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ABSTRACT 
 

This system aiming two basic visual features, Brightness and color and to combine these two facts to 

maximize the reliability of boundary detection in natural scenes, we propose a new framework based on the 

color-opponent mechanisms of a certain type of color-sensitive double-opponent (DO) cells in the primary 

visual cortex of HVS(human visual system). Brightness and color are two basic visual features integrated by 

the human visual system (HVS) to gain a better understanding of color natural scenes. This type of DO cells 

has oriented receptive field with both chromatically and spatially opponent structure. The proposed framework 

is a feedforward hierarchical model, which has direct counterpart to the color-opponent mechanisms involved 

in from the retina to V1. In addition, we employ the spatial sparseness constraint (SSC) of neural responses to 

further suppress the unwanted edges of texture elements. Experimental results show that the DO cells we 

modeled can flexibly capture both the structured chromatic and achromatic boundaries of salient objects in 

complex scenes when the cone inputs to DO cells are unbalanced. Meanwhile, the SSC operator further 

improves the performance by suppressing redundant texture edges. With competitive contour detection 

accuracy, the proposed model has the additional advantage of quite simple implementation with low 

computational cost. 
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I. Introduction 

1.1 Boundary Detection 

Boundary detection characterize object boundaries 

and are useful features for segmentation, 

registration and object identification in scenes. Goal 

of boundary detection is Identify sudden changes or 

discontinuities in an image. Boundaries of object 

represent important role for visual perception such 

as scene understanding and object recognition [1]. 

Boundary detection is also a fundamental building 

block for a large variety of computer vision 

applications, such as image segmentation and object 

detection[2],[3]. However, most traditional edge 

detection methods usually extract edges by 

computing the abrupt change of local luminance.  

As a basic feature of external world, color 

information plays an important role in human visual 

perception such as shape and object recognition[6]. 

 

Fig.1.1 Examples showing that color boundaries are lost when 

ignoring color information. Color images and their boundary maps 

(the first and second column) provide more object information than 

gray-level images and their boundary maps (the third and last 

column). 
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From the perspective of engineering, color is also 

necessary for various image processing tasks, such 

as edge detection[5],[7], image segmentation, 

junction/corner detection[8]. Fig. 1 shows typical 

examples illustrating that some important contours 

of objects (e.g., flowers in the first column) in color 

images are lost in the gray-scale space, especially 

for those boundaries with only color contrast in 

regions of iso-luminance. 

 

II. Related Work 

2.1 Traditional Boundry Detetion System 

In order to detect boundaries from color images, 

many early studies focused on extending the 

standard edge detectors, such as Canny[4], to color 

space. These methods are inherently difficult to 

discriminate salient object boundaries and texture 

edges due that they respond to all the discontinuities 

in image intensity, color or texture. In recent 

decades, many new approaches have been 

developed for boundary detection in complex 

scenes. Typically, in the famous Pb method, Martin 

et al[5]. took into account multiple local cues (i.e., 

color, brightness, and texture) and combined these 

cues with certain learning technique to detect and 

localize the boundaries. Other learning-based 

methods tried to take multiple scales[9], more local 

features [10]or global information[2],[8] for better 

results. However, the performances of most 

learning-based methods mentioned above are 

dependent on the appropriate selection of training 

sets, which makes the methods inflexible for 

individual images. Furthermore, the high 

computational cost resulted from training needs to 

be carefully dealt with. 

 Another important issue is to make the 

salient contours pop out in cluttered scenes. There 

are mainly two classes of methods including 

contour grouping and texture suppression. Contour 

grouping methods usually integrate low-level 

elements produced by basic edge detectors into 

mid-level features. For example, Zhu et al. 

[12]proposed a contour grouping method with the 

topological formulation called Untangling Cycles. 

