
www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1801645 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 806

Pattern Matching Algorithm in DNA Sequence

Analysis

1GHANSHAYM CHAURASIA, 2SARITA SONI (Supervisor)

1M. Tech, BBAU, Lucknow
2Assistant Professor, BBAU Lucknow

Abstract:. DNA sequences has been for years a large worry for many research papers in Bio-
Informatics.The DNA sequence is a long chain of characters specifying the nucleotides

presented in the DNA. In bioinformatics the most well-known application is DNA sequence
detection. Stored DNA sequence of several diseases is retrieved and compared in order to

find out for the existence of a disease.To seek for the pattern a well-based pattern matching
algorithm is called for in parliamentary procedure to fix the result at the monetary value of

sufficient quantity of time.We‟ve specifically mentioned the DNA sequences instead of any

text strings and put through the algorithms upon it.This report evaluates four patterns
matching algorithms‟ performance and then nominates a novel algorithm based upon a Rabin

Karp algorithm which ensures that character comparisons can be eradicated from the Rabin
Karp algorithm. These algorithms look for the specified pattern in a huge strand of DNA

sequence.

Index terms: DNA sequence , Pattern matching , Rabin Karp algorithm, Human Pathogen,

String Matching, Virus Detection.

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1801645 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 807

I. INTRODUCTION

Fundamental ideas of this paper, i.e. the

pattern matching problem has been talked

about.In subsequent sections i.e. in section

6, 7, 8 and 9, the Brute Force, Knuth-

Morris-Pratt algorithm, Boyer Moore

algorithm and Rabin Karp algorithm

respectively has been drawn. In part 10

we‟ve described our idea to improve the

Rabin Karp algorithm and in section 11 the

references used in this paper have been

dedicated.

II. PRELIMINARIES

Every human has his/her singular

flair.Genes are made up of DNA

sequences.DNA is held in each living cell of

an organism, and it is the carrier of that

organism‟s genetic code. The transmitted

code is a set of Sequences which define

what proteins to establish inside the

organism.DNA consists of two filaments,

each being a chain of four nitrogenous

bases, i.e. Adenine, Cytosine, Guanine and

Thymine. In a computer we represent each

nitrogen base with a single character: A for

Adenine, G for Guanine and C for Cytosine

and T for Thymine. Thymine (T) &

Adenine (A) always come in couples.

Likewise, Guanine (G) & Cytosine (C)

bases come in concert as well. Using these

codes an entire DNA can be coded based

upon their nucleotides contained in a

filament. For example:

ATGCGATATGCATGCATGCATAT. The

term DNA sequencing comprehends

biochemical methods for defining the

parliamentary procedure of the nucleotide

bases, adenine, guanine, C, and

thymine, in a DNA oligonucleotide

[10].Squaring up the DNA sequence is

thus useful in basic

research studying fundamental biological

processes, as considerably as in applied

domains such as diagnostic or forensic

research.The force and simplicity of using

sequence information has, however, made

it the method of choice in the modern

Bioinformatics analysis. [11]

III. DISEASE CAUSED BY

GENETIC FACTORS

An unhealthy symptoms or a specific

illness in the body is termed as a disease.

Disease refers to any unnatural condition

of an organism that affects normal

functions. The disease may be referred to

disabilities, disorders, syndromes,

symptoms [9]. Genes are the basic

building blocks of genetic endowment.

They get given from parent to kid. They

contain DNA, the instructions for building

proteins. A familial disease is any disease

that is induced by an abnormality in an

individual's genome. Some of the genetic

disorders are inherited from the parents,

while other genetic diseases are induced by

mutations in a pre-existing gene or group

of factors.

IV. DETECTION OF DISEASE USING

PATTERN MATCHING

Over the final decade, genetic studies

have

identified numerous associations between

chromosomal alleles in the human genome

and important human diseases.Alas, thus

expanding

findings of casual variants in the region of

DNA is not a straight forward task [8].

