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Abstract:The aim to build generative classifiers is to estimate the joint probability p(x, y) indirectly, estimating the  conditional 

likelihood p(x|y) and the prior probability p(y).To predict the  likely class that maximizes the posterior probability p(y|x) using Bayes 

rule. The paper propose a generative classifier which estimates the joint distribution directly through a data modelling mechanism 

called mass estimation. The generative classifier makes prediction based on decision rule that maximizes mass, better than Bayes rule. 

Index Terms - Mass distribution, Mass Estimation, Generative classifier. 

 

I. INTRODUCTION 

Classification is a data mining task that deals with assigning data instances described by a set of variables (x) to one of the predefined 

mutually exclusive categories (y).  

Discriminative and generative classifiers are two distinct approaches to solve classification problems [10, 13]. Generative classifiers 

model the joint probability p(x, y) via Bayes rule. Discriminative classifiers, on the other hand, learn a direct mapping from x to y 

[10]. Classifers such as Naive Bayes (NB), Bayesian Belief Network (BayesNet), Aggregating One Dependence Estimators (AODE) 

are examples of generative classifiers; whereas, Artificial Neural Networks (ANN), Linear Logistic Regression (LLR), Support 

VectorMachines (SVM) are examples of discriminative classifiers. Building generative models require density estimators. Current 

density estimators such as kernel density estimator and k-nearest neighbour density estimator have a high time and space 

complexities. Thus, it is difficult to estimate p(x, y) directly to build generative models even with data sets that have a moderate 

number of dimensions and moderate data size. 

Instead, the current generative approach focuses on estimating p(x|y) and p(y), and makes the final decision via Bayes rule. This 

approach encounters the same limitation of existing density estimators: p(x|y) cannot be estimated directly. However, surrogates of 

p(x|y) can be estimated efficiently provided some assumptions are made (e.g., attribute independence given the class.) Though this 

type of generative classifiers has been shown to perform well [7, 12, 8], the assumptions made are often violated in practice and can 

result in poor predictive accuracy. 

Mass estimation [17, 16, 15] provides an alternative to density estimation for data modelling and it has been shown to work well in 

anomaly detection, information retrieval, clustering and regression. This paper is motivated to employ mass estimation to solve 

classification problems, in particular, by estimating joint distribution directly to build generative models. This is a more direct 

approach than the current approach to build generative models. 

We propose a new type of generative classifier called MassCfier that exploits the notion of mass and mass distribution to estimate the 

joint distribution effectively. MassCfier has three distinctive characteristics compared to existing generative classifiers: 

1. The joint distribution is estimated directly without estimating the likelihood p(x|y) and the prior probability p(y). 

2. Its prediction decision is based on a maximum mass rule rather than Bayes rule. 

3. It has sub-linear time complexity and constant space complexity; therefore, it scales better for very large database. 

 

II. EXISTING GENERATIVE CLASSIFIERS 

The existing generative classifiers estimate the conditional likelihood p(x|y) and the prior p(y) and use Bayes rule to make the final 

prediction. 
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Different generative classifiers estimate the conditional likelihood p(x|y) in different ways. We briefly describe three existing 

generative classifiers in this section. 

 

2.1. Naive Bayes 

Naive Bayes (NB) [2, 7] assumes class conditional independence and estimates the likelihood on each dimension separately. A typical 

structure of Naive Bayes is given in figure 

The likelihood of x given class y is estimated as follows. 

 

 

Figure 1: Structure of Naive Bayesian classifier where predictive attributes (x1,x2,,…,xd) are conditionally independent given the class 

attribute y. 

2.2. Bayesian Networks 

Bayesian Networks (BayesNet) [5, 11] learns probabilistic relationships among the attributes including the class in the form of 

directed acyclic graph (DAG) from the training data. In a graph, edges represent conditional dependencies and nodes, which are not 

connected, are conditionally independent. At each node, conditional probabilities with respect to its parents are learned from the 

training data.  

In the version of Bayesian Networks we used, continuous valued attributes are discretised. 

