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Abstract: The frailty approach is a statistical modeling concept which aims to account for heterogeneity, 

caused by unmeasured covariates. In statistical terms, a frailty model is a random effect model for time to event 

data, where the random effect (the frailty) has a multiplicative effect on the baseline hazard function. With 

recent advances in computing technology, Bayesian approaches to frailty models are now computationally 

feasible and several researchers have been developing Bayesian methodologies to analyse survival data with 

different frailty models. In this paper an attempt has been made to derive three survival models Proportional 

Hazard (PH), Accelerated Failure Time (AFT) and Proportional Odds (PO) model under frailty approach by 

using a parametric Weibull baseline hazard function in case of univariate survival data in context of Bayesian 

mechanism. The methodologies are applied to a real life survival data set and the analysis is performed using 

Markov Chain Monte Carlo simulation methods and model comparisons are also done using the deviance 

information criteria (DIC) and the log pseudo marginal likelihood (LPML) and check the fit of the models by 

using Cox-Snell residual plot. 

 

Index Terms- Proportional Hazards(PH), Accelerated Failure Time(AFT), Proportional Odds(PO), Frailty 

model, Markov Chain Monte Carlo simulation methods, DIC, LPML, Cox-Snell residual plot. 

 

1. Introduction: 

Frailty models, a specific area in survival analysis provides a convenient way to introduce random 

effects, association and unobserved heterogeneity into models for survival data.  Frailty is an unobserved 

random proportionality factor that modifies the hazard function of an individual, or of related individuals. In 

many survival data analysis it is impossible to measure all relevant covariates related to the disease of interest, 

sometimes because of economical reasons, sometimes the importance of some covariates is still unknown. The 

frailty approach is a statistical modeling concept which aims to account for heterogeneity, caused by 

unmeasured covariates. In statistical terms, a frailty model is a random effect model for time to event data, 

where the random effect (the frailty) has a multiplicative effect on the baseline hazard function.  With recent 

advances in computing technology, Bayesian approaches to frailty models are now computationally feasible and 

several researchers have been developing Bayesian methodologies to analyse survival data with different frailty 

models. The most popular type of frailty model is the proportional hazard frailty model.  For example 

Aslanidou et al [1998], Sahu et al. [1997], Sahu and Day[2004] and Chen and Lio [2008], Ruktiari et al. [2014] 

use this model for multivariate case. Banerjee et al. [2003] ,Li and Lin[2006], and Zhou et al.[2015] are the 

examples of application of this model in case of spatially correlated data. Again Pan [2001] and Zhang and 

Lawson [2012] are the examples of application of Accelerated failure time frailty model. Banerjee and Day 
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[2005] also derived a multivariate Proportional Odds model under frailty approach in case of spatially 

correlated data. Zhou[2017] give an idea for derivation of different kinds of frailty models in case of spatial 

frailty models only.  

So far our knowledge goes still there are some frailty models in survival analysis which are remained 

undiagnosed under Bayesian mechanism. In this paper an attempt has been made to derive such type of three 

survival models Proportional Hazard (PH), Accelerated Failure Time (AFT) and Proportional Odds (PO) model 

under univariate frailty approach together by using a parametric Weibull baseline hazard function in context of 

Bayesian mechanism. The methodologies are applied to a real life survival data set and the analysis is 

performed using Markov Chain Monte Carlo simulation methods and model comparisons are also done using 

the deviance information criteria (DIC) and the log pseudo marginal likelihood (LPML) and check the fit of the 

models by using Cox-Snell residual plot. 

 

2. Frailty Models Under Consideration: 

In case of Proportional Hazard (PH) Frailty Model the hazard rate of an individual, survival function 

and the density is given by, 

/
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In case of Accelerated Failure Time (AFT) Frailty Model the hazard rate of an individual, survival 

function and the density is given by, 
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In case of Proportional Odds (PO) Frailty Model the hazard rate of an individual, survival function 

and the density is given by, 
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Where X is the vector of observed covariates and /

1 2( , ,..., )p    is a vector of regression 

parameters to be estimated, 
iZ  is an unobserved frailty for the ith individual, S0(t) , f0(t) and h0(t) are the baseline 

survival function,  baseline density and baseline hazard function assumed to be unique for all individuals in the 

study population respectively. 

