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Abstract :  Frequent Item mining is the significance of data mining techniques to define patterns from the Big datasets.  Frequent Itemset Mining is 

one of the predictable data mining problems in most of the data mining applications. It comprises very large reckonings and Input/output traffic 

capacity. Also resources like single processor’s memory and CPU are very incomplete, which lowers the functioning of algorithm. In this exploration 

broadsheet aims to present a EFPGSID (Enhanced Frequent Pattern Growth Skewed intermediate data blocks), a parallel Frequent item mining 

algorithm based on the Spark RDD (Resilient Distributed Datasets) framework—a specially-considered in-memory parallel computing framework to 

backing load blanching algorithms and interactive data mining. The outcomes shown that the performance of the new system is effective compared 

with other FiDoop-DP mining algorithms. As the Investigational results show, Enhanced-FP-Growth with load balancing strategy clearly outperforms 

FP-Growth and FiDoop-DP. It is faster than FP-Growth and is not expensive like FP-tree. 

 

IndexTerms - Frequent itemset mining, parallel data mining, data partitioning, Apache Spark model, hadoop cluster 

I. INTRODUCTION 

Data mining is a method to recognize and exchange raw data into valuable information, is increasingly being used in a mixture of fields 

like business intelligence, marketing, scientific discoveries, biotechnology, multimedia and Internet searches. Data mining is an 

interdisciplinary field merging concepts from machine learning, statistics and natural language processing. 

 

Advances in computing and networking technologies have resulted in many distributed computing environments. The several 

distributed data sets allow large-scale data-driven knowledge discovery to be used in science, business, and medicine. Data mining in 

such environments requires a utilization of the available resources. Conventional data mining algorithms are developed with the 

assumption that data is memory resident, making them unable to cope with the exponentially increasing size of data sets. Therefore, the 

use of parallel and distributed systems has gained significance. 

 

Generally, parallel data mining algorithms work on tightly coupled custom-made shared memory systems or distributed-memory 

systems with fast interconnects. The main differences between such algorithms are scale, communication costs; interconnect speed, and 

data distribution. MapReduce is an emerging programming model to write applications that run on distributed environments. Several 

implementations such Apache Hadoop are currently used on clusters of tens of thousands of nodes [1]. This thesis focuses on Spark with 

Hadoop MapReduce design and the implementation of two new data mining techniques relating to enhanced frequent item mining and 

load balancing in Spark computing environment. This trend to use distributed, complex, heterogeneous computing environments has 

given rise to a range of new data mining research challenges. This work explores the different methods and trade-offs when designing 

and implementing distributed data mining algorithms. On the whole, it deliberates data partition/replication and workload dispersion and 

data formats. Also, this work objects to investigate the hardware utilization when running Spark MapReduce algorithms on the 

infrastructure. This helps to study the behavior of algorithms on simulated large clusters. This helps rapid optimizing and rapid developing 

efficient algorithms that use the spark load balancing framework. 

  

Apache Spark is an open source cluster computing environment that supports in-memory distributed datasets enhancing iterative 

process runs. Spark was developed at the University of California Berkeley, Algorithms Machines and People Lab to build large-scale 

and low-latency data analytics applications. [2] 

 

Spark is employed in the Scala language. Spark and Scala are tightly assimilated, that makes Scala the proficiency to easily deploy 

distributed datasets as local objects. Spark was intended for a specific type of jobs in cluster computing that reprocess a working set of 

data across the parallel operations. As an optimization for these types of jobs, Spark developers introduced the concept of in-memory 

cluster computing, where it is possible to cache the datasets in memory to reduce their latency of access [2]. 
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Spark established an abstraction named resilient distributed datasets (RDD). Those datasets are read-only object groups that are 

allocated across the nodes. One can create RDDs by applying operations called transformations, such as map, filter and groupBy, to the 

data in a stable storage system, such as the Hadoop Distributed File System (HDFS). As an example the following Spark code counts the 

words in a text file: 

 

JavaRDD<String> file = spark.textFile("hdfs://..."); 

JavaRDD<String> words = file.flatMap(new FlatMapFunction<String, String>() 

public Iterable<String> call(String s) { return Arrays.asList(s.split(" "));} }); 

JavaPairRDD<String, Integer> pairs = words.map(new PairFunction<String, String, Integer>() 

public Tuple2<String, Integer> call(String s) { return new Tuple2<String, Integer>(s, 1);} }); 

