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INTRODUCTION:  
 

A normal matrix A  = ( )ija  with complex elements is a matrix such that 
CT CTAA A A  where 

CTA  denotes the 

(complex) conjugate transpose of A .  In an article by K. Morita[5] a quasi-normal matrix is defined to  be a complex matrix A  

which is such that 
CT T CAA A A ,  where T  denotes the transpose of A  and 

CA  the matrix in which each element is replaced by  

its conjugate, and certain basic properties of such a matrix are developed there. 

 

Based on the bi-complex form of quaternion matrix Junliang Wu and Pingping Zhang [4] presented some new concept to 

quaternion division algebra.  The new concepts could perfect the theory of Wu in [9].  The complex representation method for the 

quaternion matrices on explore the relation between the quaternion matrices and complex matrices. 

  

In this paper, quaternion quasi-normal matrix is defined.  The further properties of quaternion quasi-normal are developed, 

their relation in a sense, to a quaternion normal matrices are consider and further results concerning quaternion normal products are 

obtained for quaternion quasi-normal. 

  

Theorem: 1 

 A matrix A is double representation of quaternion quasi-normal iff a quaternion unitary matrix U such that 
TUAU  is a 

direct sum of non-negative real numbers and of 2×2 matrices of the form 
a b

b a

 
 
 

  where  a and b  are non-negative real numbers. 

 

Proof: 

Let A  be a double representation of quaternion quasi-normal where A X Y  .   [Where 0 1X X X j   and 

0 1Y Y Y j  ] ,Where 
0 1

T T TX X X X j    and 
0 1( )T T TY Y Y Y j     .  Then 

CT T CAA A A where A X Y  . 

 

 
CTAA  =  ( )( )CTX Y X Y   

  =  
0 0 1 1 0 1 0 1[( ) ( ) ][( ) )]CTX Y X Y j X X j Y Y j           

=  
0 0 1 1 0 1 0 1[( ) ( ) ][( ) ) ]CT CTX Y X Y j X X j Y Y j       

  =  
0 0 1 1 0 1 0 1[( ) ( ) ][( ) )]C C C CX Y X Y j X X j Y Y j       
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  =  
0 0 1 1 0 0 1 1[( ) ( ) ][( ) ( ) ]C C C CX Y X Y j X Y X Y j       

  =  
0 0 0 0 1 1 1 1[( )( )] [( )( ) ]C C C CX Y X Y X Y X Y j      

  =  
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1[ ] [ ]C C C C C C C CX X X Y Y X Y Y X Y X X Y X YY j                       ......(1) 

 

Now, 
T CA A  =  ( ) ( )T CX Y X Y   

 =  
0 1 0 1( )TX X j Y Y j   0 1 0 1( )CX X j Y Y j    

 =  
0 0 1 1 0 1 0 1[( ) ( ) ] [( ) )]T CX Y X Y j X X j Y Y j       

 =  
0 0 1 1 0 0 1 1[( ) ( ) ][( ) ) ]T T T T C C C CX Y X Y j X Y X Y j       

 =  
0 1 0 1 0 0 1 1[( ) ( ) ][( ) ) ]T T T T C C C CX X j Y Y j X Y X Y j       

 =  
0 0 0 0 1 1 1 1[( )( )] [( ) )]C C C CX Y X Y X Y X Y j       

  =  
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1[ ] [ ]C C C C C C C CX X X Y Y X Y Y Y X YY X X X Y j                       ......(2) 

 

Since A is double representation of quaternion quasi-normal.   