Causal variant identification typically

involves searching through sizable regions

of genomic DNA in the locality of disease-

associated SNPs (single nucleotide

Polymorphism). When we know a

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1801645 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 808

particular sequence is the causal agency for

a disease, the trace of the succession in the

DNA and the number of occurrences of the

sequence specifies the strength of the

disease. As the DNA is a large database, we

require to go for efficient algorithms to

discover out a particular sequence in the

given DNA.

V. THE PATTERN MATCHING

PROBLEM

In pattern-matching problem with strings,

we are handed a text string T of length n

and a pattern string P of length m, and want

to find whether P is a substring of T. The

significance of a “match” is that there is a

substring of text T starting at some index I

that matches pattern P, so that T [I] =P [0],

T [i+1] =P [1]... T [i+m-1] =P [m-1] i.e. P=

T [I.. i+m-1].Therefore, the end product of a

pattern-matching algorithm is either an

indication that the pattern P does not exist in

T or the starting index in T of a substring

matching P. [12]

T =” abacaabaccabacabaabb “

And the pattern string:

P = "Abacab".

Then P is a substring of T. Videlicet, P = T

[10...15]. At that place are various pattern-

matching algorithms. Here we are to review

four patterns matching algorithms and prove

an algorithm which is based upon Rabin-

Karp algorithm, but modified. These

efficient algorithms can be used to observe

the sequence of DNA in a huge genetic

database. Chase are the four algorithms

which are described below.

• Brute-Force

• Knuth-Morris –Pratt

• Boyer-Moore

• Rabin-Karp Algorithm

VI. BRUTE FORCE ALGORITHM

It is as well known as Naive String

Matching algorithm and not need for pre

processing phase , needs contant extra

space. It always shifts the window by

exactly one position to the right. It requires

2n expected text characters comparisons. It

detects all valid shifts using a closed

circuit that determines the condition P [1....

m] =T [s+1... s+m]

for each of the n-m+1 possible values of

s. The algorithm is the following:

BRUTE_FORCE(T, P)

n ← length[T]

m ← length[P]

for s ← 0 to n − m

do if P[1 . .m] = T [s + 1 . . S + m]

then print “Pattern comes with shift” s

The Brute force string-matching

operation can be presented as shifting the

shape over the text, observing for which

switches all of the parts of the pattern

equal the corresponding references in the

text, as instanced in the accompanying

case.

T=ANPANMAN

P=MAN

 Complexity

Procedure BRUTE_FORCE takes time O

(m) in best case, i.e. when the blueprint is

found within first my characters of text.

And inward the worst case the rule will

be matched total (m (n-m+1)). For Object

lesson, see the text string “AN” (a chain

of n a‟s) and the pattern “AM”.For each

of the (n−m+1) possible values of the

shifts, the loop on line 4 to compare

corresponding characters must execute m

times to validate the transformation. The

worst-case running time is therefore O

(mn).The playing time of

BRUTE_FORCE is equal to its matching

time, since there is no pre-processing.

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1801645 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 809

 Drawbacks OfThis Approach

In O(mn) approach. if „m‟ is the length of

pattern „p‟ and „n‟ is the length of string

„S‟. Suppose S=ATGATAATGAAG and

p=AATA.

Figure1: Brute Force comparison process

j= 0 1 2 3 4 5 6 7 8 9 10

S= A T G A T A A T G A G

p= A T A A

 A T A A

 A T A A

 A T A A

In table 1 we‟ve shown when a mismatch

is discovered for the beginning time in

comparison of p [3] with S [3], pattern „p‟

would be moved one place to the right and

matching procedure resumes from here.

Here the first comparison that would

take place would be between p[0]=„A‟ and

S[1]=„T‟. It should be remarked here that S

[1] had been previously implied in a

comparison in 2nd iteration of the loop in

this algorithm. This is a repetitive use of

S[1] in another comparison. It is these

repetitive comparisons that run to the

runtime of O (mn), which fixed it really

boring.