Ren et al [13]. presented a model to enforce the 

curvilinear continuity with Conditional Random 

Fields framework. By utilizing the Gestalt rules 

(i.e., good-continuation, proximity, contour-closure, 

etc.), existing methods introduced the local 

interactions between contour segments [14],[15] 

and global effect [16] to extract perceptually salient 

contours. Salient contours were also extracted by 

solving the min-cover problem [17] or building 

Ultrametric Contour Maps [2],[18]. Texture 

analysis methods have also been used to suppress 

the undesired textured edges while extracting 

boundaries. These detectors respond well to texture-

defined boundaries and are insensitive to unwanted 

edge segments within homogeneous textured 

regions. However, texton-based methods usually 

take high computational cost on multiple 

convolution operations and high-dimensional 

analysis. Recently, some more time-saving texture 

boundary detection algorithms have been proposed. 

For example, biologically inspired surround 

inhibition methods make texture boundaries pop out 

by suppressing the unwanted short edges 

surrounded by similar textured patterns [21],[22]. 

Hidayat et al. detected texture boundaries almost in 

real-time by extracting ridges in the standard 

deviation space [23]. 

2.1.2 Color Mechanisms in Early Visual System 

Color processing in the human visual system (HVS) 

progresses through a series of hierarchical steps 

[19],[26],[27]: after the light absorption by cone 

photoreceptors, cone activities are transmitted via 

horizontal cells, bipolar cells, etc, and then 

compared by cone-opponent retinal ganglion cells 

(RGCs); these color signals are transmitted via the 

Lateral Geniculate Nucleus (LGN) to the primary 

visual cortex (V1) and then higher cortical areas. 

One of the amazing properties in the early stages of 

HVS, i.e., retina → LGN → V1, is on the color 

coding, which can be summarized as follows:  

• Trichromacy: The first stage of color 

processing of HVS takes place in the photoreceptor 

layer of the retina. There are two types of 

photoreceptors: rods and cones, and cones are 

responsible for color vision. There exist three kinds 

of cone photoreceptors, namely L, M, and S cones, 
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which preferably absorb long, middle, and short 

wavelengths in a local spatial space, respectively. 

This is well known as trichromacy. As described in 

many other literatures, in the following the L-, M- 

and S-cones will be also referred to as red (R), 

green (G), and blue (B) cones, though each cone 

class does not specifically code the perception of a 

single color of R, G or B. • Color opponency. Many 

researchers have reported that color information is 

processed in the visual pathway in an opponent 

way, i.e., red versus green (red-green, or R-G) and 

blue versus yellow (blue-yellow, or B-Y) channels. 

Responses to the two colors of an opponent channel 

are antagonistic to each other, which makes 

opposite opponent colors never be perceived 

together. For example, there is no color like 

“greenish red” or “yellowish blue”. 

 

 

Fig.2.1 Color opponent cells 

The receptive fields of single-opponent cells of 

Type I (a) and Type II (b) in RGC and LGN levels, 

and double-opponent cells in V1 with concentric 

RF(c) and oriented double-opponent cells in V1 

with side-by-side spatially antagonistic regions with 

unbalanced cone weights (d). In the expression of 

“A+” or “B-”, the sign “+” and “-” denote the role 

of excitation and inhibition, respectively. Adapted 

from [19] and [20]. (e) An illustration to explain 

that the center-only RF of Type II in LGN is 

constructed by differencing two center-surround 

ganglion cells. 

• Color opponent cells: The RGCs or LGN 

cells have been found to have single-opponent (SO) 

receptive field (RF) and some kinds of cells in V1 

have double-opponent (DO) RF [19],[27]. There are 

mainly two types of singleopponent cells: Type I 

cells have center-surround opponent RF, and in 

contrast, Type II cells have center-only opponent 

RF. It has been found that these single-opponent 

cells come in four varieties, i.e., L-on/M-off (or 

L+M-), M-on/L-off (or M+L-), S-on/(L+M)-off (or 

S+(L+M)-), and (L+M)-on/S-off (or (L+M)+S-), 

where “on” and “off” correspond to the RF center 

and surround, respectively. In V1, the RF of DO 

neurons shows more complex properties. Their RFs 

are both chromatically and spatially opponent [28], 

which was considered as an important role in color 

scene understanding [25]. Especially, it has been 

reported that some DO neurons in V1 have 

concentric centersurround RF or side-by-side 

spatially oriented RFs. The DO cells with 

concentric RF were thought to be physiological 

building blocks of color constancy and color 

contrast, and our previous model has shown that 

such DO cells contribute to color constancy by 

coding the external light source color [29],[30]. 

