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1   INTRODUCTION 

Levine [1] introduced the concept of generalized 

closed sets (briefly g - closed) in topological spaces.  In 1983, 

A.S.Mashhour et al [2] introduced the notion of supra 

topological spaces and studied S-S continuous functions and 

S* - continuous functions. In 2010, O.R.Sayed and Takashi 

Noiri [4] introduced supra b - open sets and supra b - 

continuity on topological spaces. In 2018, P.Priyadharsini et 

al. [3] introduced supra g*b 𝜔  - closed sets in supra 

topological spaces.   

In this paper, we introduce the concepts of supra 

g*b𝜔 - continuous maps in supra topological spaces.  

2 PRELIMINARIES 

Definition 2.1 [2, 4] A subfamily 𝜇 of X is said to be a supra 

topology on X if  

(i) X, 𝜑 ∈ 𝜇 

(ii)  if Ai ∈ 𝜇 for all i, then ∪Ai ∈ 𝜇 

The pair (X, 𝜇) is called supra topological space.  The 

elements of 𝜇  are called supra open sets in (X, 𝜇 ) and 

complement of a supra open set is called a supra closed set.   

Definition 2.2 [2] The supra closure of a set A is defined as 

𝑐𝑙𝜇 (𝐴) = ∩{B : B is supra closed and A ⊆ B} and the supra 

interior of a set A is defined as 𝑖𝑛𝑡𝜇 (𝐴) = ∪{ B : B is supra 

open and A ⊇ B}. 

Throughout this paper we shall denote by (X, 𝜇) a 

supra topological space.  For any subset A  X, 𝑖𝑛𝑡𝜇 (𝐴) and 

𝑐𝑙𝜇 (𝐴) denote the supra interior of A and the supra closure of 

A with respect to 𝜇.   

We shall require the following known definitions: 

Definition 2.3 [2] Let (X, 𝜇) be a supra topological spaces.  A 

subset A of X is called 

 supra semi - open if A  𝑐𝑙𝜇 ( 𝑖𝑛𝑡𝜇 (A)) and  

supra semi - closed if  𝑖𝑛𝑡𝜇 (𝑐𝑙𝜇 (A))  A 

 supra pre open if A  𝑖𝑛𝑡𝜇 ( 𝑐𝑙𝜇 (A)) and  

supra pre closed if 𝑐𝑙𝜇 (𝑖𝑛𝑡𝜇 (A))  A 

 supra  - open if A  𝑖𝑛𝑡𝜇 (𝑐𝑙𝜇 (𝑖𝑛𝑡𝜇 (A))) and supra  - 

closed if 𝑐𝑙𝜇 (𝑖𝑛𝑡𝜇 (𝑐𝑙𝜇 (A)))  A 

 supra regular open if A = 𝑖𝑛𝑡𝜇 ( 𝑐𝑙𝜇 (A)) and supra 

regular closed if A = 𝑐𝑙𝜇 (𝑖𝑛𝑡𝜇 (A)) 

 supra b - open if A  𝑐𝑙𝜇 (𝑖𝑛𝑡𝜇 (A)) ∪ 𝑖𝑛𝑡𝜇 (𝑐𝑙𝜇 (A)) and 

supra b - closed if 𝑐𝑙𝜇 (𝑖𝑛𝑡𝜇 (A)) ∩ 𝑖𝑛𝑡𝜇 (𝑐𝑙𝜇 (A))  A. 

Let (X, 𝜇) or simply X denote a supra topological 

space.  For any subset A  X, the intersection of all supra b - 

closed sets containing A is called the supra b - closure of A, 

denoted by 𝑏𝑐𝑙𝜇 (A).  The union of all b-open sets contained in 

A is called the supra b - interior of A, denoted by 𝑏𝑖𝑛𝑡𝜇 (A).   

Definition 2.4: [2] Let (X, 𝜏) be a topological space and 𝜇 be 

a supra topology on X. We call 𝜇 a supra topology associated 

with 𝜏 if  𝜏 ⊆ 𝜇.  