JavaPairRDD<String, Integer> counts = pairs.reduceByKey(new Function2<Integer, Integer>() 

public Integer call(Integer a, Integer b) { return a + b; } }); 

counts.saveAsTextFile("hdfs://..."); 

 
 

II. RELATED WORK 
In [3] authors conferred a data mining has been widely distinguished as a powerful tool to reconnoiter added value from across-the-

board databases. One of data mining techniques, generalized association rule mining with taxonomy, is potential to determine more useful 

knowledge than ordinary flat association rule mining by taking application specific information into account. As discussed the pattern 

growth mining paradigm based FP-tax algorithm, which make use of a tree structure to compress the database. Two methods to traverse 

the tree structure are examined: Bottom-Up and Top-Down. 

 

In [4] authors provided a MapReduce is a programming model  used for processing and producing large data sets. Users specify a 

map function that processes a key/value pair to generate a set of intermediate key/value pairs, and a reduce function that bring together 

all intermediate values associated with the same intermediate key. Many real world chores are expressible in this model, as revealed in 

the paper. Programs scripted in this functional style are instinctively parallelized and implemented on a large cluster of commodity 

machines. The run-time system ensure  the details of segregating the input data, slating the program’s performance across a set of 

machines, overseeing machine letdowns, and handling the requisite inter-machine communication. This tolerates programmers without 

any proficiency with parallel and distributed systems to easily exploit the resources of a large distributed system. The execution of 

MapReduce runs on a large cluster of commodity machines and is highly scalable. A distinctive MapReduce reckoning processes many 

terabytes of data on thousands of machines. 

In [5] authors proposed an inclusive survey for a family of methodologies and mechanisms of large scale data processing mechanisms 

that have been implemented based on the original idea of the MapReduce framework and are currently gaining a lot of drive in both 

research and industrial communities. It also conceals a set of introduced systems that have been applied to provide declarative 

programming interfaces on top of the MapReduce framework. At the same time, authors assessed several outsized data processing systems 

that bear a resemblance to some of the ideas of the MapReduce framework for different purposes and application scenarios. Lastly, they 

conversed some of the upcoming research directions for implementing the next generation of MapReduce-like solutions. 

 

In [6] authors provided Many parallelization techniques have been projected to enrich the performance of the Apriori-like frequent 

itemset mining algorithms, described by both map and reduce functions. MapReduce has shape up and shines in the mining of datasets 

of terabyte scale or larger in either homogeneous or heterogeneous clusters. Minimizing the scheduling overhead of each map-reduce 

phase and maximizing the deployment of nodes in each phase are roots to successful MapReduce implementations. In investigation report, 

authors suggested three algorithms, named SPC, FPC, and DPC, to explore efficient implementations of the Apriori algorithm in the 

MapReduce framework. DPC showcases in dynamically combining candidates of various lengths and overtakes both the straight-forward 

algorithm SPC and the fixed passes combined counting algorithm FPC. Wide spread assessment outcomes also show that all the three 

algorithms scale up linearly with respect to dataset sizes and cluster sizes. 

 

In [7] authors considered a Traditional Association Rules algorithm has computing power scarcity in dealing with enormous datasets. 

So as to overcome these problems, a distributed association rules algorithm grounded on MapReduce programming model named MR-

Apriori is suggested. In investigation report, authors bring together the MapReduce programming model of Hadoop platform and Apriori 

algorithm of data mining, which recommends the detailed procedure of MR-Apriori algorithm. Speculative and experimental results show 

MR-Apriori algorithm make a sharp increase in efficiency. 

 

In [8] authors proposed Frequent itemset mining (FIM) plays an vital role in mining associations, correlations and many other important 

data mining tasks. Regrettably, as the size of dataset gets larger day by day, most of the FIM algorithms in literature become frutile due 

to either too enormous resource requirement or too much communication cost. In investigation report, authors suggested a balanced 

parallel FP-Growth algorithm BPFP, established on the PFP algorithm, which parallelizes FP-Growth in the MapReduce approach. BPFP 
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adds into PFP load balance feature, which enhances parallelization and thereby improves execution. From end to end experimental study, 

BPFP overtook the PFP which uses some simple grouping strategy. 