 

3. Hazard Function Modeling:  

In this paper for all the three frailty models a Weibull distribution with parameter μ and γ is 

considered for modeling the baseline hazard function. The second parameter γ allows great flexibility to the 

model and different shapes of the hazard function. The respective baseline hazard function, survival function 

and the density in case of Weibull distribution is given by,  
1( )h t t      (3.1) 

( ) tS t e
     (3.2) 

1( ) , 0, 0tf t t e
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4. Model Specification: 

4.1 Likelihood Specification:  

  Let us consider right censored survival data (ti,δi), i=1,2,…,n and assume that the censoring is non 

informative. Let δi be the indicator variable taking value 1 if the ith individual fails (or happening of the event)  

and value 0 otherwise. Hence ti is a failure if δi=1 and it is a censoring time if δi=0. Hence the triplet (ti,δi,xi), 

i=1,2,…,n is observed for all n individuals. Given the unobserved frailty zi, ti’s are independent. Hence the 

complete data likelihoods for Proportional Hazard (PH), Accelerated Failure Time (AFT) and Proportional 

Odds (PO) model under frailty approach are given by, 
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4.2 Frailty Distribution: 

  In case of frailty models the most important thing to assign a appropriate probability distribution to the 

frailty variable.  Several researchers used different distributions for this purpose. But the most common 

distribution among them is the Gamma distribution. Gamma is the most commonly used finite mean distribution 

to model the frailty term in frequentist as well as in Bayesian Analysis. Vaupel et al. [1979] , Yashin and 

Iachine(1995), Oakes[1989], Winke [2003] are such kind of applications of gamma frailty models in case of 

frequentist analysis. Aslanidou et al. [1998], Sahu et al. [1997] use gamma prior for modeling the frailty 

variable in case of Bayesian analysis. Banerjee et al. [2003], Banerjee and Day [2005],Li and Lin[2006],  Zhou 

et al.[2015] ,Zhang and Lawson[2012] are some application of nonparametric prior for the frailty variable in 

case of spatial frailty models. Sahu and Dey [2004] use a skewed distribution ( log-skew-t) for modeling the 
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frailty variable.  Following the concept of using normal prior to frailty variable by Ruktiari et al.[2014] and 

Zhou[2017] in this paper a independent normal frailty prior is used , which can be defined as,  

Zi ~ N (0, τ2), for i=1,2,…,n. Then the density of the frailty variable Z is given by, 
2

1

21
( )

2

Z

f Z e 

 

 
  

 

; Z    , 0  ……………… (4.2.1) 

 

4.3 Prior Specification: 

Considering wide acceptability of gamma distribution as a conjugate prior in Bayesian statistics and it 

is the conjugate prior for the precision (i.e, inverse of the variance) of a normal distribution. So here a gamma 

prior is considered for τ i.e, 2 ~ ( , )Gamma a b   . Following Sahu et al. [1997] , Sahu and Dey [2004], Zhou et 

al.[2017] a normal prior for the regression parameters are considered here which is given by ~ (0, )N m . For 

the hyper parameters of the baseline hazard function a gamma prior is assumed here due to its simplicity and 

flexibility [Sahu et al., 1997]. Here it is assumed that μ ~Gamma(ρ,ρ) and γ~Gamma(a,b) . 

4.4 Posterior Calculation:  

  The joint posterior distribution for all the parameters of the three models are given by, 
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 (.) be the respective prior distributions. 

  To get the data likelihood of the various parameters we have to integrate out the zi’s with the 

independent Normal prior density given in section 4.2. The final forms of the data likelihoods after integration 

are too complicated to work with. Thus, it is not easy to evaluate the marginal posterior distributions 

analytically. To overcome this difficulty we have to use Metropolis-Hastings algorithm (Hastings [1970]) and 

Gibbs sampling (Geman and Geman [1984]) to generate samples from the appropriate marginal posterior 

distributions. Metropolis-Hastings algorithm and Gibbs sampling or a Gibbs sampler is a Markov chain Monte 

Carlo (MCMC) algorithm for obtaining a sequence of observations which are approximated from a 

specified multivariate probability distribution, when direct sampling is difficult. 

 

5. An Example Using a Real Life Data Set: 

 

In this paper we consider a real life survival data set of 38 kidney patients on dialysis used by 

McGilchrist and Aisbett [1991]. Originally the data set is recorded for time to first and second time of infection 

from the time of insertion of the catheter for 38 kidney patients using portable dialysis equipment. Age and sex 

of the patients along with the presence or absence of three disease type GN, AN, PKD are considered as the 

covariates of the model. Since we want to fit three univariate frailty models, so we take only the first time of 

infection of the catheter for 38 kidney patients along with the covariates from this data set. 
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Using this data set we have done the Bayesian Analysis of the three frailty models mentioned in 

section 2 with the hazard function modeling and prior specification given in section 3, 4.2 and 4.3  with the help 

of the R Software. In case of
/

iX Z
e
  , /( , , , , )Age Sex GN AN PKD      and we consider Sexi =1, if the ith patient is a 

female and 0 otherwise. For the disease types GN, AN and PKD, GNi /ANi,/PKDi=1, if the ith patient have the 

disease and 0 otherwise.  

