ON DOUBLE REPRESENTATION OF QUATERNION QUASI-NORMAL MATRICES

1Dr. K. Gunasekaran, 2J. Rajeswari

(1,2)Ramanujan Research Centre, PG and Research Department of Mathematics, Government Arts College(Autonomous), Kumbakonam, Tamil Nadu, India.

ABSTRACT

In this paper, the properties of quaternion quasi-normal matrices in the form of double representation of complex matrices. The normal product of the quaternion quasi-normal matrices are derived.

AMS Classification: 15A99, 15A04, 15A15, 15A116, 15A48

Key words: Quaternion unitary, quaternion normal, hermitian, unitary, normal

INTRODUCTION:

A normal matrix $A = (a_{ij})$ with complex elements is a matrix such that $AA^T = A^T A$ where A^T denotes the (complex) conjugate transpose of A. In an article by K. Morita[5] a quasi-normal matrix is defined to be a complex matrix A which is such that $AA^C = A^T A^C$, where T denotes the transpose of A and A^C the matrix in which each element is replaced by its conjugate, and certain basic properties of such a matrix are developed there.

In this paper, quaternion quasi-normal matrix is defined. The further properties of quaternion quasi-normal are developed, their relation in a sense, to a quaternion normal matrices are consider and further results concerning quaternion normal products are obtained for quaternion quasi-normal.

Theorem: 1

A matrix A is double representation of quaternion quasi-normal iff a quaternion unitary matrix U such that UAU^T is a direct sum of non-negative real numbers and of 2×2 matrices of the form

$$\begin{bmatrix} a & b \\ -b & a \end{bmatrix}$$

where a and b are non-negative real numbers.

Proof:

Let A be a double representation of quaternion quasi-normal where $A = X + Y$. [Where $X = X_0 + X_1 j$ and $Y = Y_0 + Y_1 j$]. Where $X = X^T = X_0^T + X_1^T j$ and $Y = -Y^T = -(Y_0^T + Y_1^T j)$. Then $AA^C = A^T A^C$ where $A = X + Y$.

$$AA^C = (X + Y)(X + Y)^C$$

$$= [(X_0 + Y_0) + (X_1 + Y_1) j][(X_0 + X_1) j + (Y_0 + Y_1) j]^C$$

$$= [(X_0 + Y_0) + (X_1 + Y_1) j][(X_0 + X_1) j + (Y_0 + Y_1) j]^C$$

$$= [(X_0 + Y_0) + (X_1 + Y_1) j][(X_0^C - X_1^C j) + (-Y_0^C + Y_1^C j)]$$
\[
= [(X_0 + Y_0) + (X_1 + Y_1)j][(X_0^C - Y_0^C) - (X_1^C - Y_1^C)j]
= [(X_0 + Y_0)(X_0^C - Y_0^C)] - [(X_1 + Y_1)(X_1^C - Y_1^C)j]
= [X_0X_0^C - X_0Y_0^C + Y_0X_0^C - Y_0Y_0^C] + [X_1X_1^C - X_1Y_1^C - Y_1X_1^C + Y_1Y_1^C]j \quad \ldots \quad (1)
\]

Now,
\[
A^TA^C = (X + Y)^T(X + Y)^C
\]
\[
= (X_0 + X_1j + Y_0 + Y_1j)^T(X_0 + X_1j + Y_0 + Y_1j)^C
\]
\[
= [(X_0 + Y_0) + (X_1 + Y_1)j]^T[(X_0 + X_1j) + (Y_0 + Y_1j)]C
\]
\[
= [(X_0^T + Y_0^T) + (X_1^T + Y_1^T)j]((X_0^C + Y_0^C) - (X_1^C + Y_1^C)j]
\]
\[
= [(X_0^T + X_1^T)j + (Y_0^T + Y_1^T)j]((X_0^C + Y_0^C) - (X_1^C + Y_1^C)j]
\]
\[
= [(X_0 - Y_0)(X_0^C + Y_0^C)] - [(X_1 - Y_1)(X_1^C + Y_1^C)j]
\]
\[
= [X_0X_0^C + X_0Y_0^C - Y_0X_0^C - Y_0Y_0^C] + [Y_1X_1^C + Y_1Y_1^C - X_1X_1^C - X_1Y_1^C]j \quad \ldots \quad (2)
\]