III. RESEARCH METHODOLOGY 

In experimentation report, we have proposed a new Enhanced FP-Growth with load balancing strategy for frequent item mining in 

large scale data. The proposed workflow accepts the simulation parameters as input which contains the SPARK 1.6.0 with HADOOP 2.6 

version where the optimal Enhanced FP-Growth with load balancing strategy is applied to the IBM Quest Data Set. This overall proposed 

architecture in figure 1 follows a procedure form start to end state.  

3.1.Data Cleaning 

Data cleaning or data preprocessing is a data mining technique that accomplishes transforming raw data into a reasonable format. The 

real-world data is frequently partial, conflicting, and/or lacking in confident behaviors or trends, and is expected to contain many errors. 

Data preprocessing is a recognized method of ascertain such issues. Data preprocessing formulates raw data for further processing. 

 

Preprocessing alters the data into an arrangement that will be more without difficulty and efficiently processed for the point of the user. 

In the real world, data are forever accompanied by noisy, incomplete or inconsistent problems which would be switched in data cleaning 

process. Data may be missing because of missing group, replica records or problematic equipment. Missing data can be overlooked, filled 

in physically or automatically with a inclusive constant. Noisy data refers to data with unsystematic error or variance in a calculated 

variable. It may be caused during the data collection or transportation step or because of dissimilar position or alternative spellings. To 

resolve this problem, the binning method is which means categorization data and separation them in equivalent frequently bins and then 

can smooth bins by means, median or smooth boundaries.  

 

Identify outliers and smooth noisy data 

 Clustering: Cluster feature values in clusters then detect and remove outliers; 

 Binning: sort the attribute values and partition them into bins; 

 Regression: smooth data by using regression functions. 

 

 
 

Fig. 1: Proposed Architecture 

3.2.Dynamic Itemset Counting 

Dynamic Itemset Counting (DIC) is to hustle up the detection of frequent itemsets in a big database. DIC divides the database into a 

number of partitions marked by initial points. Then, it determines the supports of all itemsets counted so far, dynamically adding new 

candidate itemsets whenever their subsets are ascertained to be frequent, even if their subsets have not yet been seen at all transactions. 
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The main dissimilarity between DIC and frequent pattern mining is that whenever a candidate itemset reaches the support during a 

particular scan, DIC starts producing additional candidate itemsets based on it, without waiting to complete the scan as FP-Growth does. 

To accomplish the dynamic candidate itemsets generation, DIC employs a prefix-tree where each item counted so far is associated with 

a node. 

 

DIC deliberated numerous ways of addressing this problem:  

 

 Virtually randomize the data: That is, call the file in a random order while creation certain that each pass is in the alike order. 

This can warrant a high seek cost, predominantly if the data is on tape. In this case, it may be adequate to bound to a new position 

every few thousand transactions or so.  

 Loosen the support value: First, start with a support threshold (mean and trial error method) drastically lower than the given 

one. Then, deliberately boost the threshold to the obligatory level. This way, the algorithm starts fairly conventional and then 

becomes more positive as more data is collected. However, perhaps more careful control of the slack or a dissimilar dataset 

would make this a useful technique. 

 One thing to note is that if the data is simultaneous with its position in the input file, it may be constructive to notice this and 

report it. This is possible if a “neighbourhood” counter is kept along with each itemset which process the count of the present 

interval. At the end of each interval it can be checked for considerable discrepancies with its overall support in the whole data 

set. 

3.3.Enhanced Fp-Growth Mining Process 

The EFP-growth uses three Spark MapReduce phases to parallelize FP-Growth. 

 

Step 1: Dividing Database (DB) into succeeding parts (sub-datsets), every part identical size according to the transaction numbers, and 

accumulating the parts on N different computers nodes. Use Parallel Counting algorithm to calculate the support values of all items 

which is appear in DB, and then each sub-datasets will be entered in a particular mapper. The end result is stored in Enhanced Frequent 

list (EF-List), Algorithm 1 shows the Parallel Counting algorithm, For each item, a ∈ T, the a key-value pair will be the results of the 

mapper (key =a , value= 1). After all mapper samples have completed, for each key produced by the mappers, the MapReduce framework 

collects the set of parallel values and feed the reducers with key-value pairs (key, List (key)). 

 

Algorithm 1: Parallel Counting 

Procedure: Spark Mapper (key, value = Ti) 

For each item ai in Ti do  

Call output (<key = ai, value =‘1’); 

End for 

End Procedure 

Procedure: Spark Reducer (key= ai, value=list(ai)) 

C 0; 

For each item ‘1’ in list(ai) do 

C C+1; 

End for  

Call Output (key = null, value=ai+C>); 

End Procedure 

  

The reducer thus basically outputs (key = null, value= key + sum (List (key))). It is simple to observe that key is an item and value is 

sup (key). 