Differently, the DO cells with oriented RF, which 

will be specifically modeled in this study, have 

been assumed to play crucial role in boundary 

detection in (color) natural scenes[31]. 

Physiological experiments indicated that the DO 

cells can respond well to color-defined boundaries 

when the cone weights are well balanced [20], and 

can respond sensitively to both achromatic and iso-

luminant gratings when the cone weights are 

unbalanced [19],[27]. 

III. Existing System 

 

3.1 Early System 

 

• Among numerous computational 

boundary detection, typical methods 

include: 

 

 Canny detector : 

This is probably the most widely 

used edge detector in computer 

vision Theoretical model: step-

edges corrupted by additive 

Gaussian noise Canny has shown 

that the first derivative of the 

Gaussian closely approximates the 

operator that optimizes the 

product of signal-to-noise ratio 

and localization 

   

Note about Matlab’s Canny 

detector 

Small errors in implementation: 
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Gaussian function not properly 

normalized 

First filters with a Gaussian, then 

a difference of Gaussian 

(equivalent to filtering with a 

larger Gaussian and taking 

difference). 

 Zero crossing 

 phase congruency 

 

• In these above methods, to detect 

boundaries from color images, many 

early studies focused on extending the 

standard edge detectors, such as Canny to 

color space. 

• However, most traditional edge detection 

methods usually extract edges by 

computing the abrupt change of local 

luminance. 

• The performances of most learning-based 

methods mentioned above are dependent 

on the appropriate selection of training 

sets. 

 

 

3.2 Limitations Of The Existing System 

The existing or traditional Boundary detection system 

has some limitations which can be overcome by 

adopting new methods. 

• These methods are inherently difficult to 

discriminate salient object boundaries and 

texture edges due that they respond to all 

the discontinuities in image intensity, 

color or texture. 

• Normally are not capable of 

distinguishing boundaries from abundant 

of textured edges. 

 
IV. Proposed System 

 

4.1 Proposed Work 

This new boundary detection system is based 

on the double-opponent (DO) mechanism and has the 

amazing property of jointly extracting color- and 

luminance-defined edges, which is really different from 

the two-step way of some existing models that 

explicitly extract the color and luminance edges in 

separate channels and then combine them. 

A new strategy of spatial sparseness constraint (SSC) 

was introduced to weight the edge responses of the 

proposed CO system, which provides a simple while 

efficient way for texture suppression. 

This system proposes a novel contour detection 

model based on the color-opponent mechanisms of the 

biological visual system by specifically simulating the 

DO cells with oriented RF. The new model includes 

three layers simulating the levels of retina, LGN, and 

V1 (Fig. 3). Particularly, in the last layer (Cortex layer), 

a pool of oriented DO cells with different preferred 

orientations is used at each location to extract 

boundaries by receiving the responses of SO LGN cells, 

followed by a max operator across all orientations to 

combine responses to boundaries in separate DO 

channels. Finally, we compute the maximum to 

combine the boundaries across all DO channels. To our 

knowledge, this work is the first attempt to introduce 

the DO mechanism of color-sensitive V1 cells with 

oriented RF, a very important group of cells in V1, for 

detecting boundaries. 

Second, this work also develops a new texture 

suppression method with spatial sparseness constraint 

(SSC). We suppress the neuronal responses to the edges 

in the local regions with low sparseness measure. This 

operator works well because the local regions 

containing (unwanted) regularly distributed textures 

tend to exhibit lower local sparseness measure, while 

the regions covering salient boundaries usually have 

high spatial sparseness in response. 

As briefly mentioned above, in this work, we 

simulate the biological mechanisms of color 

information processing along the Retina-LGN-Cortex 

visual pathway and propose a feedforward hierarchical 

system for boundary detection in real natural scenes by 

using only low-level local information. The results on a 

commonly used dataset will show that our model has 

the capacity of jointly detecting the color- and 

luminance-defined boundaries and efficiently 

suppressing textural edges. 