                
CTAA  =  

T CA A   

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1[ ] [ ]C C C C C C C CX X X Y Y X Y Y X Y X X Y X YY j         =  0 0 0 0 0 0[ C C CX X X Y Y X   

                            
0 0 1 1 1 1 1 1 1 1] [ ]C C C C CY Y Y X YY X X X Y j      

   0 0 0 0 1 1 1 1

C C C CY X Y X X Y j X Y j    = 
0 0 0 0 1 1 1 1

C C C CX Y X Y Y X j Y X j    

 

 0 0 1 12 2C CY X X Y j  = 0 0 1 12 2C CX Y Y X j  

            0 0 1 1

C CY X Y X j  = 0 0 1 1

C CX Y X Y j  

                        
0 1 0 1)( )C CY Y j X X j  

 
= 

0 1 0 1( )( )C CX X j Y Y j   

                
CYX  = 

CXY  
 

There exists a quaternion unitary matrix     0 1U U U j   such that 0 1U U j [7] ,  
TUXU  =  

0 0 0 1 1 1( ) ( )T TU X U U X U    =  D is a diagonal matrix with non-negative real.   Therefore,   

                  ( )( )T T CUYU UXU  = ( )( )T T CUXU UYU  

0 0 0 0 0 0 1 1 1 1 1 1

T C C TC T C C TCU YU U X U U YU U X U j  = 
0 0 0 0 0 0 1 1 1 1 1 1

T C C TC T C C TCU X U U Y U U X U U Y U j  

Or  WD   =  
CDW , where 

TW W  .  Let 0 1U U j  be chosen so that D  is such that 0s td d   for s t  where sd is the 

ths  diagonal element of D . 

 

If  W  =  ( )ste  where tse  = ste , then stst t te d d e  for t s  and three possibilities may occur:  if            sd  = td  0 , 

the ste is real; if  sd  =  td  = 0 ,  ste is arbitrary (though   
TW W   still holds); and if  sd   td , then  ste  = 0 for if  ste  =  

a ib  then  ( ) ta ib d   =  ( )sd a ib  and ( )t sa d d  = 0  implies that  0a   and ( )s tb d d  = 0  implies that sd  =  td  

(which is not possible since sd   are real and non-negative and sd   td ) or b  =  0 so  ste  =  0.   

 

So if 
TUXU  =  

0 0 0 1 1 1( ) ( )T TU X U U X U j  =  1 1 2 2 ........ k kd I d I d I    where   denotes the direct sum, then 

TUYU                   =  
0 0 0 1 1 1( ) ( )T TU YU U YU j  =  1 2 ...... kY Y Y    where 

T

s sY Y   is real and 
T

k kY Y   is quaternion if 
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and only if 0kd  .   For each real 
sY  there exists a real orthogonal matrix 

sV  so that 
T

s s sV Y V  is a direct sum of zero matrices and 

matrices of the form 
1 2

1 2

0

0

b b j

b b j

 
 
  

 where 1b  and 
2b  are real. 

 

If 
kY  = 

0( ) 1( )( )k kY Y j  =  0( ) 1( )( )T

k kY Y j  is quaternion, there exists a quaternion unitary matrix            
kV  = 

0( ) 1( )k kV V j  such that 
0( ) 0( ) 0( ) 1( ) 1( ) 1( )k k k k k kV Y V V Y V j , 

0 1Y Y j  is a direct sum of matrices of the some form, so that if V  = 

1 2 ..... kV V V   , then V = 0 1V V j ,  then 
T TVUXU V   = 

0 0 0 0 0 1 1 1 1 1( ) ( )T T T TV U X U V VU X U V j  = D  and 
T TVUYU V                                                                              

= 
0 0 0 0 0 1 1 1 1 1( ) ( )T T T TV U YU V VU YU V j    =  F  the direct sum described.  Therefore,   

T TVUAU V    =   ( ) T TVU X Y U V
               

  

=   
0 0 0 0 0 1 1 1 1 1[( ) ( ) ]T T T TV U X U V VU X U V j

  0 0 0 0 0 1 1 1 1 1[( ) ( ) ]T T T TV U YU V VU YU V j     =   D F  Which is the desired form. 

  

Properties of double representation of quaternion quasi-normal matrices: 
 

 If 0 1A A j  and 0 1B B j  are two quaternion quasi-normal matrices such that that 
CAB  = 

CBA , that is 

0 0 1 1

C CA B A B j                              = 0 0 1 1

C CB A B A j  then  0 1A A j  and 0 1B B j  can be simultaneously brought into the above 

quaternion normal form under the same 0 1U U j  (with a generalization to a finite number) but not conversely; if 0 1( )A A j  is 

quaternion quasi-normal 
CAA                                      =   0 0 1 1

C CA A A A j  is quaternion normal in the usual sense, but not 

conversely; and if 0 1( )A A j  is quaternion quasi-normal and 
CAA  is real, there is a real orthogonal matrix which gives the above 

form. 