Since \(A \) is double representation of quaternion quasi-normal,
\[
AA^{CT} = A^TA^C
\]
\[
[X_0X_0^C - X_0Y_0^C + Y_0X_0^C - Y_0Y_0^C] + [X_1X_1^C - X_1Y_1^C + Y_1X_1^C + Y_1Y_1^C]j = [X_0X_0^C + X_0Y_0^C - Y_0X_0^C - Y_0Y_0^C] + [Y_1X_1^C + Y_1Y_1^C - X_1X_1^C - X_1Y_1^C]j
\]
\[
Y_0X_0^C + Y_0X_0^C + X_1Y_1^C + X_1Y_1^Cj = X_0X_0^C + X_0Y_0^C + Y_1X_1^C + Y_1X_1^Cj = 2X_0Y_0^C + 2X_1Y_1^Cj
\]
\[
Y_0X_0^C - Y_1X_1^Cj = Y_0X_0^C - X_1X_1^Cj
\]
\[
(Y_0 + Y_1j)(X_0^C - X_1^C)j = (X_0 + X_1j)(Y_0^C - Y_1^Cj)
\]
\[
YX^C = XY^C
\]

There exists a quaternion unitary matrix \(U = U_0 + U_1j \) such that \(U_0 + U_1j \)[?], \(UXU^T = (U_0X_0U_0^T) + (U_1X_1U_1^T) = D \) is a diagonal matrix with non-negative real. Therefore,
\[
(UYU^T)(UXU^T)^C = (UXU^T)(UYU^T)^C
\]
\[
U_0Y_0U_0^TU_0^C U_0^TU_0^C U_0^TCU_0^TCU_0^Tj = U_0X_0U_0^TU_0^CU_0^TCU_0^TCU_0^Tj
\]

Or \(WD = DW^C \), where \(W = -W^T \). Let \(U_0 + U_1j \) be chosen so that \(D \) is such that \(d_i \geq d_j \geq 0 \) for \(s < t \) where \(d_i \) is the \(s \th \) diagonal element of \(D \).

If \(W = (e_{st}) \) where \(e_{ts} = -e_{st} \), then \(e_{st}d_i = d_i e_{st} \) for \(t > s \) and three possibilities may occur: if \(d_i = d_j \neq 0 \), the \(e_{st} \) is real; if \(d_s = d_t = 0 \), \(e_{st} \) is arbitrary (though \(W = -W^T \) still holds); and if \(d_s \neq d_t \), then \(e_{st} = 0 \) for if \(e_{st} = a + ib \) then \((a + ib) d_i = d_i (a - ib) \) and \(a (d_i - d_j) = 0 \) implies that \(a = 0 \) and \(b (d_i + d_j) = 0 \) implies that \(d_i = -d_j \) (which is not possible since \(d_i \) are real and non-negative and \(d_s \neq d_t \) or \(b = 0 \) so \(e_{st} = 0 \).

So if \(UXU^T = (U_0X_0U_0^T) + (U_1X_1U_1^T)j = d_1 I_1 \oplus d_2 I_2 \oplus \ldots \oplus d_k I_k \) where \(\oplus \) denotes the direct sum, then
\[
UYU^T = (U_0Y_0U_0^T) + (U_1Y_1U_1^T)j = Y_1 \oplus Y_2 \oplus \ldots \oplus Y_k \) where \(Y_i = -Y_i^T \) is real and \(Y_k = -Y_k^T \) is quaternion if
and only if \(d_k = 0 \). For each real \(Y_s \) there exists a real orthogonal matrix \(V_s \) so that \(V_s Y_s V_s^T \) is a direct sum of zero matrices and matrices of the form

\[
\begin{bmatrix}
0 & b_1 + b_2 j \\
-b_1 - b_2 j & 0
\end{bmatrix}
\]

where \(b_1 \) and \(b_2 \) are real.