 

4.2.1 From Single- to Double-Opponent Processing 

Our framework shown in Fig. 3 is a 

feedforward hierarchical model including three layers, 

which correspond to the levels of retina, LGN, and V1 

of the visual system, respectively. Based on the 

physiological hypothesis that the two subregions of the 

RF of oriented DO cells resemble the RF of a Type II 

cell, we model that each DO V1 cell receives the 
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neuronal responses of two singleopponent LGN cells of 

Type II. In Fig. 3, we just show the computational steps 

in the R-G channel, and information processing along 

another channel of B-Y shares the similar 

computational steps. 

 

 
 

Fig.4.1 System Framework 

1) Cone Layer: At the layer of cone 

photoreceptors, the input color image is first 

separated into three components: Ir (x, y) for 

red (R), Ig(x, y) for green (G), and Ib(x, y) for 

blue (B), which are respectively sent into L, M, 

and S cones. In addition, when the information 

from the cones is passed forward via horizontal 

cells, bipolar cells, etc., to the retinal ganglion 

cells, the output layer of the retina, a yellow (Y) 

component is constructed by a kind of bipolar 

cells that receive both R and G cone signals, 

i.e., Iy (x, y) = 0.5(Ir (x, y) + Ig(x, y)), which 

will be then sent to the single-opponent 

ganglion cells of B-Y type. 

 

2) Ganglion/LGN Layer: 

 The majority of ganglion cells in retina have 

center-surround RFs, which send information to 

LGN, a place that is widely regarded as a relay 

center between the retina and V1. Many 

physiological findings reveal that the ganglion 

and LGN cells have similar RF properties (e.g., 

single-opponent), and the main difference is 

that LGN cells have relatively larger RFs. 

Meanwhile, physiological studies have also 

reported that Type II cells with center-only RFs 

do exist in the dorsal layers of LGN, though 

they are in the minority. It has been suggested 

that the RF of a Type II LGN cell could be 

constructed by differencing two center-surround 

SO ganglion cells. Based on this idea, we unify 

the ganglion and LGN layers into a single 

processing by center-only LGN cells. 

3) Cortex Layer:  

In the cortex layer of V1, the RFs of most color- 

and color-luminance-sensitive neurons are both 

chromatically and spatially opponent. 

Mathematically, the DO RF with two side-by-

side spatially antagonistic regions can be 

modeled using the first-order (partial) derivative 

of a two-dimensional (2D) Gaussian. 

4.2.2 Spatial Sparseness Constraint for 

Texture Suppression 

  Here we propose a new method to suppress the 

responses to unwanted textures by introducing 

the spatial sparseness constraint (SSC). It has 

been well recognized that our visual system 

represents the natural scenes with a quite 

efficient style, such as sparse coding [32], [33]. 

Sparse coding models have been used to 

account for the responsive properties of V1 

neurons [33], [34]. From the perspective of 

engineering, sparse features have been trained 

to discriminate contours of objects [11]. In 

specific, Alpert et al. [35] employed the 

sparseness measure proposed in [36] to 

distinguish the textured and non-textured 

regions based on the assumption that the non-

textured regions are fairly sparse. In order to 

narrow the unexpected spreading of high 

sparseness measure around the true boundaries, 

here we improve the computation of sparseness 

by introducing spatial information. Similar as 

Alpert et al.[35], we assume that the textured 

regions are far from sparse, with a low 

probability of containing wanted boundaries, 

considering the observation that the textured 

regions are often characterized by strong 

responses to edges at various orientations and 

scales [24]. Our strategy is as follows. 

http://www.ijcrt.org/


www.ijcrt.org                                   © 2018 IJCRT | Volume 6, Issue 1 February 2018 | ISSN: 2320-2882 

IJCRT1802166 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1298 

 

 

 

 
Fig. 4.2. The computation of texture suppression with 

SSC 

 