Aggregating One-Dependence Estimator 

Aggregating One-Dependence Estimators (AODE) [18] allows conditional dependence with one ‘privileged’ attribute.Other attributes 

are conditionally independent given class label y. The conditional probability, with a privileged attribute xi, is computed as follows. 

 

As AODE is designed for discrete attributes, continuousvalued attributes are discretised. The conditional probability is computed as 

relative frequencies as in NB-Disc. 

Each attribute gets a chance to be a privilege attribute once; hence, AODE builds d models and aggregates the decisions to make the 

final prediction.  

III. MASS AND MASS-ESTIMATION 

Ting et al [17] introduced the fundamental concept of mass as a base measure. The application of mass to solve various data mining 

problems such as regression, information retrieval, clustering, anomaly detection, and data stream are demonstrated in [17, 16, 14, 

15]. Mass-based data mining methods often performed better than or at least as well as the state-of-the-art methods. The key 

advantages of mass- based methods are as follows: 

1. Employ no distance measures and generally run faster. 

2. Have average case sub linear time complexity and constant space complexity; hence, it can be applied to very large data sets. 
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In its simplest form, mass is the number of data instances in a bounded region. A mass base function is defined as follows 

 

where, T(•) is a function that subdivides the feature space of the given data set D into non-overlapping regions; and, m is the number 

of instances in a region of T(x) in which x falls into. 

The estimated mass for an instance x is defined [16] as 

 

Mass estimation has been shown to be a good data modelling mechanism in [17, 16, 15]. Figure 4 shows the estimation of two 

overlapped clusters in one dimensional feature space using kernel density estimation (KDE) and mass estimation. It demonstrates that 

mass-based estimation is comparable to that of KDE. 

 

 

Figure 4: Density estimation of KDE vs. Mass estimation. Y-axis: a) density, b) mass. The parameters used for mass estimation are t = 

100, 0 = 4096 and h = 5. These parameters are discussed in the following section. Parameter h for mass is equivalent to the bandwidth 

smoothing parameter for KDE. The bandwidth parameter was automatically selected in the case of KDE. 

  

IV. GENARATIVE CLASSIFIER 

MassCfier is a generative classifier that exploits the notion of mass and mass distribution. It estimates the mass joint distribution of x 

and y. The corresponding mass base function m(T(x), y) is defined as the count of instances in a region of T (x) that belong to class y. 

 

 

where, my is the number of instances belonging to class y in a region of T(x). 

The decision rules of existing generative classifiers are provided in Table 1. 

Table 1: Decision rules of different existing generative classifiers and MassCfier. 

 

Classifier Decision Rule  

Bayes Ne 

 
AODE 

 

MassCfier 
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Once the data distribution has been modelled using mass distribution, a simple decision rule based on maximum mass can be used to 

make a prediction in the classification context. 

V. EXPERIMENTS 

In this section, we compare the performance of MassCfier with existing generative classifiers Naive Bayes with density estimation 

through Gaussian Distribution assumption (NB-GD), Naive Bayes with Kernel Density Estimator (NB- KDE), Naive Bayes with 

Discretisation (NB-Disc), Bayesian Networks (BayesNet), and Aggregating One-dependence Estimators (AODE). 

We have implemented the proposed method using the WEKA platform [6, 19] which has all of the existing generative classifiers. The 

data sets used are from UCI Machine Learning Repository [4] unless stated otherwise. 

All the experiments were conducted as single thread jobs processed at 2.27 GHz on a Linux cluster using a node with 40 GB memory. 

All the algorithms were executed with default parameters except BayesNet. For BayesNet, the parameter ‘max number of parents’ 

was set to 100 to enforce no restriction on the number of parents that a node can have in the network; and the parameter ‘initialise as 

Naive Bayes’ was set to ‘false’ to initialise an empty network structure. The rest of the parameters were set to defaults. The default 

settings for MassCfier were t = 100, 0 = 4096 and h = |"log2(0)"|. Where there are less than 4096 instances in each class, the entire 

data set were used to construct the trees. 

We compared the performance of proposed methods with the existing generative classifiers on 18 data sets with different sizes, 

dimensions, number of classes and class distributions. The properties of the data sets are provided in Table 2. 