Step 2: Clustering Items: Partitioning whole items (I) into groups (G) which are positioned in EF-List. The concluding obtained list of 

groups is called Grouplist (G-list), where every group is known an Index EF-list (Id). As EF-list and G-list are both little and the time 

complexity is O(|I|), this step can inclusive on a single computer in few seconds. 

Step 3: Enhanced FP-Growth process work process collecting one MapReduce passes, where the map and reduce phases are executed 

in different significant functions: 

Spark Mapper – Each spark mapper samples are placed with a sub-datasets created in Step 1. Ahead of it procedures transactions in 

the sub-datasets individual by individual, it interprets the G-list through step 2. The mapper algorithm results will be one or more key-

value pairs, where each key includes an Id and its corresponding value respected a generated group-dependent transaction. 

Spark Reducer – While all mapper samples have completed their work, the MapReduce framework repeatedly clusters all parallel 

group-dependent transactions, for every Id, into a sub datasets of group-dependent transactions. Each reducer sample is allocated to 

process one or more group-dependent sub-datasets one by one. For every sub-datasets, the reducer sample constructs a local EFP-tree 

and EFP-growth its provisional FP-trees recursively. During the recursive process, it may output discovered patterns 
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Step 4: collecting the results which are produced in Step.3 as last Enhanced frequent itemsets. 

3.4.Load Balancing Skewed Intermediate Data Blocks Algorithm 

The load balancing skewed intermediate data blocks model (i.e., splitting and combination), for quantifying the sizes of the clusters 

received by a bucket with considering the effect of data skew, some initial and intermediate objects with their relationships can be 

formalized as follows. As cluster is the collection of key/value tuples with a same key, the overall clusters can be formalized as a set C 

in: 

 

C = {C1, C2, …, Ci, …, Cm}, 1≤ i ≤ m      eqn. (1) 

 

where m is the number of clusters. Ci is a structure, which can be formalized as Ci = {order, SC}, where Ci.order records the initial 

order number of this cluster, and SC can be expressed as a separate sequence in: 

 

SC = {SC1, SC2, …, SCi, …, SCm}, 1≤ i ≤ m      eqn. (2) 

 

where SCi is an integer which denotes the data size of a specific cluster. 

 

And current buckets in the system can be formalized as a set B in Eq. (3): 

 

B = {B1, B2, …, Bk, …, Bn}, 1≤ k ≤ n      eqn. (3) 

 

where n is the number of the buckets. To record the number of key/value tuples in each cluster Ci, this model proposes a set SC to 

simplify this problem, which is shown in Equation (2). 

 

In this proposed framework presents a reservoir sampling method for higher accuracy to estimate the inner structure of large input 

data in the Spark framework. As a typical random sampling method, with the random data replacement policy in the sampling zone, 

this algorithm can achieve a much better approximation to the distribution of intermediate data. For sampling is with a small percentage 

of the input data, this experimentation report prioritizes the execution of sampling job over the normal map tasks in order to achieve the 

distribution statistics. 

IV. SIMULATION RESULTS 

The simulation studies work has been evaluated the performance of Enhanced FP-Growth mining with load balancing strategy in-

house Spark 1.6.0 Hadoop 2.6 cluster equipped with data nodes. Each node has an Intel I5-6500 series 3.20 GHz 4 core processor, 8GB 

main memory, and runs on the Windows operating system, on which Java JDK 1.8.0_20 and Spark1.6.0 with inbuild Hadoop 2.6 are 

installed. The hard disk of NameNode is configured to 100 GB; and the capacity of disks in each Data- Node is 1 TB. 

 

To evaluate the performance of the proposed EFPGSID (Enhanced Frequent Pattern Growth Skewed intermediate data blocks), We 

generate synthetic datasets using the IBM Quest Market-Basket Synthetic Data Generator [9], which can be flexibly configured to create 

a wide range of data sets to meet the needs of various test requirements. The parameters’ traits of our dataset are recapped in Table 1. 