The MCMC is carried out through an empirical Bayesian approach coupled with adaptive Metropoli 

samplers (Haario, Saksman and Tamminen [2001]). The following hyper-parameter values were used in the 

simulation.  Here we take τ= 1 and aτ =bτ=1, ρ=0.001, a=0.001, b=0.001 and m=1. In case of Bayesian analysis 

sometimes it was difficult to sample from the resulting full conditional distribution due to computer underflow 

problems for different hyper-parameter initial values. Sometimes it is observed that Bayesian inference was 

largely insensitive to change in the values of the hyper-parameter. For example we have experimented with 

many combinations of values of hyper-parameters and in case of frailty variance we observe slight difference in 

the posterior inference of the parameters with the chance of the values. In case of the baseline hazard 

parameters no difference is observed with the change in the values of hyper-parameters. 

 

5.1 Posterior Inferences: 

From the above analysis we have found the posterior inferences about the parameters of the model. Here the 

Table 5.1.1 and Table 5.1.2 shows the posterior mean, median, standard deviation and 95% credible intervals 

for the regression Coefficients and the frailty variance respectively. 

 

Table 5.1.1: Posterior Inference of Regression Coefficients 

Models Regression 

Coefficients 

Mean Median Standard 

Deviation 

95% 

CI-Low 

95% 

CI- Upper 

Proportional Hazard 

(PH) Frailty Model 

 

Age 0.009465 0.007804 0.048606 -0.068724 0.145046 

Sex -5.381640 -5.545902 1.679589 -8.244297 -2.025221 

GN 0.812252 0.977403 1.812685 -3.993665 3.633916 

AN 2.245244 2.538451 1.628249 -0.701468 5.181663 

PKD -2.925890 -2.618289 2.782097 -9.172584 2.090695 

Accelerated Failure 

Time(AFT)Frailty 

Model 

Age 0.006096 0.005573 0.015163 -0.019177 0.036585 

Sex -2.258404 -2.236451 0.440493 -3.141119 -1.375095 

GN 0.294523 0.331070 0.532782 -0.805537 1.294589 

AN 0.777479 0.818338 0.589770 -0.408553 1.786184 

PKD -1.368258 -1.357560 0.823350 -2.955395 0.133405 

Proportional 

Odds(PO) Frailty 

Model 

Age 0.03133 0.02139 0.04895 -0.03855 0.16473 

Sex -4.79608 -4.26527 2.46778 -12.13458 -1.56937 

GN 1.26692 1.10061 1.81999 -1.81894 5.44217 

AN 2.32632 2.05825 1.87586 -0.89624 7.41276 

PKD -2.25715 -2.09603 2.34799 -7.47483 1.42720 
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The analysis reveals that in case all the three fitted models βsex shows the female patients have a 

slightly lower risk for infection. Also βPKD shows that the presence of this disease has a lower impact on 

infection of the catheter. 

Table 5.1.2: Posterior Inference of Frailty Variance 

Models Mean Median Standard 

Deviation 

95% 

CI-Low 

95% 

CI- Upper 

Proportional Hazard (PH) Frailty 

Model  

9.910 

 

9.259 3.792 4.487 19.384 

Accelerated Failure Time(AFT)Frailty  

Model  

0.302771 

 

0.101034 0.414540 0.001129 1.425962 

Proportional Odds(PO) Frailty Model  8.96182 3.93703 14.24595 0.01203 50.39084 

   The estimates of frailty variance from different models shows that there is a strong posterior 

evidence of high degree of heterogeneity in the population of patients. Some patients are exposed to be very 

prone to infection compared to others. 

 Fig 5.1.1, Fig 5.1.2 and Fig 5.1.3 shows the trace plots of the parameters for different fitted models. 

 

Fig 5.1.1: Trace plots for the Regression 

coefficients and Frailty variance for the Proportional 

Hazard (PH) Frailty Model  

Fig 5.1.2: Trace plots for the Regression 

coefficients and Frailty variance for the Accelerated 

Failure Time (AFT) Frailty Model  

 

Fig 5.1. 3: Trace plots for the Regression coefficients and Frailty variance for the Proportional Odds (PO) 
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 Fig 5.1.4, Fig 5.1.5 and Fig 5.1.6 shows the Posterior Density Plots of the Parameters for Different fitted 

models. 