Table 2: Data sets used to compare the performance of MassCfier with other existing generative classifiers. 

Data set datasize ^dimensions #classes 
CoverType 581012 10 7 
MiniBooNE 129596 50 2 
OneBig 68000 20 10 
Shuttle 58000 8 7 
Wave 20000 2 2 
RingCurve 20000 2 2 

Letters 20000 16 26 
Magic04 19020 10 2 
Mammography 11183 6 2 
Pendigits 10992 16 10 
Wine 6497 11 2 
Satellite 6435 36 7 
OpticalDigits 5620 62 10 
PageBlocks 5473 10 5 
RobotNavigation 5456 24 4 
Waveform 5000 21 3 
ImageSegments 2310 19 7 
SteelPlateFaults 1941 25 7 

 

Out of 18 data sets used, OneBig, Wave and RingCurve are synthetic and the rest are real data sets. Wave and RingCurve are two 

dimensional data sets, which are subsets of RingCurve-Wave-TriGaussian data set, shown in Appendix A, each having two classes 

with 10000 data instances in each class. The OneBig data set [9] has 20 attributes, 9 clusters and 10000 noise instances randomly 

distributed in the feature space. Noise in the data set are treated as a separate class; hence, it has 10 classes. 

Overall Comparison, Classification Accuracy, The experimental results, in terms of classification accuracies, are show in Table 3. 

Compared with existing generative classifiers, the result showed that MassCfier yielded better or at least competitive classification 

accuracies in most of the data sets. A statistical test based on two standard errors was performed to examine whether the difference is 

significant. The win:loss:draw counts of MassCfier over existing generative classifiers are reported in Table 4. A win or loss is 

counted if the difference is significant; otherwise, it is a draw. 

Table 3: Classification accuracies (%) on different data sets over a 10-fold cross validation for MassCfier and existing generative 

classifiers: AODE, BayesNet, NB-KDE, NB-GD and NB-Disc. Figures marked with * and 1 represent significant win and loss 

respectively, of MassCfier with respect to AODE based on a two-standard-error significance test. 
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Data Set Mass 

Cfier 

AO 

DE 

Bayes 

Net CoverType 79.16* 72.89 87.54 
MiniBooNE 90.90* 89.58 90.19 
OneBig 100* 99.69 99.99 
Shuttle 99.89* 99.85 99.92 
Wave 99.99* 78.50 78.27 
RingCurve 100* 99.98 99.96 
Letters 96.67* 88.81 86.76 
Magic04 84.58* 83.00 83.36 
Mammography 98.59 98.42 98.48 
Pendigits 99.45* 97.84 96.56 
Wine 99.32 99.29 99.20 
Satellite 91.41* 89.26 83.29 
OpticalDigits 98.40* 97.03 96.16 

PageBlocks 96.311 97.37 96.25 
RobotNavigation 91.511 94.13 94.85 
Waveform 84.481 86.48 82.32 
ImageSegments 96.97* 95.76 95.50 
SteelPlateFaults 74.19 75.32 74.03 

Avg. Accuracy 93.43 91.29 91.26 
 

MassCfier had 12 wins, 3 losses and 3 draws when compared to AODE, and 11 wins, 2 losses and 5 draws in comparison to 

BayesNet. Similarly, it had 18 wins over NB-KDE and NB-GD; and 17 wins and 1 draw over NB-Disc. 

VI. CONCLUSION 

In this research, we proposed a new type of generative classifier exploiting the notion of mass called MassCfier. Unlike existing 

generative classifiers based on Bayes rule, MassCfier has the following distinctive characteristics. 

1. MassCfier estimates the joint distribution directly in multi-dimensional space 

2. MassCfier utilises a new decision rule based on maximum mass rather than Bayes rule. 

It has sub-linear time complexity and constant space complexity. 

Empirical results show that MassCfier is better or at least competitive in terms of classification accuracy when compared to the 

existing generative classifiers. MassCfier empowers generative classifiers to be more powerful and flexible with no assumption and 

improved time complexity. 

One direction for future work is to explore a non-grid based 

implementation for mass estimation that eliminates the weaknesses of grid based implementation to deal with high-dimensional 

problems. 
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