 

Table1: Input IBM Quest Market-Basket Synthetic Data 

 

Parameters Average 

Length 

#Items Avg.Size/Transaction 

T10I4D 10 4000 17.5B 

T40I10D 40 10000 31.5B 

T60I10D 60 10000 43.6B 

T85I10D 85 10000 63.7B 

 

In this experiment study, table 2 compare the performance of Running Time of the testing datasets. 

 

Running Time =
𝑃𝑟𝑜𝑐𝑒𝑠 𝐸𝑛𝑑 𝑡𝑖𝑚𝑒

𝑃𝑟𝑜𝑐𝑒𝑠𝑠 𝑆𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒
∗ 1000    eqn.(4) 

 

Table 2: Running time comparison repercussion of the number of pivots on EFPGSID, FiDoop-DP and Pfp. 
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Methods 20 60 100 140 180 

Pfp 18 14 20 22 30 

FiDoop-DP 14 13 16 18 26 

EFPGSID 12 11.5 15 16 24 

 

 
 

Figure 2: Running time Repercussion of the number of pivots on EFPGSID, FiDoop-DP and Pfp. 

 

In table 3 represents the performance of Mining Cost of the testing datasets. 

Mining Cost =
𝑆𝑝𝑎𝑟𝑘 𝑝𝑎𝑠𝑠𝑒𝑠 𝐸𝑛𝑑 𝑡𝑖𝑚𝑒

𝑆𝑝𝑎𝑟𝑘 𝑝𝑎𝑠𝑠𝑒𝑠 𝑆𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒
∗ 1000    eqn.(5) 

 

The research work compared the performance of EFPGSID, FiDoop-DP and Pfp [10] when the number k of pivots varies from 20 to 

180. Please note that k in EFPGSID corresponds to the number of groups in FiDoop-DP. The performance measures reveals the running 

time, shuffling cost, and mining cost of EFPGSID, FiDoop-DP and Pfp processing the 4G 61-block T40I10D dataset on the 8-node 

cluster. 

 

Table 3: Mining cost comparison repercussion of the number of pivots on EFPGSID, FiDoop-DP and Pfp 

 

Methods 20 60 100 140 180 

Pfp 8.8 8.4 9 11.8 14 

FiDoop-DP 8.4 8 8.8 10.2 12.4 

EFPGSID 8.2 7.6 8 9.8 11.6 

 

 

 
 

Figure 3: Mining time repercussion of the number of pivots on EFPGSID, FiDoop-DP and Pfp 
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Shuffle cost: The expected shuffle cost of the parallel clustering approach is a function of the number of reducer’s r to receive the 

data and the amount of data to be shuffled s, which is given by: 

 

Shuffling Cost (r, s) =
𝑠 .𝐷𝑟

𝑟
.

1

𝑁𝑠
    eqn. (6) 

 

The majority of the shuffling cost is related to shipping data between distinct machines through the network. Whenever possible, 

spark MapReduce minimizes the cost by assigning reduce tasks to the machines that already have required data in local disks. Dr is the 

ratio of data actually shipped between distinct machines relative to the total amount of data processed. Thus, the total amount of data 

be shipped is s.Dr bytes. The data will be received in paralleled by r reducers, each one receiving in average Ns byters per second. 

 

In table 4 represents the performance of Shuffling Cost of the testing datasets. 

 

Table 4: Shuffling cost comparison repercussion of the number of pivots on EFPGSID, FiDoop-DP and Pfp 

 

Methods 20 60 100 140 180 

Pfp 60.2 57 63 72.4 74.6 

FiDoop-DP 55.6 45.8 55.2 64.2 70 

EFPGSID 54.3 42.8 52 63.4 68 

 

 

 
Figure 4: Shuffling Cost repercussion of the number of pivots on EFPGSID, FiDoop-DP and Pfp. 

 

V. CONCLSUION 

In this experimentation report, presents an enhanced method of Enhanced Frequent Pattern Growth Skewed intermediate data blocks 

(EFPGSID), which combines Spark framework and load balancing strategy to solve the optimization problem during Big data processing.  

In the EFPGSID model, a novel EFP-Growth with load balancing of splitting and combination scheme that achieves cost rate 

proportionality, while maximizing the total capacity is obtained. The proposed technique that iteratively computes the optimal solution 

with the help of a big dataset program solves. Our scheme is implemented using Spark 1.6 with Hadoop 2.6 platform under goes 

MapReduce framework. According to the EFP-Growth strategy it can work with the large transaction database for finding the mining 

frequent itemsets 
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