 
For each location (x, y) of the boundary 

response, we compute the spatial sparseness 

measure of boundary response based on the 

information within a local window centered at 

(x, y). Fig. 5 illustrates the steps of sparseness 

computation. In this work, we define a square 

window with a size of η2 × η2 pixels for the 

computation of spatial sparseness at each 

location. This window is further combined into 

η × η sub-patches with the size of η × η pixels, 

and the mean response magnitude is obtained 

for each sub-patch. Finally, the totally η2 mean 

magnitude values are arranged into a one-

dimensional vector denoted by _H (x, y). Then, 

μrg(x, y), the new sparseness measure of 

location (x, y), is obtained by 

μrg(x, y) = λ(x, y) · sparseness(x, y; _H) 

λ(x, y) = min (1,_Drg(x, y; σ)/mean{ _H (x, y)}) 

where mean{ _H (x, y)} denotes the mean value 

of the elements of _H (x, y), which is equivalent 

to the mean response within the local window. 

Hence, λ(x, y) is a factor that acts to weight the 

sparseness measure of certain location based on 

the distribution of neuronal responses within its 

local region. The operator min(·) makes λ(x, y) 

≤ 1, indicating that λ(x, y) acts only to reduce 

the sparseness measure if necessary. 
 
4.3 Basic Properties of the Proposed 

Approach 

To begin with, we evaluate the effect of the 

cone weights shown as w in Fig. 7 on the 

performance of the proposed model. 

 

 

 
Fig. 4.3 The full steps of the proposed system 

 

 

 
V. Experiment Result 

Results of this experiment is shown in following 

figure.We also evaluated the influence of SSC. 

Figs. 6 to 10 shows that the overall performance 

is improved when modified sparseness measure 

is used in SSC. That is, our both versions of 

modified SSC outperform the original sparseness 

measure, which has negligible contribution to 

performance. 

 

 
Fig. Original Image 
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Fig.9.image with single Opponency and their boundary 

maps. 

 
Fig.10. Final image with Double Opponency and their 

boundary maps. 

 

5.1 Advantages Of Proposed System 

• Competitive performance for edge 

detection and texture suppression with only 

low-level local information. 

• Flexibility in responding to color- and 

luminance-defined boundaries.  

• As few as only one free parameter (i.e., 

cone weight) (the model is almost 

insensitive to another parameter, Gaussian 

scale σ). 

• Quite low computational cost. 

• A new strategy of spatial sparseness 

constraint (SSC) was introduced to weight 

the edge responses of the proposed CO 

system, which provides a simple while 

efficient way for texture suppression. 

 
VI. Conclusion 

This mechanism proposed a novel way for the 

challenging task of detecting salient boundaries in 

complex color scenes, inspired by the information 

processing mechanisms emerging in the early visual 

stages. In specific, the SO ganglion cells function to 

enhance region information, and the oriented DO cells 

in V1 serve to detect the boundaries among regions. 

The main novelty of the work is summarized as 

follows. (a) Our new boundary detection system is 

based on the double-opponent (DO) mechanism and 

has the amazing property of jointly extracting color- and 

luminance-defined edges, which is really different from 

the two-step way of some existing models that 

explicitly extract the color and luminance edges in 

separate channels and then combine them, e.g., with a 

supervised learning. (b) A new strategy of spatial 

sparseness constraint (SSC) was introduced to weight 

the edge responses of the proposed CO system, which 

provides a simple while efficient way for texture 

suppression. The main merits of the proposed SCO 

model include: (a) competitive performance for edge 

detection and texture suppression with only low-level 

local information; (b) flexibility in responding to color- 

and luminance-defined boundaries; (c) as few as only 

one free parameter (i.e., cone weight w) (the model is 

almost insensitive to another parameter, Gaussian scale 

σ); (d) quite low computational cost. 

 

VII. References 

 
[1] D. B. Walther, B. Chai, E. Caddigan, D. M. Beck, 

and L. Fei-Fei, “Simple line drawings suffice for 

functional MRI decoding of natural scene categories,” 

Proc. Nat. Acad. Sci., vol. 108, no. 23, pp. 9661–9666, 

2011. 