If \(Y_k = (Y_{0(k)} + Y_{1(k)}j) \) is quaternion, there exists a quaternion unitary matrix \(V_k = V_{0(k)} + V_{1(k)}j \) such that \(V_{0(k)} Y_{0(k)} V_{0(k)} + V_{1(k)} Y_{1(k)} V_{1(k)} \), \(Y_0 + Y_j \) is a direct sum of matrices of the same form, so that if \(V = V_1 \otimes V_2 \otimes \ldots \otimes V_k \), then \(V = V_0 + V_1j \), then \(VUXU^TV^T = (V_0 U_0 X_0 U_0^TV_0^T) + (V_1 U_1 X_1 U_1^TV_1^T) \) \(= D \) and \(VUUXU^TV^T = (V_0 U_0 Y_0 U_0^TV_0^T) + (V_1 U_1 Y_1 U_1^TV_1^T) j \) \(= F \) the direct sum described. Therefore, \(VUAU^TV^T = VU(X + Y)U^TV^T \) \(= [(V_0 U_0 X_0 U_0^TV_0^T) + (V_1 U_1 X_1 U_1^TV_1^T) j] + [(V_0 U_0 Y_0 U_0^TV_0^T) + (V_1 U_1 Y_1 U_1^TV_1^T) j] = D + F \) which is the desired form.

Properties of double representation of quaternion quasi-normal matrices:

If \(A_0 + A_1j \) and \(B_0 + B_1j \) are two quaternion quasi-normal matrices such that that \(AB^C = BA^C \), that is \(A_0 B_0^C - A_0 B_1^C j = B_0 A_0^C - B_0 A_1^C j \) then \(A_0 + A_1j \) and \(B_0 + B_1j \) can be simultaneously brought into the above quaternion normal form under the same \(U_0 + U_1j \) (with a generalization to a finite number) but not conversely; if \((A_0 + A_1j) \) is quaternion quasi-normal \(AA^C = A_0 A_0^C - A_0 A_1^C j \) is quaternion normal in the usual sense, but not conversely; and if \((A_0 + A_1j) \) is quaternion quasi-normal and \(AA^C \) is real, then there is a real orthogonal matrix which gives the above form.

Properties of double representation of quaternion quasi-normal matrices not obtained in this section but of subsequent use are the following:

a) \(A = A_0 + A_1j \) is both quaternion normal and quaternion quasi-normal matrices if and only if \(A_0 + A_1j = H_0 U_0 + H_1 U_1j \) so \(H = H_0 + H_1j = H_0^T + H_1^T j \) so that \(H \) is real.

b) If \(A_0 + A_1j = H_0 U_0 + H_1 U_1j = U_0^T H_0^T + U_1^T H_1^T j \) is quaternion quasi-normal matrices, then \(U_0 H_0 + U_1 H_1j \) is quaternion quasi-normal matrices, if and only if \(H_0 U_0^2 + H_1 U_1^2 j = U_0^2 H_0 + U_1^2 H_1j \), that is if and only if \(H_0 U_0^2 + H_1 U_1^2 j \) is quaternion normal.

For if \(U_0 H_0 + U_1 H_1j \) is quaternion quasi-normal matrices, \(U_0 H_0 + U_1 H_1j = H_0^T U_0 + H_1^T U_1j \) so that \(H_0 U_0^2 + H_1 U_1^2 j = U_0 H_0^T U_0 + U_1 H_1^T U_1j = U_0^T H_0 + U_1^2 H_1j \) and if \(H_0 U_0^2 + H_1 U_1^2 j = U_0^2 H_0 + U_1^2 H_1j \), then \(HUU \)

\[
H^T U = H_0^T U_0 + H_1^T U_1j = U_0 H_0 + U_1 H_1j = UH
\]

Theorem: 2

If \(A_0 + A_1j \) and \(B_0 + B_1j \) are quaternion quasi-normal matrices, then \(A_0 B_0 + A_1 B_1j \) is quaternion normal if and only if \(A_0^T A_0 B_0 - A_1^T A_0 B_1j = B_0^T A_0 A_0^T - B_0^T A_1 A_1^T j \) and \(A_0 B_0 B_0^T - A_0 B_1 B_1^T j = B_0^T B_0 A_0 - B_1^T B_1 A_1j \) (that is if and only if each is “quaternion normal relative to the other”).