Definition 2.5 [2] A set A of a supra topological space (X, 𝜇) 

is called supra generalized semi closed (briefly 𝑔𝑠𝜇  - closed) 

if 𝑠𝑐𝑙𝜇 (A)  U whenever A  U and U is supra open in (X, 

𝜇).  
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Definition 2.6 [3] A set A of a supra topological space (X, 𝜇) 

is called supra generalized star b omega closed (briefly, 

g*b𝜔𝜇  - closed) if 𝑏𝑐𝑙𝜇 (A)  U whenever A  U and U is 

supra gs - open in (X, 𝜇). 

3 g*b𝝎𝝁- CONTINUOUS MAPS 

Definition 3.1 Let (X, 𝜏) and (Y, 𝜎) be two topological spaces 

and 𝜇 be an associated supra topology with 𝜏.  A map f : (X, 

𝜏) → (Y, 𝜎) is supra generalized star b omega - continuous 

(briefly, g*b𝜔𝜇  - continuous) if f
-1

(U) is g*b𝜔𝜇 - closed in  

(X, 𝜇) for each closed set U in (Y, 𝜎). 

Theorem 3.2 Every continuous map is g*b𝜔𝜇  - continuous.  

Proof: Let f : (X, 𝜏) → (Y, 𝜎) be continuous.  Let U be a 

closed set in (Y, 𝜎 ).  Then f
-1

(U) is closed in  

(X, 𝜏).  Since 𝜇 is associated with supra topology 𝜏 then 𝜏 ⊆ 

𝜇. Therefore f
-1

(U) is closed in (X, 𝜇) and it is g*b𝜔𝜇 - closed, 

f is g*b𝜔𝜇 - continuous. 

The converse of the above theorem is not true in 

general as can be seen from the following example. 

Example 3.3 Let X = Y = {a, b, c} with the topologies 𝜏  = {φ, 

X, {a}, {a, b}} and 𝜇 = {φ, Y, {a}, {a, b}, {a, c}}.  Let f : (X, 

𝜏) → (Y, 𝜎) be a map defined by f(a) = c, f(b) = a, f(c) = b.  

Then f is g*b𝜔𝜇  - continuous but not continuous, since {c} is 

g*b𝜔𝜇  - closed but f
-1

({c}) = {a} is not closed. 

Theorem 3.4 Every supra continuous map is g*b 𝜔𝜇 - 

continuous.  

Proof: Obvious. 

The converse of the above theorem is not true in 

general as can be seen from the following example. 

Example 3.5 In example 3.3, f is g*b𝜔𝜇  - continuous but not 

supra continuous, since {c} is g*b𝜔𝜇  - closed but f
-1

({c}) = 

{a} is not supra closed. 

Theorem 3.6 The following are equivalent for a map f : (X, 𝜏) 

→ (Y, 𝜎) and 𝜇 be an associated supra topology with 𝜏. 

(a) f is g*b𝜔𝜇 - continuous 

(b) f
-1

(A) is g*b𝜔𝜇  - open for each open set A in (Y, 𝜎). 

Theorem 3.7 If f : (X, 𝜏) → (Y, 𝜎) is g*b𝜔𝜇 - continuous then 

f(g*b𝜔𝜇 cl(A))  cl(f(A)) for every subset A of (X, 𝜏). 

Proof: Since A  f
-1

f(A), we have A  f
-1

(cl(f(A))).  Now 

cl(f(A)) is a closed set in (Y, 𝜎 ) and hence  

f
-1

(cl(f(A))) is a g*b 𝜔𝜇 - closed set containing A.  

Consequently, g*b 𝜔𝜇 cl(A)  f
-1

(cl(f(A))).  Therefore 

f(g*b𝜔𝜇 cl(A))  ff
-1

(cl(f(A)))  cl(f(A)).   

Theorem 3.8 The following are equivalent for a map f : (X, 𝜏) 

→ (Y, 𝜎) 

(a). For every subset A of (X, 𝜏), f(g*b𝜔𝜇 cl(A))  cl(f(A)). 

(b). For every subset B of (Y, 𝜎 ), g*b 𝜔𝜇 cl(f
-1

(B))   

f
-1

(cl(B)). 

Proof: Suppose that (a) holds and let B be any subset of Y.  

Replacing A by f
-1

(B) we get from (a) f(g*b𝜔𝜇 cl(f
-1

(B)))  

cl(ff
-1

(B))  cl(B).  Hence g*b𝜔𝜇 cl(f
-1

(B))  f
-1

(cl(B)). 