[2] P. Arbeláez, M. Maire, C. Fowlkes, and J. Malik, 

“Contour detection and hierarchical image 

segmentation,” IEEE Trans. Pattern Anal. Mach Intell., 

vol. 33, no. 5, pp. 898–916, May 2011. 

[3] G. Papari and N. Petkov, “Edge and line oriented 

contour detection: State of the art,” Image Vis. Comput., 

vol. 29, nos. 2–3, pp. 79–103, 2011. 

[4] J. Canny, “A computational approach to edge 

detection,” IEEE Trans Pattern Anal. Mach. Intell., vol. 

PAMI-8, no. 6, pp. 679–698, Nov. 1986. 

http://www.ijcrt.org/


www.ijcrt.org                                   © 2018 IJCRT | Volume 6, Issue 1 February 2018 | ISSN: 2320-2882 

IJCRT1802166 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1300 

 

[5] D. R. Martin, C. C. Fowlkes, and J. Malik, 

“Learning to detect natural image boundaries using 

local brightness, color, and texture cues,” IEEE Trans. 

Pattern Anal. Mach. Intell., vol. 26, no. 5, pp. 530–549, 

May 2004. 

[6] S. K. Shevell and F. A. Kingdom, “Color in 

complex scenes,” Annu. Rev. Psychol., vol. 59, pp. 

143–166, Jan. 2008. 

[7] M. A. Ruzon and C. Tomasi, “Edge, junction, and 

corner detection using color distributions,” IEEE Trans. 

Pattern Anal. Mach. Intell., vol. 23, no. 11, pp. 1281–

1295, Nov. 2001. 

[8] M. Maire, P. Arbeláez, C. Fowlkes, and J. Malik, 

“Using contours to detect and localize junctions in 

natural images,” in Proc. IEEE CVPR, Jun. 2008, pp. 

1–8. 

[9] X. Ren, “Multi-scale improves boundary detection 

in natural images,” in Proc. ECCV, 2008, pp. 533–545. 

[10] P. Dollar, Z. Tu, and S. Belongie, “Supervised 

learning of edges and object boundaries,” in Proc. IEEE 

CVPR, vol. 2. Jun. 2006, pp. 1964–1971. 

[11] X. Ren and L. Bo, “Discriminatively trained sparse 

code gradients for contour detection,” in Proc. NIPS, 

2012, pp. 593–601. 

[12] Q. Zhu, G. Song, and J. Shi, “Untangling cycles for 

contour grouping,” in Proc. IEEE 11th ICCV, Oct. 

2007, pp. 1–8. 

[13] X. Ren, C. C. Fowlkes, and J. Malik, “Scale-

invariant contour completion using conditional random 

fields,” in Proc. 10th IEEE ICCV, vol. 2. Oct. 2005, pp. 

1214–1221. 

[14] R. Kennedy, J. Gallier, and J. Shi, “Contour cut: 

Identifying salient contours in images by solving a 

Hermitian eigenvalue problem,” in Proc. IEEE CVPR, 

Jun. 2011, pp. 2065–2072. 

[15] S. Mahamud, L. R. Williams, K. K. Thornber, and 

K. Xu, “Segmentation of multiple salient closed 

contours from real images,” IEEE Trans Pattern Anal. 

Mach. Intell., vol. 25, no. 4, pp. 433–444, Apr. 2003. 

[16] Y. Ming, H. Li, and X. He, “Connected contours: 

A new contour completion model that respects the 

closure effect,” in Proc. IEEE CVPR, Jun. 2012, pp. 

829–836. 

[17] P. Felzenszwalb and D. McAllester, “A min-cover 

approach for finding salient curves,” in Proc. Comput. 

Vis. Pattern Recognit. Workshop (CVPRW), Jun. 2006, 

p. 185. 

[18] P. Arbelaez, “Boundary extraction in natural 

images using ultrametric contour maps,” in Proc. 

Comput. Vis. Pattern Recognit Workshop (CVPRW), 

Jun. 2006, p. 182. 