VII. KMP ALGORITHM

We now give a linear-time string-matching

algorithm due to Knuth, Morris, and Pratt.

The basic thought behind the algorithm

discovered by Knuth, Morris, and Pratt is

this: when a mismatch is found, our false

start (which is the primary drawback of the

Brute Force algorithm) consists of roles that

we know in advance (since they‟re in the

form).Somehow we should be able to take

advantage of this data instead of backing up

the pointer over all those known parts

VII. I The Prefix Function

For A Pattern Fully skipping past the

pattern on detecting a mismatch as

described in the previous paragraph won‟t

work when the pattern could match itself at

the tip of the mismatch. To compute the

positions of the pattern as to how much a

rule need to reposition itself so that the

corresponding qualities of text paired with

it. The table is called as next table or

sometimes failure function (figure 2) for

the blueprint to be searched [14].Take

some other example of this next table. This

next [j] is the character position in the

design which should be held next after

such a mismatch, then that we can slip the

rule (j - next [j]) places relative to the text

[6].

Figure 2: Next table

j 1 2 3 4 5 6 7 8 9 1
 0

patter A T G A T G A G A T

n

Next - 0 0 - 0 0 - 4 - 0
 1 1 1 1

Here next [j] = 0 means that we are to slide

the shape all the way past the current text

character. Today we shall talk about how

to pre compute this table; fortunately, the

computations are quite simple, and we will

discover that they require only O (m)

steps. Now we know why represent

following the algorithm to compute the

following function or prefix function:

next (p)//p signifies pattern,

int I=0, j=-1;

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1801645 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 810

next [I] =j;

for (I=0;i<m;i++)

{

if (I==0) next [I] =j;

else if (p [I] ==p [j])

{

next [I] =next [j];

}

Else

{

next [I] =j;

}

while (j>=0 && p [I]! =p [j])

j=next [j];

j++;

}

This program takes O (m) units of time, as

next [t] in the innermost loop always shifts

the upper copy of the form to the right, then

it is performed a total of my times at most.

A somewhat different way to examine that

the running time is bounded by a constant

times m is to observe that the variable starts

at 0 and it is increased, m- 1 times, by 1;

furthermore its value remains non negative.

Thus the operation next [j], which always

decreases j, can be performed at most m-1

times [6].

 The Pattern Matching Algorithm

The Knuth-Morris-Pratt matching algorithm

is presented in pseudo code below as the

procedure KMP-MATCHER.

KMPMATCHER calls the auxiliary

procedure next() to compute next table.

Below T & P signifies text & pattern

respectively.

KMP-MATCHER (T, P)

n ←

length[T] m

← length[P]

next=next(P)
//array consisting of prefix
values

j ← 0
//Number of characters

matched.

for k ← 1 to
n

//Scan the text from left to
right.

Do while j > 0 and P [j + 1] ≠ T [k]

do j ← next [j] //Next character does not

meet.

if P[j + 1] = T [k] then j ← j + 1

//Next

character matches.

if j = m //Is all of P

matched?

Then print “Pattern comes with shift” k–

m

j ← next [j] // Look for the following

match.

For convenience, let us presume that the

input text is present in an array text T [1…

n], and that the rule appears in pattern P

[1… m].We shall as well assume that m >

0, i.e., that the pattern is non empty. Let k

and j are integer variables such that text T

[k] announces the current text character

and pattern P [j] denotes the corresponding

pattern character. Show that the design is

fundamentally aligned with position p + 1

through p + m of the text, where k =p +j

[15].

 Complexity

The KMP algorithm works by reversing

the patterns given into a machine, and then

feeding the car. It requires O (m) space and

time complexity in pre-processing phase,

and O (n+m) time complexity in searching

phase (independent of the alphabet size).

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1801645 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 811

KMP linear time string matching algorithm.

[6]

VIII. BOYER-MOORE ALGORITHM

A significantly faster string searching

method can be built up by scanning the

pattern from right to left when trying to

match it against the textbook. The Boyer-

Moore algorithm (BM) was produced by R.

S. Boyer and J. C. Moore in 1977 [7].The

Boyer Moore algorithm scans the characters

of the pattern from right to left beginning

with the rightmost one and does the

comparisons from right to left.

VIII. IBad Character Rule

says that P should be shifted right by

Max[1,i - R(T(k))] places. The stage of

this shift rule is to shift P by more than

single character when possible. Example,

T (5) = t mismatches with P (3) and R (t)

= 1 so P can be shifted right by two sides.

Later on the switch, the comparison of P

and T leads off again at the correct end of

P.

Figure3: Compare from right

1 2
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7

T A C T C T T G A T G C T C T

T A C

A G A T G A
P T

To convey the mind of the bad character
rule, let us imagine that the final (rightmost)

character of pattern P is you and the

character in text T it aligns with is x, x ≠ y.

When a mismatch occurs, we can safely

shift P to the right, so that the rightmost x in

P is below the mismatched x in T, and this

is possible if the rightmost side of character

x exists in pattern P. This observation is

formalized below

[16]. For a particular coalition of a pattern

P against text T, the rightmost (n-i)

characters of a pattern P match their

counterparts in text T, but the next character

to the left, P (I), doesn‟t match with its twin,

say in position k of T. The bad character

rule

VIII.II. Extended Bad Shift Rule

When a miss match occurs at position i

of pattern P and the mismatched character

in text T is x, then shift P to the right so

that the closest x to the left of position i

in P is below the mismatched x in T.

VIII. III The Good Suffix Rule

Now we bring in another convention

called the good suffix rule. Conjecture for

a given pattern P and text T, a substring t

of text T matches a suffix of pattern P,

but a mismatch occurs at the side by side

comparison to the left. Then determine, if

it survives, the rightmost copy t‟ oft in P

such that t0 is not a suffix of P and the

character to the left of t‟ in P differs from

the part to the left of it in P. Shift P to the

right so that substring t0 in P is below

substring t in T (see Figure 4). If t‟ does

not survive, then switch the odd end of P.

Past the left end of it in T by the least

sum of money so that a prefix of the

shifted pattern matches a suffix oft in T.

If no such switch is possible, then shift P

n places to the right. If an occurrence of P

is found, then shift P by the least sum of

money so that a proper prefix of the

shifted P matches a suffix of the

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1801645 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 812

occurrence of P in T. If no such switch is

possible, then shift P by n places, i.e.,

shifting P past t in T.

Figure 4: case when good suffix rule

applies

(I), L‟(I)).

 The complete Boyer-Moore

algorithm:

Given the pattern P, //pre-processing
stage Compute L‟(i) and l(i) for each
position i of P, and compute R(x) for
each character x ∈ ∑ //Search stage

k := n;

while k ≤ m do

Good suffix shift rule, where character x of

begin

i := n;

h := k;

T mismatches with character y of P.

Characters y and z of P are guaranteed to

be distinct from the good suffix rule, so z

has a prospect of matching x.When

the mismatch occurs at location 8 of P and

position 10 of T, t = ab and t0 occurs in P

starting at location 3. Hence P is shifted

right by six places resulting in the

following alignment.

Figure 5: Shifting using good suffix rule

while i> 0 and P(i) = T(h) do

begin

i := i - 1;

h := h - 1;

end;

if i = 0 then

begin

0 1

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8

T p r s t a b c t u b a b v q x r s t
 ^

P q c a b d a b a b

 1 2 3 4 5 6 7 8 9

At present in cases where we agree the

final m characters of the pattern P before

failing, we clearly wish to transfer our

attention down string by 1+m.So, L(i) is

the largest index j less than n such that Nj

(P)≥|P[i..n]| (which is n - i + 1). L‟(i) is the

largest index j less than n such that Nj(P) =

|P[i..n]|

= (n - i + 1).Now The preprocessing stage

must also prepare for the case when L‟(i) =

0 or when an occurrence of P is found. l‟(i)

equals the largest j ≤

|P[i..n]|, which is n-i+1, such that Nj (P) =

j. Thus we can state that the required shift

will be max (L

report an occurrence of P in T

ending at position k.

k := k + n – l‟(2);

end

else

shift P (increase k) by the maximum

amount determined by the

(extended) bad character rule and

the good suffix

rule.

end

Observe that although we have always

talked about shifting P", and given rules to

determine by how much P should be

“shifted", there is no shifting in the actual

implementation. Instead, the index k is

increased to the degree where the right end

0 1

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8

T p r s t a b c t u b a b v q x r s t
 ^

P

q

c

a

b d

a
B d
a

b

 1 2 3 4 5 6 7 8 9 0

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1801645 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 813

of the P would be shifted”. Hence, each bit

of shifting P takes constant time [17].

The good suffix rule in Boyer-Moore

method has a worst-case running time of O

(m) provided that the rule does not come

out in the textbook. This was first proved by

Knuth, Morris and Pratt [6].

Algorithm Complexity

The BM algorithm is successful at reaching

a sub linear running time in the average

case, and if some special conditions

occurred and so also was capable of O

(n+m) in the worst event.

IX. RABIN-KARP ALGORITHM

Previous three algorithms which we‟ve

seen is based upon string matching to see

whether the pattern is matched with the text

portion or not. RABIN KARP matcher is

one of the most effective string matching

algorithms. To obtain a numeric pattern „P‟

from a given text „T‟. It first divides the

figure with a predefined prime number „q‟

to calculate the modular of the pattern P.

Then it examines the first m characters

(m=|P|) from text T to compute the residue

of my references from text T. If the residue

of the Pattern and the remainder of the text

T are equal only then we compare the

characters of the text portion with the

pattern otherwise there is no need for the

comparison [1].We‟ve to recapitulate the

procedure for the next set of references of

text for all the possible shifts which are

from s=0 to NM (where n denotes the

length of text and m denotes the length of

P).Thus according to these two numbers n1

and n2 can only be equal if

REM (n1/q) = REM (n2/q) [1]

After division, we will be having three

cases: -

• Case 1: Successful hit: - In this case if

REM (n1) = REM (n2) and also characters

of n1 matches with characters of n2.

• Case 2: Spurious hit: - In this case REM

(n1) = REM (n2) but characters of n1 are

not equal to characters of n2.

• Case 3: Compare the value of REM (n1)

is not equal to REM (n2), then no need to

compare n1 and n2.

For a given text T, pattern P and prime

number q

T=23456789979779797653435667888675

6456890 975545343434 24545475655454

P=667888

q=11

So to find out this pattern from the given

text T we will hire an equal number of

cases from the textual matter as in the

pattern and carve up the value of these

characters with predefined number q and

also split the practice with the same

predefined number q.Now compare their

remainders to decide, whether to compare

the text with pattern or non.

REM (Text)

=234567/11=3 REM

(Pattern) =667888/11=1

As both the residues are not equal then

there is no demand to compare text with

pattern. Immediately move on to set of

characters of the same length next from

text and repeat the operation.

The Boyer Moore Algorithm goes as

follows:

Rabin_Karp_Matcher (T,P,d,q)

{

n =Length (T)

m= Length (P)

t0=0

p=0

h=dm-1mod q

for i=1 to m

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1801645 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 814

{

p = (d * p + P[i]) mod q

t0 =(d * t0 + T[i]) mod q

}

for s =0 to n-m

{

if ts=p

{

//comparison for spurious

hits if P[1….m] =

T[s+1…….s+m]

then print pattern
matches at

shift „s‟

}

if s<= n-m

ts+1= (d(ts-h*T[s+1]) + T[s+1+m])

mod q

}

}

Thus the entire process can be written as

follows: where Say P has a length L and S

has length n. One room to search for P in S:

1. Hash P to get h(P).

2. If a substring hash value does match h

(P), do a string comparison on that substring

and P, stopping if they do match and

continuing if they answer not.

IX.I Numerical Example:

Let‟s step back from strings for a second.

Say we have P and S be two integer arrays:

P = [5; 0; 3; 3; 0]

S = [4; 8; 5; 0; 3; 3; 0; 8]

The length 5 substrings of S will be

denoted as such:

S0 = [4; 8; 5; 0; 3]

S1 = [8; 5; 0; 3; 3]

S2 = [5; 0; 3; 3; 0]

And so on…

We want to determine if P ever appears

in S using the trio steps in the method

above. Our hash function will be:

h (k) = (k [0] * 104 + k [1] * 103 + k

[2] * 102 + k [3] * 101 + k [4] * 100)mod

m

Or in other words, we will admit the

length 5 array of integers and concatenate

the integers into a 5 digit number, then

select the number mod m. h(P) = 50330

mod m, h(S0) = 48503 mod m, and h(S1)

= 85033 mod m. Notice that with this

hash function, we can use h (S0) to help

calculate h (S1).We start with 48503,

chop off the first digit to get 8503,

multiply by 10 to get 85033, and then add

the next digit to obtain 85033. More

formally:

h(Si+1) = [(h(Si) - (105 * first

digit of Si)) * 10 + next digit after Si]

mod m

We can imagine a window sliding over

all the substrings in S. Counting on the

hash value of the next substring. In this

numerical example, we looked at single

digit integers and set our base b = 10 so

that we can understand the arithmetic

easier. To generalize for other base band

other substring length L, our hash

function is h (k) = (k [0] bL-1 + k [1] bL-2

+ k [2] bL-3.... K [L - 1] b0) mod m

And calculating the next hash value can

be caused by:

h (Si+1) = b (h (Si) – bL-1S [I]) + S [I + L]

mod m

Following is the example taken from

[15]:

Figure 6:

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1801645 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 815

second, beginning at text position 13, is a

spurious hit.(c) Computing the value for a

window in constant time, given the value of

the old window. The first window has value

31415.

X. IMPROVED IDEA:

Theory As we can see, spurious hit is an

extra onus on an algorithm which increases

its time complexity when we hold to

compare the text with pattern and won‟t be

capable to find the pattern at that

switch.Thus to ward off this extra matching,

we‟ve improved the Rabin Karp algorithm

slightly, called IRK algorithm which says

that along with remainders compare the

quotients also. That is IRK checks

whether, REM (n1/q) =REM (n2/q) and

QUOTIENT (n1/q) = QUOTIENT (n2/q),

where n1= pattern & n2=Text & q is the

prime figure. Thus, agreeing to this

technique along with the computation of

the remainder, we will also find out the

quotient and if both remainder and

quotient of text match with the pattern,

then it is successful hit otherwise it is an

unsuccessful hit or spurious hit and then

we can take away the possibility of

comparing the spurious hits. That implies

there is no extra computation of spurious

hits if remainder and quotient are same

then pattern found else pattern not found.

Essentially the
algorithm is

same as the
original

Mod

obin Karp algorithm, only with small

adjustments,

13 which are expressed in bold italic type

face. The

algorithm works as

follows:

IR

T, P, d, q)

n ← length (T)

m ← length (P)

h ← dm-1 mod q

//text

length

//pattern

length

p ← 0

t0 ← 0

q_p ← 0

calculation for pattern

//quotient post

hash
8 7

2 5 1 4 1 3

3

2 3 5 9 0 2 3 4 1 5 2 6 7 3 9 9 2 1
r

2

3

5

9

0

2

3

4

1

5

2

6

7

3

9

 K (

1 9 2

8

9

3
1
1

0

1

7

8

4

5

10

1
1

7

9
1
1

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1801645 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 816

IRK

R

K KMP BM

IRK

RK

BM

KMP

The above human body [15] illustrates (a) A

text string. A window of length 5 is shown

shaded. The mathematical value of the

shaded

The turn is computed modulo 13, yielding

the value 7.(b) The same text string with

values computed modulo 13 for each

potential position of a length-5 window.

Taking the pattern P = 31415, we look for

windows whose value modulo 13 is 7, since

31415

≡ 7 (mod 13).The first, beginning at text

position 7, is indeed an occurrence of the

rule, while the

//quotient post hash calculation for

portions of text of size m

q_t ← 0

for me ← 1 to m //Pre processing

//subtracting LSB, Shifting and adding

MSB then

ts+1 ← (d * (ts – T[s + 1] * h) + T[

s + m + 1])mod q ts= ts+1

 Comparison using Graphs:

The results of our experiments are

depicted in the graphs below. In the first

graphs we have represented the

performance of the algorithms with a

specified text file size of 1MB. Y axis

represents time in microseconds and X-

axis represent the corresponding

algorithms.

Figure7: comparison of algorithms with

respect to 1 MB text file

do

temp_p ← (d*p + P [I])

q_p ← temp_p / q

p ← temp_p mod q

temp_t ← (d*t0 + T [I])

q_t ← temp mod q

t0 ← temp mod q

for s ← 0 ton – m // Matching

//comparison only if the quotient matches,

removal of spurious hit

do if p = ts &&q_p = q_t

then print “Pattern comes with shift”

then

if s < n – m

//quotient, post hash calculation of next m

characters in text.

temp_t ← (d * (ts – T[s + 1] * h)

+ T[s + m + 1]) / q

q_t ← temp_t /q

Today we compare only between Rabin

Karp and IRK algorithms with the same

text file size of 1

5000

0

10000

15000

20000

25000

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1801645 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 817

120000

100000

80000

60000 RK

40000 IRK

20000

0

RK IRK

300000

250000

200000

150000 RK

IRK

100000

50000

0

MB, in figure 8: Comparison of Rabin

Karp and IRK algorithms using file size

1MB.

Rabin Karp scores the running time of

100750 microseconds and IRK adjusted

the operating time within 95500

microseconds, both upon same 1 MB text

file. Below is the graph which depicts the

comparison between Rk and IRK

algorithm using a 2MB file size. Besides

we‟ve compared the algorithm upon 2 MB

text file size, whose readings are as

follows 260750 for Rabin Karp and

175250 for IRK algorithm.

RK IRK

Figure 9: depicts the comparison of

Rabin Karp and IRK algorithms using

file size 2MB.

X.II Example of IRK algorithm:

T= ABBCABCA //text

P= BCA //pattern

q=13(say)

d=256 (for character)

Hash(P)= (66 * 2562 + 67 * 2561 + 65)

mod q

p = 0 // hash value for pattern

q_p = 334045 //quotient

A B B C A B C A

hash(ABB) =

0 // same

hash q_t0 = 328965 //but quotient

different

A B B C A B C A
hash(BBC) =
1

q_t1 = 334026

A B B C A B C A
hash(BCA) =
0
q_t2 =

334045

A B B C A B C A

hash(CAB)

= 7

// both

q_t3 = 339047 matched

A B B C A B C A

A hash(ABC) = 11

q_t1 = 328984

A B B C A B C A

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1801645 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 818

hash(BCA) =
0

// hash
matched

q_t2 = 334045 // quotient matched

Since the hash =0 and quotient = 334045

both matched. But the pattern BCA is

matched. And hash(ABB) = 0 and quotient

= 328965, which has not matched, ABB is

not compared.

X.3 Time Complexity

In Best case doesn‟t differ a lot from the

original Rabin Karp algorithm, but the in

average case complexity can be amended

significantly. Due to imposing of

constraint of matching the quotient post

hashing as well as the hash value of the

textbook portion of size m, reduction in

comparison has been realized. Which cuts

the time complexity during worst case

from O ((n-m+1) m) to O (nm+1). This

time complexity is hugely depends on the

selected prime number, q.