Proof:
If $A_B^j + A_B^j$ is quaternion normal, from the above, $D = D_0 + D_1j$,
\[
D^CDB_2 = D_0^CDB_0(2) - D_1^DD_1(2)B_2^j = B_2^0D_0^CDB_0(2) - B_2^1D_1(2)B_1(2)D_1^C
\]
so that $F_0^CDB_0(0) - F_1^CDB_1(0)j$ or
\[
A_0^CDB_0(0) - A_1^CDB_1(0)j = B_0^0A_0^CT - B_1^1A_1^CT
\]
Similarly, since $DB_2 = D_0^B_0(2) + D_1^B_1(2)j$ is quaternion normal, \[
DB_2^CDB_2D^C =
\]
\[
D_0B_0^C(0) + B_1^CDB_2(2)B_2^C(2)j = B_2^0D_0^CDB_0(2) + B_2^1D_1(2)B_1(2)D_1^C
\]
so, $DB_2B_2^CT = D_0B_0^C(0) + B_1^CDB_2(2)B_2^C(2)j = B_2^0D_0^CDB_0(2) - B_2^1D_1(2)B_1(2)j$ or \[
F_0B_0^C(0) - F_1B_1^CDB_2(2)B_2^C(2)j = B_2^0B_0^C(0) - B_2^1B_1^CDB_2(2)B_2^C(2)j = B_2^0B_0^CT - B_2^1B_1^CTB_1j
\]
That is \[
ABB^CT = B^CT BA
\]
The converse is directly verifiable.

Double Representation Of Quaternion Quasi-Normal Products of Matrices:

It is possible if $A_B^j + A_B^j$ is quaternion normal and $B_0 + B_1j$ is quaternion quasi-normal that A_B^j is quaternion quasi-normal.

For example,

Any quaternion quasi-normal matrix $C = H_UU_0 + H_UU_1j = U_0H_U^T + U_1H_U^Tj$ is such a product with $A = A_0 + A_1j = H_0 + H_1j$ and $B_0 + B_1j = U_0 + U_1j$ or if $C = H_0U_0 + H_1U_1j = U_0H_0^T + U_1H_1^Tj$ and $A_0 + A_1j = H_0 + H_1j$ then \[
AC = (H_0 + H_1j)(H_0U_0 + H_1U_1j) = (H_0 + H_1j)(H_0U_0 + H_1U_1j) = (H_UU_0 + H_UU_1j)(H_U^T + H_U^Tj)
\]
\[
= U_0(H_U^T)^2 + U_1(H_U^T)^2j
\]
Therefore AC is quaternion quasinormal.

Theorem: 3

If $A = G_0W_0 + G_Wj = W_0G_0 + W_Gj$ is quaternion normal and $B = S_0V_0 + S_1V_1j = V_0S_0^T + V_1S_1^Tj$ is quaternion quasi-normal (where G_0, G_1, S_0, S_1 are hermitian and W_0, W_1, V_0, V_1 are unitary) then AB is quaternion quasi-normal if and only if $G_0S_0 + G_1S_1j = S_0G_0 + S_1G_1j, G_0V_0 + G_1V_1j = V_0G_0^T + V_1G_1^Tj$ and $W_0S_0 + W_1S_1j = S_0W_0 + S_1W_1j$.

Proof:

If the three relations hold, then \[
AB = G_0W_0S_0V_0 + G_1W_1S_1V_1j = G_0S_0W_0V_0 + G_1S_1W_1V_1j
\]
on one hand, and AB is quaternion quasi-normal, since $G_0S_0 + G_1S_1j$ is hermitian and $W_0V_0 + W_1V_1j$ is unitary.