[19] B. R. Conway et al., “Advances in color science: 

From retina to behavior,” J. Neurosci., vol. 30, no. 45, 

pp. 14955–14963, 2010. 

[20] S. G. Solomon and P. Lennie, “The machinery of 

colour vision,” Nature Rev. Neurosci., vol. 8, no. 4, pp. 

276–286, 2007. 

[21] C. Grigorescu, N. Petkov, and M. A. Westenberg, 

“Contour detection based on nonclassical receptive field 

inhibition,” IEEE Trans. Image Process., vol. 12, no. 7, 

pp. 729–739, Jul. 2003. 

[22] K.-F. Yang, C.-Y. Li, and Y.-J. Li, “Multifeature-

based surround inhibition improves contour detection in 

natural images,” IEEE Trans. Image Process., vol. 23, 

no. 12, pp. 5020–5032, Dec. 2014. 

[23] R. Hidayat and R. D. Green, “Real-time texture 

boundary detection from ridges in the standard 

deviation space,” in Proc. BMVC, 2009, pp. 1–10. 

[24] J. Malik and P. Perona, “Preattentive texture 

discrimination with early vision mechanisms,” J. Opt. 

Soc. Amer. A, vol. 7, no. 5, pp. 923–932, 1990. 

[25] J. Zhang, Y. Barhomi, and T. Serre, “A new 

biologically inspired color image descriptor,” in Proc. 

ECCV, 2012, pp. 312–324. 

[26] K. R. Gegenfurtner, “Cortical mechanisms of 

colour vision,” Nature Rev. Neurosci., vol. 4, no. 7, pp. 

563–572, 2003. 

[27] R. Shapley and M. J. Hawken, “Color in the 

cortex: Single- and double-opponent cells,” Vis. Res., 

vol. 51, no. 7, pp. 701–717, 2011. 

[28] E. N. Johnson, M. J. Hawken, and R. Shapley, 

“The orientation selectivity of color-responsive neurons 

in macaque V1,” J. Neurosci., vol. 28, no. 32, pp. 

8096–8106, 2008. 

[29] S. Gao, K. Yang, C. Li, and Y. Li, “A color 

constancy model with double-opponency mechanisms,” 

in Proc. IEEE ICCV, Dec. 2013, pp. 929–936. 

[30] S. Gao, K. Yang, C. Li, and Y. Li, “Color 

constancy using doubleopponency,” IEEE Trans. 

Pattern Anal. Mach. Intell., Jan. 2015. 

[31] E. N. Johnson, M. J. Hawken, and R. Shapley, 

“The spatial transformation of color in the primary 

visual cortex of the macaque monkey,” Nature 

Neurosci., vol. 4, no. 4, pp. 409–416, 2001. 

[32] B. A. Olshausen and D. J. Field, “Emergence of 

simple-cell receptive field properties by learning a 

sparse code for natural images,” Nature, vol. 381, no. 

6583, pp. 607–609, 1996. 

http://www.ijcrt.org/


www.ijcrt.org                                   © 2018 IJCRT | Volume 6, Issue 1 February 2018 | ISSN: 2320-2882 

IJCRT1802166 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1301 

 

[33] M. Zhu and C. J. Rozell, “Visual nonclassical 

receptive field effects emerge from sparse coding in a 

dynamical system,” PLoS Comput. Biol., vol. 9, no. 8, 

p. e1003191, 2013. 

[34] M. W. Spratling, “Image segmentation using a 

sparse coding model of cortical area V1,” IEEE Trans. 

Image Process., vol. 22, no. 4, pp. 1631–1643, Apr. 

2013. 

[35] S. Alpert, M. Galun, A. Brandt, and R. Basri, 

“Image segmentation by probabilistic bottom-up 

aggregation and cue integration,” IEEE Trans. Pattern 

Anal. Mach. Intell., vol. 34, no. 2, pp. 315–327, Feb. 

2012. 

[36] P. O. Hoyer, “Non-negative matrix factorization 

with sparseness constraints,” J. Mach. Learn. Res., vol. 

5, pp. 1457–1469, Dec. 2004. 

http://www.ijcrt.org/