 

Properties of double representation of quaternion quasi-normal matrices not obtained in this section but 

of subsequent use are the following: 
 

 a)  A = 0 1A A j is both quaternion normal and quaternion quasi-normal matrices if and only if 0 1A A j
  

= 

0 0 1 1H U H U j                           = 0 0 1 1U H U H j  =  
0 0 1 1

T TU H U H j  so H  =  0 1H H j   =  0 1

T TH H j    =  

0 1

CT CTH H j  so that H   is real. 

 

 b)  If  0 1A A j  = 0 0 1 1H U H U j  =   
0 0 1 1

T TU H U H j  is quaternion quasi-normal matrices, then  0 0 1 1U H U H j   is 

quaternion quasi-normal matrices, if and only if 
2 2

0 0 1 1H U H U j  =  
2 2

0 0 1 1U H U H j , that is if and only if 
2 2

0 0 1 1H U H U j  is 

quaternion normal. 

 

 For if 0 0 1 1U H U H j  is quaternion quasi-normal matrices, 0 0 1 1U H U H j  =  
0 0 1 1

T TH U H U j so that 

2 2

0 0 1 1H U H U j                        =  0 0 0 1 1 1

T TU H U U H U j  =  
2 2

0 0 1 1U H U H j  and if 
2 2

0 0 1 1H U H U j   =  
2 2

0 0 1 1U H U H j ,  

then  HUU                                                     =  0 1 0 1 0 1( )( )( )H H j U U j U U j  
  

=   0 0 0 1 1 1U U H U U H j
  

=   UUH   and  

TH U  =   
0 0 1 1

T TH U H U j
  

=   0 0 1 1U H U H j
              

 =   UH  

 

Theorem: 2 
 

 If 0 1A A j  and 0 1B B j  are quaternion quasi-normal matrices, then 0 0 1 1A B A B j  is quaternion normal if and only if 

0 0 0 1 1 1

CT CTA A B A A B j  =  0 0 0 1 1 1

CT CTB A A B A A j  and 0 0 0 1 1 1

CT CTA B B A B B j  =  0 0 0 1 1 1

CT CTB B A B B A j  (that is if and only if 

each is “quaternion normal relative to the other”). 

 

Proof: 
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 If 
0 0 1 1A B A B j  is quaternion normal, from the above, D = 

0 1D D j ,                                                                                                   

2

CTD DB  = 0 0 0(2) 1 1 1(2)

CT CTD D B D D B j  = 0(2) 0 0 1(2) 1 1

CT CTB D D B D D j  = 2

CTB DD  so that 0 0 0(1) 1 1 1(1)

CT CTF F B F F B j                                                     

= 0(1) 0 0 1(1) 1 1

CT CTB F F B F F j  or  
CTA AB  =  0 0 0 1 1 1

CT CTA A B A A B j     =  0 0 0 1 1 1

CT CTB A A B A A j .   

 

 Similarly,  since  
2DB  =  0 0(2) 1 1(2)D B D B j  is quaternion normal,   2 2

CT CDB B D  = 

0 0(2) 0(2) 0 1 1(2) 1(2) 1

CT C CT CD B B D D B B D j
                     

 =  0(2) 0 0 0(2) 1(2) 1 1 1(2)

CT C CT CB D D B B D D B j   =  2 2

CT CB D DB  so, 2 2

CTDB B   =  

0 0(2) 0(2) 1 1(2) 1(2)

CT CTD B B D B B j                                                              =  0(2) 0(2) 0 1(2) 1(2) 1

CT CTB B D B B D j  or 1 1

CTFB B
   

 =  

0 0(1) 0(1) 1 1(1) 1(1)

CT CTF B B F B B j     =  0(1) 0(1) 0 1(1) 1(1) 1

CT CTB B F B B F j   or     0 0 0 1 1 1

CT CTA B B A B B j     =  0 0 0 1 1 1

CT CTB B A B B A j .  That is 

CTABB  =  
CTB BA .  The converse is directly verifiable. 