Conversely, let $A = U_0^CD_0U_0 - U_1^CD_1U_1j = G_0W_0 + G_1W_1j$ and $B = U_0^CB_0^T + U_1^CB_1^TU_1j$ \[
=(U_0^CS_0U_0 - U_1^CS_1U_1j)(U_0^CV_0U_0 + U_1^CV_1U_1j) = V_0S_0^T + V_1S_1^Tj
\]
where $S_0(0), S_1(1)$ and $V_0(0), V_1(1)$ are hermitian and unitary and direct sums conformable to $B_0^T + B_1^TU_1j$.

A direct check shows that $G_0S_0 + G_1S_1j = S_0G_0 + S_1G_1j$ and $G_0V_0 + G_1V_1j = V_0G_0^T + V_1G_1^Tj$ also $W_0S_0 + W_1S_1j$ \[
= U_0^CD_0U_0 - U_1^CD_1U_1j = U_0^CK_0(0)U_0 - U_1^CK_1(1)U_1j = S_0W_0 + S_1W_1j
\]
Since
If \(A_0 + A_i j \) is quaternion normal, \(B_0 + B_i j \) is quaternion quasi-normal, and \(A_0B_0 + A_iB_i j = B_0A_0^T + B_iA_i^T j \), then

\[
W_0A_0W_0^T - W_0A_1W_1^T j = D_0 + D_1 j \quad \text{and} \quad W_0B_0W_0^T + W_1B_1W_1^T j = F_0 + F_1 j ,
\]

the quaternion normal form of Theorem 1, where \(W_0 + W_1 j \) is a quaternion unitary matrix; also \(A_0B_0 + A_iB_i j \) is quaternion quasi-normal.

Proof:

Let \(U_0A_0U_0^T - U_1A_1U_1^T j = D_0 + D_1 j \) quaternion diagonal and \(U_0B_0U_0^T + U_1B_1U_1^T j = B_0(2) + B_1(2) j \) which is quaternion quasi-normal. Then \(A_0B_0 + A_iB_i j = B_0A_0^T + B_iA_i^T j \), implies \(D_0B_0(2) + D_1B_1(2) j \).

\[
= U_0A_0U_0^T U_0B_0U_0^T - U_1A_1U_1^T U_1B_1U_1^T j \quad \text{is quaternion normal.}
\]

Let \(D_0 + D_1 j = C_1I_1 \oplus C_2I_2 \oplus \cdots \oplus C_mI_m \), where the \(C_p \) are quaternion and \(C_p \neq C_q \) for \(p \neq q \) and \(C_{(p)} \), \(C_{(q)} \), \(B_0(2) + B_1(2) j = C_1 \oplus C_2 \oplus \cdots \oplus C_m \). Let \(V_p \) be unitary such that \(V_0C_0V_0^T + V_1C_1V_1^T j = F_0(2) + F_1(2) j = \) the real quaternion normal form of Theorem 1, and let \(V_0 + V_1 j = V_1 \oplus V_2 \oplus \cdots \oplus V_m \). Then

\[
V_0U_0U_0^T V_0^T + V_1U_1U_1^T V_1^T j = D_0 + D_1 j . \quad \text{And} \quad V_0U_0U_0^T V_1^T + V_1U_1U_1^T V_0^T j = F_0 + F_1 j .
\]

Also \(A_0B_0 + A_iB_i j = B_0A_0^T + B_iA_i^T j \) implies that \(B_0^T A_0^T + B_i^T A_i^T j = A_0B_0^T + A_iB_i^T j \) and so

\[
A_0B_0^T A_0^T + A_iB_i^T A_i^T j = B_0A_0^T A_0^T + B_iA_i^T A_i^T j = B_0C_0C_0^T + B_iA_i^T A_i^T j .
\]