 

Fig 5.1.4: Posterior Density plots of Regression coefficients and Frailty variance for Proportional Hazard (PH) 

Frailty Model  

 

Fig 5.1.5: Posterior Density plots of Regression coefficients and Frailty variance for Accelerated Failure Time 

(AFT) Frailty Model  
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Fig 5.1.6: Posterior Density plots of Regression coefficients and Frailty variance for Proportional Odds (PO) 

Frailty Model  

5.2 Model Diagnostics: 

 After the model fitting the first job of us to check the goodness of fit of the models.  Because model fitting is 

just based on certain assumptions. Here we have to take the help of some Regression diagnostics procedures 

which are employed to evaluate the model assumptions and investigate whether or not there are observations 

with a large, undue influence on the analysis. In regression analysis residuals have a very powerful impact on 

diagnostic checking procedures. In case of survival analysis, where most of the time we facing with the problem 

of censored data we must take some special treatments to the residuals of censored observations. The idea of 

one such kind of residual plot was given by Cox and Snell[1968], a plot of estimated cumulative hazard 

function (based on Cox and Snell residual and the censored data) versus the Cox and Snell residual.  Which 

check the overall goodness of fit in survival models. We evaluate the presumed relation of unit exponentially 

distributed residuals for a good model fit and evaluate under some violations of the model assumption. This is 

done graphically with the usual graphs of Cox-Snell residual and formally using Kolmogorov-Smirnov 

goodness of fit test. It is observed that residuals from a correctly fitted model follow unit exponential 

distribution. For the above three fitted frailty models the Cox-Snell plots are given are in Fig 5.2.1 through Fig 

5.2.3 from which it can be seen that the data fits the proposed models quite good and they are competing. 
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Fig5.2.1: Cox-Snell plot for 

PHFM 

Fig5.2.2: Cox-Snell plot for 

AFTFM 

Fig5.2.3: Cox-Snell plot for 

POFM 

Here by simple observation it is seen that the entire plot follow some same kind of pattern. And in 

case of the plot of AFTFM the Nelson–Aalen curve (black curve) is closer to the standard exponential curve as 

compared to the other two plots.  But we cannot get a clear picture from this. From this we can only say that the  

fit of all the models are good but to get a better idea about the best fitted models we have to take the help of 

some model choice criteria. 

5.3 Model Comparison: 

In case of Bayesian survival modes two popular model choice criteria are deviance information criteria 

(DIC)[ Spiegelhalteret al., (2002)] and log pseudo marginal likelihood (LPML) (Geisser and Eddy (1979)]. DIC 

is the generalization of the AIC and BIC and is particularly useful in Bayesian model selection problems where 

the posterior distributions of the models have been obtained by MCMC simulation. The idea behind DIC is that 

we have to select the model with the smaller value as the best fitted model, which give us an idea about the 

relative quality of model filling. But in case of LPML the complete opposite idea is taken. If a model have 

larger LPML value then we consider it as the better one as compare to the other having smaller LPML value. 

LPML focuses on the predictive performance of a model. For the above three fitted frailty models the obtained 

LPML and DIC are given in table 5.3.1. 

Table5.3.1: LMPL and DIC for different models 

Models Log Pseudo Marginal  

Likelihood: LPML 

Deviance Information  

Criterion: DIC 

Proportional Hazard (PH) Frailty Model  1146.134 -3649.859 

Accelerated Failure Time (AFT) Frailty 

Model  

-180.0368 350.8143 

Proportional Odds (PO) Frailty Model  -180.786 352.7812 

    

  Although Cox-Snell plots show that the AFT frailty model has a good fit among the three fitted models 

but from the calculated DIC and LPML a different scenario was observed. From table5.3.1 it is observed that 

the Proportional Hazard (PH) Frailty Model with Weibull Hazard has a largest LMPL and Smallest DIC among 

all the three fitted models. So in case of the above analysis we can say that Proportional Hazard (PH) Frailty 

Model with Weibull Hazard is the best fitted model. 
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6. Concluding Remarks: 

  In this paper, three survival models Proportional Hazard (PH), Accelerated Failure Time (AFT) 

and Proportional Odds (PO) model are considered under frailty approach by using a parametric Weibull 

baseline hazard function in case of univariate survival data in context of Bayesian mechanism. Latter the 

models are fitted by a real life survival data set and diagnostics checking and model comparisons are also done 

here by using Cox-Snell plot, LMPL and DIC. From the above study we have found that the Proportional 

Hazard (PH) Frailty Model with Weibull Hazard is the better model than the other two proposed models. 
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