 

Double Representation Of Quaternion Quasi-Normal Products of Matrices: 
 

 It is possible if 
0 1A A j  is quaternion normal and 

0 1B B j  is quaternion quasi-normal that 
0 0 1 1A B A B j  is quaternion 

quasi-normal.  

 

For example 
 

 Any quaternion quasi-normal matrix C  =  0 0 1 1H U H U j  =  
0 0 1 1

T TU H U H j  is such a product with   A  =  

0 1A A j                              =  0 1H H j  and 
0 1B B j  =  

0 1U U j  or if  C  =  0 0 1 1H U H U j =  
0 0 1 1

T TU H U H j  and 

0 1A A j  =  0 1H H j  then                 AC  =  0 1 0 0 1 1( )( )H H j H U H U j 
  

=  0 1 0 0 1 1( )( )H H j H U H U j 
 
=   

0 0 1 1 0 1( )( )T TH U H U j H H j 
                                                   

=   
2 2

0 0 1 1( ) ( )T TU H U H j .  Therefore  AC  is quaternion 

quasi-normal. 

 

 

 

Theorem: 3 

 

 If  A =  0 0 1 1G W GW j  =  0 0 1 1W G W G j  is quaternion normal and B  =  0 0 1 1S V S V j   =  
0 0 1 1

T TV S V S j  is 

quaternion quasi-normal (where 0 1 0 1, , ,G G S S  are hermitian and 0 1 0 1, , ,W W V V  are unitary) then AB  is quaternion quasi-normal if 

and only if 0 0 1 1G S G S j                = 0 0 1 1S G S G j , 0 0 1 1G V GV j    =  0 0 1 1

T TV G V G j  and 0 0 1 1W S W S j  =  0 0 1 1S W S W j . 

 

Proof: 

 If the three relations hold, then AB  =  0 0 0 0 1 1 1 1G W S V GW S V j  =   0 0 0 0 1 1 1 1G S W V G S WV j  on one hand, and AB                                           

=  0 0 0 0 1 1 1 1W G S V WG S V j  = 0 0 0 0 1 1 1 1

T TW S V G W S V G j    =  
0 0 0 0 1 1 1 1

T T T TWV S G WV S G j   =  
0 0 0 0 1 1 1 1( ) ( )T TWV G S WV G S j  is 

quaternion quasi-normal, since 0 0 1 1G S G S j  is hermitian and 0 0 1 1W V WV j  is  unitary. 

 

 Conversely, let  A  =  0 0 0 1 1 1

CT CTU D U U DU j
 =  0 0 1 1G W GW j  and  B  =   0 0(1) 0 1 1 1

CT T C CT T CU B U U B U j
                                                

=   0 0(1) 0 1 1(1) 1 0 0(1) 0 1 1(1) 1( )( )CT CT CT C CT CU S U U S U j U V U U V U j 
  

=   
0 0 1 1

T TV S V S j
 
,where 0(1)S , 1(1)S  and 0(1)V , 1(1)V  are 

hermitian and unitary and direct sums conformable to 0(1) 1(1)

T TB B j  and 0 1D D j . 

 

 A direct check shows that 0 0 1 1G S G S j  =  0 0 1 1S G S G j  and 0 0 1 1G V GV j   =  0 0 1 1

T TV G V G j  also 0 0 1 1W S W S j
                             

 

=  0 0( ) 0(1) 0 1 1( ) 1(1) 1

CT CT

u uU D K U U D K U j         =  0 0(1) 0( ) 0 1 1(1) 1( ) 1

CT CT

u uU K D U U K D U j     =  0 0 1 1S W S W j .  Since 

http://www.ijcrt.org/


www.ijcrt.org                                   © 2018 IJCRT | Volume 6, Issue 1 February 2018 | ISSN: 2320-2882 

IJCRT1802245 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1924 

 

0( ) 0(1) 0(1) 1( ) 1(1) 1(1)

CT CT

u uD B B D B B j  = 0(1) 0(1) 0( ) 1(1) 1(1) 1( )

CT CT

u uB B D B B D j  implies that 0( ) 0(1) 1( ) 1(1)u uD K D K j                                                            

=  
0(1) 0( ) 1(1) 1( )u uK D K D j . 

