C T}\right) j$ do not necessarily hold; these are sufficient, however, to guarantee that $A_{0} B_{0}+A_{1} B_{1} j$ is quaternion quasi-normal (as direct verification from the definition will show).

References:

[1] Gunasekaran, K. and Rajeswari, J. 2017. Quaternion Quasi-Normal Matrices. International Journal of Mathematics Trends and

Technology, Vol. 50: 33-35.
[2] Gùnasekaran, K. and Rajeswari, J. 2018. Quaternion Quasi-Normal Products Of Matrices. International Journal Of Innovatice

Research And Advanced Studies. Vol. 5: 67-69.
[3] Gunasekaran, K. and Rajeswari, J. 2018. Characterzation of Double Representation of Quaternion Quasi-Normal Matrices. (Communication).
[4] Junliang Wu. and Pingping Zhang. 2011. On Bicomplex Representation Methods And Applications Of Matrices Over Quaternionic Division Algebra. Advances in Pure Mathematics. 1: 9-15.
[5] Morita, K . 1994. Uber Normale Antilineare Transformationen. J. Acad. Proc. Tokyo, 20 : 715-720.
[6] Robert Grone, Charles , R. Johnson, Eduardo M. Sa. and Henry Wolkowicz. 1987. Normal Matrices. Linear Algebra and its Applications 87: 213-225.
[7] Schur, I. 1945. Ein Satz Uber Quadratische Formen Mit Komplexen Koeffizienten. Amer. J. Math. 67: 472-480.
[8] Wiegmann, N. 1948. Normal Products Of Matrices. Duke Math. Journal, 15: 633-638.
[9] Wu, J.L. and Wang, Y.A. 2009. New Representation Theory And Some Methods On Quaternion Division Algebra. Journal of Algebra, Vol. 14(2): 121-140.