It is also possible for the product of two quaternion normal matrices \(A_0 + A_i j \) and \(B_0 + B_i j \) to be quaternion normal. Let \(Q_0 + Q_1 j = H_0U_0 + H_1U_1 j = U_0H_0^T + U_1H_1^T j \) is quaternion quasi-normal and if \(A_0 + A_i j = U_0 + U_1 j \) and

\[
B_0 + B_i j = H_0 + H_1 j \quad \text{this is so or if} \quad S_0V_0 + S_1V_1 j = V_0S_0^T + V_1S_1^T j \quad \text{is quaternion quasi-normal and if} \quad A_0 + A_i j = U_0S_0 + U_1S_1 j \quad \text{is quaternion normal with} \quad S_0 \quad \text{and} \quad S_1 \quad \text{are hermitian and}
\]

\[
V_0 + V_1 j \quad \text{is quaternion unitary for} \quad B_0 + B_i j \quad \text{we have} \quad A_0B_0 + A_iB_i j = (U_0S_0 + U_1S_1 j)(V_0 + V_1 j) = (S_0 + S_1 j)(U_0V_0 + U_1V_1 j) = U_0V_0S_0^T + U_1V_1S_1^T j \quad \text{is a quaternion quasi-normal.}
\]

But if in the first example \(U_0^2H_0 + U_1^2H_1 j \) is not quaternion normal, then \(H_0U_0 + H_1U_1 j \) is not quaternion normal. So that \(B_0A_0 + B_1A_i j \) is not necessarily quaternion quasi-normal though \(A_0B_0 + A_iB_i j \) is. When \(A_0 + A_i j \) alone is quaternion normal an analog of Theorem 2 can be obtained which states the following: If \(A_0 + A_i j \) is quaternion normal then

\[
A_0B_0 + A_iB_i j \quad \text{and} \quad A_0B_0^T + A_iB_i^T j \quad \text{are quaternion quasi-normal if and only if} \quad A_0B_0^T + A_iB_i^T j = B_0^T A_0B_0 + B_i^T A_iB_i j = A_0B_0^T + A_iB_i^T j \].
\]

(The proof is not included here because of its similarity to that above).
It is possible for the product of two quaternion quasi-normal matrices to be quaternion quasi-normal, but no such simple analogous necessary and sufficient conditions as exhibited above are available. This may be seen as follows. Two non-real quaternion commutative matrices \(X_0 + X_1 j \) and \(Y_0 + Y_1 j \) can form a quaternion quasi-normal (and non-real symmetric) matrix \(X_0 Y_0 + X_1 Y_1 j \) (such that \(Y_0 X_0 + Y_1 X_1 j \) is also quaternion quasi-normal) which need not be quaternion normal.

Then two symmetric matrices:

\[
X_0 + X_1 j = \begin{bmatrix}
i & 1+i \\
1+i & -i
\end{bmatrix},
Y_0 + Y_1 j = \begin{bmatrix}
1+2i & 3-4i \\
3-4i & -(1+2i)
\end{bmatrix}
\]

Are such that \(X_0 Y_0 + X_1 Y_1 j = Z_0 + Z_1 j \) is real, quaternion normal and quaternion quasi-normal (and not symmetric). Finally, if \(U_0 + U_1 j \) and \(V_0 + V_1 j \) are two quaternion unitary matrices of the same order, they can be chosen so \(U_0 V_0 + U_1 V_1 j \) is non-real quaternion, quaternion normal and quaternion quasi-normal.

If \(A_0 + A_1 j = (X_0 + X_1 j) + (S_0 + S_1 j) + (U_0 + U_1 j) \), \(B_0 + B_1 j = (Y_0 + Y_1 j) + (T_0 + T_1 j) + (V_0 + V_1 j) \). Then \(A_0 B_0 + A_1 B_1 j = (X_0 Y_0 + X_1 Y_1 j) + (S_0 T_0 + S_1 T_1 j) + (U_0 V_0 + U_1 V_1 j) \) where \(A_0 + A_1 j \) and \(B_0 + B_1 j \) are quaternion quasi-normal as in \(A_0 B_0 + A_1 B_1 j \) (but not symmetric).

A simple inspection of these matrices shows that relations on the order of \((B_0^T B_0^C)A_0 - (B_0^T B_1^C)A_1 j = (A_0^C B_0^T B_0^C - A_0^C B_1^T B_0^C)j \) do not necessarily hold; these are sufficient, however, to guarantee that \(A_0 B_0 + A_1 B_1 j \) is quaternion quasi-normal (as direct verification from the definition will show).

References:

