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Abstract: 

In this paper we deal with affine control systems on a non-compact Lie group cx+e group. First we 

study topological properties of the state space Ef(1) and the automorphism orbit of Ef(1). Affine control system, 

non-compact Lie group state space Ef(1). Affine control systems on the generalized Heisenberg Lie groups are 

studied. Affine algebra, automorphism.  

 

Introduction: 

The purpose of this paper affine control systems on some specific lie group is called cx+e group by 

relating to associated bilinear parts. 

 Related to the affine control system on lie groups, in Ef(1). The authors Ayala and San Martin have the 

subalgebra of the Lie algebra Ef(G) generated by the vector fields of a linear control system the drift vector 

field X is an infinitesimal automorphism i.e.,(𝑋𝐾)𝐾∈𝑀  is a one-parameter subgroup of Aut(G); have lifted the 

system itself to a right-invariant control system on Lie group Ef(1) for compact connected and non-compact 

semi-simple Lie group. 

 The affine control systems on a non-compact Lie group cx+e group have been investigated and given 

characterization. 

1. Affine Control Systems On Lie Groups 

If G is a connected Lie group with Lie algebra L(G), the affine group Ef(G) of G is the semi-direct 

product of Aut(G) with G itself  i.e.,Ef(G) = Aut(G)× G. The group operation of Ef(G) . 

The identity element of Aut  𝐺  and e denotes the neutral element of G, then the group identity of 

Ef 𝐺  𝑖𝑠  1, 𝑎  and (𝛷−1, 𝛷−1(−1))  In the invers of  𝛷,  ∈  Ef 𝐺 . Hence, h  →  1,   and 𝛷 → (𝛷, 𝑎) 

embed G into Ef 𝐺  and Aut 𝐺  into Af 𝐺   respectively. Therefore, G and Aut 𝐺  are subgroups of Ef 𝐺 . 

The natural transitive action             

                                      Ef 𝐺 × G → G 

(𝛷,1).2 → 1𝛷(2) 
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Where (𝛷,1) ∈ Ef(G) and 2 ∈ G. 

“Affine in the control” is used to describe class system.  

𝑑𝑥

𝑑𝑡
 = n(x) +h(x)v is considered affine control. 

Theorem:1 

Let   =  𝐸𝑓 1 , 𝐷  be an affine control system. Then, the state space Ef 1  is a locally compact 

Hausdorff space. 

Proof: 

Ef 1  is a Hausdorff space is a lie group. The compactness for a given x ∈ Ef 1  and neighborhood Z of 

x, the existence of some neighborhood Z of x such that. The topology on Ef 1  half plane is homomorphic to 

the standard topology of 𝑀2. 

Therefore, ∀ x ∈  Ef(1), the neighborhood Z of x is homeomorphic to an open ball.For each 

neighborhood Z of x, there is neighborhood W of x such x ∈ W. Since W is also homeomorphic to an open ball 

the closure of U is a closed ball. 

Theorem:2 

 The automorphism orbit of the state space Ef(1) is dense. 

Proof: 

The set  

 J  = exp (cf(1) – [cf(1), cf(1)]) 

Aut(Ef(1))-orbit of Ef(1).  The exponential mappingfrom the tangent plane to the surface of 

diffeomorphism. Then two elements 1,2 ∈ J the line segment 12 which is parallel to [Ef(1), Ef(1)], 

    𝛷 : J → J 

Defined by 

                                           1 → 𝑘11+ 𝑘2=J,𝑘1,𝑘2 ∈ 𝑀 

 Also it is possible to connect those segments with the perpendicular segments  .Aut(Ef(1)) orbits open 

the center[Ef(1), Ef(1)] for any element x ∈ [Ef(1), Ef(1)] and every neighborhood Q (x, 𝛾) of x have some 

element of Ef(1) different then x. 

   Ef(1) – [Ef(1), Ef(1)] = Ef(1). 

Theorem:3 

 The affine control system 𝛴𝑐  on the state space Ef(1) is not have any equilibrium point and the 

associated bilinear system 
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 𝛴𝑐  = (Ef(1), 𝐷𝑒) is control on the Aut (Ef(1)) orbit. 

Proof: 

 For the control not having equilibrium point is necessary. Now consider the associated  bilinear system 

 𝛴𝑒= (Ef(1), 𝐷𝑒  is control on the Aut(Ef(1)) orbit. 

 𝛷𝛿 :𝜕L(G) × L(G)→ 𝜕L(G) × L(G) 

 𝛷𝛿  = Id × 
1

𝛿
 ∀D + X ∈ 𝑐f(1) = 𝜕𝐿(𝐺) × 𝐿(𝐺),we have 

𝛷𝛿(D+X) = D 
1

𝛿
 X. 

Since complete under the small permutations sufficiently large 𝛿, 𝛷𝛿(𝛴𝑐) is control on S(1𝑒 ,1) – [Ef(1), 

Ef(1)]. Therefore, since normally control finite system are open on S(1𝑒 ,1). The system𝛷𝛿(𝛴𝑐) is also control 

on B(1𝑒 ,1) – [Ef(1), Ef(1)]. Since the state space is connected, the affine system 𝛴𝑐  is control on Ef(1). 

Lemma :1 

 For the generalized Heisenberg lie group H =: H(W, X, ∝), the map 𝜑𝛿  =  𝛿Id ×  𝛿𝐼𝑑, i.e., 𝛷𝛿(w,g) = 

( 𝛿w,𝛿𝑔) is an automorphism. 

Proof: 

The mapping 𝛷𝛿  is 1-1 and onto its image. 

𝛷𝛿((𝑤1,𝑔1) * (𝑤2,𝑔2)) = 𝛷𝛿(𝑤1 + 𝑤2, 𝑔1+𝑔2+
1

2
𝛼(𝑤1,𝑤2)) 

= ( 𝛿Id𝑤1+  𝛿Id𝑤2,𝛿Id𝑔1 + 𝛿Id𝑔2+
𝛿𝐼𝑑

2
 𝛼(𝑤1,𝑤2)) 

by bilinearity of 𝛼 

( 𝛿𝐼d𝑤1+ 𝛿Id𝑤2,𝛿𝐼d𝑔1+𝛿Id𝑔2+
1

2
𝛼( 𝛿𝑤1, 𝛿𝑤2)) 

= ( 𝛿Id𝑤1,𝛿Id𝑔1) * ( 𝛿Id𝑤2,𝛿Id𝑔2) 

= 𝛷𝛿 (𝑤1,𝑔1) * 𝛷𝛿(𝑤2, 𝑔2). 

This proves that 𝛷𝛿  is an automorphism. 

Lemma:2 

Let H be a generalized Heisenberg Lie group. Then there exist a dense Aut(H)-orbit. 

Proof: 

 The set 𝜑 = : exp (L(H)-[L(H), L(H)]) = H-[H, H] 
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Is an Aut(H)-orbit of H. The exponential map is a global diffeomorphism for simply connected nilpotent Lie 

groups. Two elements X,Y ∈ 𝜑  the line segment mod XY parallel to [H,H], can be connected via a line 

segment by taking once X as a initial point so that the function that connection 𝑓𝑠 : 𝜑 → 𝜑 defined by  X → 𝑘1X 

+ 𝑘2 = Y, where 𝑘1,𝑘2 ∈ IM, is an automorphism. Actually it is possible to connect these segments with the 

perpendicular segments to each oyher via the same way. That Aut(H)-orbit of H is 𝜑 is open. In fact, if dimZ = 

1 the center [H,H] forms a line for any Heisenberg group [X,Y] = G, X, Y,G ∈ L(H). For the density, any x ∈  

[H,H] every ball B(x, 𝛾) 

                            B(x, 𝛾) ∩ H – [H, H] ≠ ∅. 

Thus, H – [H, H] = H. 

Theorem:4 

Let G be a non-compact connected Lie group and L(G) be its Lie algebra. Then, compact subsets of G 

are not 𝐺𝛴-invariant, if the control system on G is an invariant system. 

Proof: 

For ∀x ∈ G, ∀X ∈ L(G) and ∀k ∈ IM, the differentiable curve 𝜌𝑥 (;x) : (c,e) ⊂ IM → G is defined 

𝜌𝑥(k,x) = 𝑋𝐾(x). Assume that F ⊂ G is a compact and 𝐺𝛴- invariant subset. Each vector field X ∈ L(G) is 

complete. Consider any open covering  

E = {𝑉𝑖 \ i ∈ / 𝑍+}. Therefore, ∀𝑖  𝛾x(k, 𝑉𝑖) is an open covering of K, since 𝑋𝑘(x), ∀𝑥 ∈ 𝐾. K is compact, 

therefore it can be covered by a finite subfamily of 𝐴𝛿  = {𝛿x(k,𝑉𝑖 )| i ∈ /𝑍+}. Then, inverse images of the 

elements of 𝐴𝛿  covers IM, which is a contradiction. 
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