 

Theorem: 4 
 

 If  
0 1A A j  is quaternion normal, 

0 1B B j  is quaternion quasi-normal, and  
0 0 1 1A B A B j  =  

0 0 1 1

T TB A B A j , then 

0 0 0 1 1 1

CT CTW AW W AW j  =  
0 1D D j  and 

0 0 0 1 1 1

T TW B W W B W j  =  
0 1F F j , the quaternion normal form of Theorem 1, where 

0 1W W j  is a quaternion unitary matrix; also 
0 0 1 1A B A B j  is quaternion quasi-normal . 

 

Proof: 

 Let 
0 0 0 1 1 1

CT CTU AU U AU j  =  0 1D D j  quaternion diagonal and 
0 0 0 1 1 1

T TU B U U BU j    =  
0(2) 1(2)B B j  which is 

quaternion quasi-normal.  Then 0 0 1 1A B A B j   =   
0 0 1 1

T TB A B A j ,     implies     0 0(2) 1 1(2)D B D B j
                                                                    

=  
0 0 0 0 0 0 1 1 1 1 1 1

CT T CT TU AU U B U U AU U BU j          = 
0 0 0 0 0 0 1 1 1 1 1 1

T C T T T C T TU B U U A U U BU U A U j             =  0(2) 0 1(2) 1

T TB D B D j                            

=     0(2) 0 1(2) 1B D B D j
. 

 

 Let 0 1D D j  =  1 1 2 2 ........ m mC I C I C I   , where the pC  are quaternion and p qC C  for p q  and 

0( ) 1( ),p pC C , 
0(2) 1(2)B B j   =  1 2 ........ mC C C   .  Let pV  be unitary such that 0( ) 0( ) 0( ) 1( ) 1( ) 1( )

T T

p p p p p pV C V V C V j  =  

0( ) 1( )p pF F j  =  the real quaternion normal form of Theorem 1, and let 0 1V V j  =  1 2 ........ mV V V   .  Then 

0 0 0 0 0 1 1 1 1 1

CT CT CT CTV U AU V VU AU V j
                       

 =  0 1D D j  ,  
0 0 0 0 0 1 1 1 1 1

T T T TV U B U V VU BU V j   =  0 1F F j    =      a 

direct sum of the   0( ) 1( )p pF F j . 

 

 Also 0 0 1 1A B A B j  =  
0 0 1 1

T TB A B A j   implies that  0 0 1 1

T T T TB A B A j   =  
0 0 1 1

T TA B A B j  and so 

0 0 0 0 1 1 1 1

CT CT CT CTA B B A AB B A j   =  0 0 0 0 1 1 1 1

T C CT T C CTA B B A A B B A j  =  
0 0 0 0 1 1 1 1

T T C C T T C CB A A B B A A B j                                                                   

=  
0 0 0 0 1 1 1 1( ) ( ) ( ) ( )T C T CA B A B AB AB j  (The fact that 0 1A A j  is quaternion normal is not used in the latter.) 