Conversely, suppose that (b) holds and let B = f(A) 

where A is a subset of X.  Then g*b𝜔𝜇 cl(A)  g*b𝜔𝜇 cl(f
-

1
(B))  f

-1
(cl(B)).  Therefore f(g*b𝜔𝜇 cl(A))  cl(B) = cl 

(f(A)).   

 

Definition 3.9 Let (X, 𝜏) and (Y, 𝜎) be two topological spaces 

and 𝜇 be an associated supra topology with 𝜏.  A map f : (X, 

𝜏) → (Y, 𝜎) is called g*b𝝎𝝁- irresolute if f
-1

(U) is g*b𝜔𝜇 - 

closed in  

(X, 𝜇) for every g*b𝜔𝜇 - closed set U in (Y, 𝜎). 

Theorem 3.10 A map f : (X, 𝜏) → (Y, 𝜎) is g*b𝜔𝜇 - irresolute 

if and only if f
-1

(V) is g*b 𝜔𝜇 - open in  

(X, 𝜇) for every g*b𝜔𝜇  - open set V in (Y, 𝜎). 

Theorem 3.11 Every g*b𝜔𝜇 - irresolute map is g*b𝜔𝜇 - 

continuous. 

Proof: Let U be any closed set in (Y, 𝜎).  Then U is a g*b𝜔𝜇 - 

closed set in (Y, 𝜎).  Since f is g*b𝜔𝜇 - irresolute, f
-1

(U) is 

g*b𝜔𝜇  - closed in (X, 𝜏).  Since 𝜇  is associated with supra 

topology 𝜏 then 𝜏 ⊆ 𝜇. Therefore f
-1

(U) is g*b𝜔𝜇 - closed in 

(X, 𝜇).  Therefore f is g*b𝜔𝜇 - continuous. 

Definition 3.12: A supra topological space (X, 𝜇) is called 

g*b𝝎
𝝁Tc - space if every g*b𝜔𝜇 - closed subset of (X, 𝜇) is 

closed in (X, 𝜇). 

Theorem 3.13 Let f : (X, 𝜏) → (Y, 𝜎) be a g*b𝜔𝜇 - continuous 

map where (X, 𝜇) is a g*b𝜔
𝜇Tc - space.  Then f is continuous.  
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Proof:  Let U be any closed set in (Y, 𝜎).  Since f : (X, 𝜏) → 

(Y, 𝜎) is g*b𝜔𝜇 - continuous, f
-1

(U) is g*b𝜔𝜇 - closed in (X, 

𝜏).  Since 𝜇 is associated with supra topology 𝜏 then 𝜏 ⊆ 𝜇 . 

Therefore f
-1

(U) is g*b𝜔𝜇 - closed in (X, 𝜇). Since (X, 𝜇) is a 

g*b𝜔
𝜇 Tc - space, f

-1
(U) is closed in (X, 𝜇 ).  Hence f is 

continuous. 

Theorem 3.14 If (X, 𝜇) is a g*b𝜔
𝜇Tc - space then g*b𝜔𝜇 cl(B) 

= cl(B) for each subset B of (X, 𝜇). 

 

Proof: Since (X, 𝜇) is a g*b𝜔
𝜇Tc - space, every g*b𝜔𝜇 - closed 

set is closed.  Since every closed set is g*b𝜔𝜇 - closed set in 

(X, 𝜇), G*b𝜔𝜇C(X, 𝜇) = C(X, 𝜇).  Hence g*b𝜔𝜇 cl(B) = cl(B) 

for each subset B of (X, 𝜇).  

Theorem 3.15 If (X, 𝜇) is a g*b𝜔
𝜇Tc - space then for each x ∈ 

X either {x} is supra gs - closed or supra open. 

Proof: Let x ∈ X and suppose {x} is not supra gs - closed in 

(X, 𝜏).  Then X \ {x} is not supra gs - open.  Hence X is the 

only supra gs - open set containing X \ {x}.  This implies that 

X \ {x} is a g*b𝜔𝜇 - closed set of (X, 𝜏).  Since (X, 𝜇) is a 

g*b 𝜔
𝜇 Tc - space, X \ {x} is a closed set in (X, 𝜇 ) or 

equivalently {x} is open  in (X, 𝜇).  
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