XI. CONCLUSION AND FUTURE

SCOPES

This version of the Rabin Karp algorithm

can be used with Genetic Algorithm in

order to look for a

pattern in huge text files of size

>500MB.Implementation using GA can

produce an improved variation of this

algorithm for more sophisticated exercise

and can constitute the search even faster

by applying the genetic operators such as

selection, mutation, crossover etc. Our

Future scope lies among this thinking that

it could be possible for us to implement

this IRK algorithm using GA for optimize

the practice analysis. Further analysis and

improvement of this algorithm is welcome

from any scholars.

REFERENCES

[1] Richard M. Karp, Michael O. Rabin,

Efficient Randomized patternmatching

algorithms, International Business Machine,

1987

[2] Roberto Ierusalimschy, A Text

Pattern-Matching Tool based on Parsing

Expression Grammars, 2008

[3] Rajesh S., Prathima S., Reddy L.S.S.,

Unusual Pattern Detection in DNA

Database Using KMP Algorithm,

International Journal of Computer

Applications (0975 - 8887), Volume 1 –

No. 22, 2010

[4] Jiyeon Choi, Myka R. Ababon, Mai

Soliman, Yong Lin, Linda M.

Brzustowicz, Paul G. Matteson, James H.

Millonig, Autism Associated Gene,

ENGRAILED2, and Flanking Gene Levels

Are Altered in Post-Mortem Cerebellum-

PLOS ONE, 2014

[5] Gupta, A.R., and State, M.W.

(2007) Recent Advances in the Genetics of

Autism. Biological Psychiatry 61, 429-

437.

[6] Donald E. Knuth, James H. Morris,

Jr And Vaughan R. Pratt, FAST

PATTERN MATCHING IN STRINGS,

Vol. 6, No. 2, June 1977, SIAM J.

COMPUT.

[7]R. Boyer and J. Moore, A fast string

searching algorithm”,

CACM, 20, 10, 1977, pp.262-272.Ashish

ProsadGope et al, / (IJCSIT) International

Journal of Computer Science and

Information Technologies, Vol. 5 (4) ,

2014, 5450-5457www.ijcsit.com 5455

[8] Christopher B. Kingsley,

Identification of Causal Sequence Variants

of Disease in the Next Generation

Sequencing Era, Methods in Molecular

Biology, Volume 700, 2011, pp 37-46.

[9] Melissa Conrad Stoppler MD (2014,

Jan 15). Genetic

Diseases Overview [Online].

Available:

http://www.medicinenet.com/genetic_disea

se/article.htm.

http://www.ijcsit.com/
http://www.ijcsit.com/
http://www.medicinenet.com/genetic_disease/article.htm
http://www.medicinenet.com/genetic_disease/article.htm

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1801645 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 819

[10] DNA Sequencing, Wikipedia,

http://en.wikipedia.org/

wiki/Genetic_analysis#DNA_Sequencing

[11] Biological Databases,

http://biotech.fyicenter.com

/resource/Biological_databases.html

[12] Michael T. Goodrich; Roberto

Tamassia; David M. Mount, 2011. Data

Structures and Algorithms in C++, Second

Edition

[13] Akhtar Rasool Amrita Tiwari et al,

(IJCSIT) Vol. 3 (2) , 2012,3394 – 3397,

International Journal of Computer Science

and Information Technologies.

[14] Sedgewick, Robert, 1984-Algorithms.,

ADDISON-WESLEY PUBLISHING

COMPANY 15. Thomas H. Cormen, Charles

E. Leiserson, Ronald L. Rivest, Clifford

Stein et al. 2009, 3RD edition, Introduction

to Algorithms, MIT Press.

[16] Dan Gus field. COMPUTER

SCIENCE AND

COMPUTATIONALBIOLOGY, University

of California, Davis, 2007

[17] Boyer-Moore Tutorial, The

University of California, Davis,

http://www.cs.ucdavis.edu/~gusfield/

cs224f11/ bnotes.pdf, 2007 .

http://en.wikipedia.org/
http://biotech.fyicenter.com/
http://www.cs.ucdavis.edu/~gusfield/