 

 It is also possible for the product of two quaternion normal matrices 0 1A A j  and 0 1B B j  to be quaternion quasi-

normal.  Let 0 1Q Q j  =  0 0 1 1H U H U j  =  
0 0 1 1

T TU H U H j  is quaternion quasi-normal and if 0 1A A j     =  0 1U U j  and 

0 1B B j
                       

 =  0 1H H j  this is so or if  0 0 1 1S V S V j  =  
0 0 1 1

T TV S V S j  is quaternion quasi-normal and if 

0 1A A j  =  0 0 1 1U S U S j                              =  0 0 1 1S U S U j  is quaternion normal with 0S  and 1S  are hermitian and 

0 1V V j  and 0 1U U j  are unitary, for 0 1B B j                           =  0 1V V j  ,  we have
         0 0 1 1A B A B j      = 

0 0 1 1( )U S U S j 0 1( )V V j
 
= 0 1( )S S j 0 0 1 1( )U V U V j

   
=   

0 0 0 1 1 1

T TU V S U V S j .  It is  a quaternion quasi-normal.` 

 

 But if in the first example 
2 2

0 0 1 1U H U H j  is not quaternion normal, then 0 0 1 1H U H U j  is not quaternion quasi-

normal.  So that 0 0 1 1B A B A j  is not necessarily quaternion quasi-normal though 0 0 1 1A B A B j  is.  When 0 1A A j  alone is 

quaternion normal an analog of Theorem 2 can be obtained which states the following:  If 0 1A A j  is quaternion normal then  

0 0 1 1A B A B j  and  
0 0 1 1

T TA B A B j  are quaternion quasi-normal if and only if  0 0 0 1 1 1

CT CTA B B A B B j   =  

0 0 0 1 1 1

T C T CB B A B B A j
                                                   

=  0 0 0 1 1 1

CT CTB B A B B A j   =  0 0 0 1 1 1

T C T CA B B A B B j
 
   =  

0 0 0 1 1 1

C CT C CTB A A B A A   =  
0 0 0 1 1 1

T C C T C CA A B A A B j .  (The proof is not included here because of its similarity to that above). 
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 It is possible for the product of two quaternion quasi-normal matrices to be quaternion quasi-normal, but no such simple 

analogous necessary and sufficient conditions as exhibited above are available.   This may be seen as follows.  Two non-real 

quaternion commutative matrices 
0 1X X j                     =  0 1

T TX X j  and 
0 1Y Y j  =  

0 1

T TY Y j  can form a quaternion quasi-

normal (and non-real symmetric) matrix  
0 0 1 1X Y X Y j  (such that 

0 0 1 1Y X Y X j  is also quaternion quasi-normal) which need not 

be quaternion normal. 

 

 Then two symmetric matrices: 

0 1X X j   =  
1

1

i i

i i

 
 
  

  ,   
0 1Y Y j   =  

1 2 3 4

3 4 (1 2 )

i i

i i

  
 
   

 

Are such that 
0 0 1 1X Y X Y j   =  

0 1Z Z j   is real, quaternion normal and quaternion quasi-normal (and not symmetric).  Finally, if 

0 1U U j   and 
0 1V V j  are  two quaternion unitary matrices of the same order, they can be chosen so 

0 0 1 1U V U V j  is non-real 

quaternion, quaternion normal and quaternion quasi-normal. 

 

 If  0 1A A j  = 0 1 0 1 0 1( ) ( ) ( )X X j S S j U U j     , 0 1B B j
  

= 0 1 0 1 0 1( ) ( ) ( )Y Y j T T j V V j      .  Then 

0 0 1 1A B A B j     =     0 0 1 1 0 0 1 1 0 0 1 1( ) ( ) ( )X Y X Y j S T S T j U V U V j       where 
0 1A A j  and 

0 1B B j  are quaternion 

quasi-normal as in 0 0 1 1A B A B j  (but not symmetric). 

 

 A simple inspection of these matrices shows that relations on the order of  0 0 0 1 1 1( ) ( )T C T CB B A B B A j                                                          

=  
0 0 0 1 1 1( ) ( )CT CTA B B A B B j   =  

0 0 0 1 1 1( ) ( )CT CTB B A B B A j   and 0 0 0 1 1 1( ) ( )T C C T C CA A B A A B j     =  

0 0 0 1 1 1( ) ( )CT C CT CA A B A A B j            =  
0 0 0 1 1 1( ) ( )C CT C CTB A A B A A j   do not necessarily hold; these are sufficient, however , to 

guarantee that 0 0 1 1A B A B j  is quaternion quasi-normal (as direct verification from the definition will show). 
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