ON SUPRA g*bω - CONTINUOUS MAPS IN SUPRA TOPOLOGICAL SPACES

Dr. P. Priyadharsini
Assistant Professor, Department of Mathematics,
Vivekananda College of Arts and Sciences for Women (Autonomous),
Elayampalayam, Namakkal, Tamil Nadu.

Dr. A. Parvathi
Professor, Department of Mathematics,
Avinashilingam Institute for Home Science and
Higher Education for Women University,
Coimbatore, Tamil Nadu.

ABSTRACT:

In this paper, we introduce the concepts of supra g*bω - continuous maps and study their basic properties in supra topological spaces.

Keywords: supra topological spaces, supra g*bω - continuous maps, supra g*bω - irresolute maps.

1 INTRODUCTION

In this paper, we introduce the concepts of supra g*bω - continuous maps in supra topological spaces.

2 PRELIMINARIES

Definition 2.1 [2, 4] A subfamily μ of X is said to be a supra topology on X if

(i) \(X, \varphi \in \mu \)

(ii) if \(A_i \in \mu \) for all i, then \(\bigcup A_i \in \mu \)

The pair \((X, \mu)\) is called supra topological space. The elements of \(\mu \) are called supra open sets in \((X, \mu)\) and complement of a supra open set is called a supra closed set.

Definition 2.2 [2] The supra closure of a set \(A \) is defined as \(cl^\mu(A) = \bigcap \{B : B \text{ is supra closed and } A \subseteq B\} \) and the supra interior of a set \(A \) is defined as \(int^\mu(A) = \bigcup \{B : B \text{ is supra open and } A \supseteq B\} \).

Throughout this paper we shall denote by \((X, \mu)\) a supra topological space. For any subset \(A \subseteq X \), \(int^\mu(A) \) and \(cl^\mu(A) \) denote the supra interior of \(A \) and the supra closure of \(A \) with respect to \(\mu \).

We shall require the following known definitions:

Definition 2.3 [2] Let \((X, \mu)\) be a supra topological spaces. A subset \(A \) of \(X \) is called

- supra semi-open if \(A \subseteq cl^\mu(int^\mu(A)) \) and \(supra \text{ semi-closed if } int^\mu(cl^\mu(A)) \subseteq A \)
- supra pre-open if \(A \subseteq int^\mu(cl^\mu(A)) \) and \(supra \text{ pre-closed if } cl^\mu(int^\mu(A)) \subseteq A \)
- supra α-open if \(A \subseteq int^\mu(cl^\mu(int^\mu(A))) \) and supra α-closed if \(cl^\mu(int^\mu(cl^\mu(A))) \subseteq A \)
- supra regular open if \(A = int^\mu(cl^\mu(A)) \) and supra regular closed if \(A = cl^\mu(int^\mu(A)) \)
- supra b-open if \(A \subseteq cl^\mu(int^\mu(A)) \cup int^\mu(cl^\mu(A)) \) and supra b-closed if \(cl^\mu(int^\mu(A)) \cap int^\mu(cl^\mu(A)) \subseteq A \).

Let \((X, \mu)\) or simply \(X \) denote a supra topological space. For any subset \(A \subseteq X \), the intersection of all supra b-closed sets containing \(A \) is called the supra b-closure of \(A \), denoted by \(bcl^\mu(A) \). The union of all b-open sets contained in \(A \) is called the supra b-interior of \(A \), denoted by \(bint^\mu(A) \).

Definition 2.4 [2] Let \((X, \tau)\) be a topological space and \(\mu \) be a supra topology on \(X \). We call \(\mu \) a supra topology associated with \(\tau \) if \(\tau \subseteq \mu \).

Definition 2.5 [2] A set \(A \) of a supra topological space \((X, \mu)\) is called supra generalized semi closed (briefly gs^\mu - closed) if \(scl^\mu(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is supra open in \((X, \mu)\).
Definition 2.6 [3] A set A of a supra topological space (X, μ) is called **supra generalized star b omega closed** (briefly, $g^*b\omega^\mu$ - closed) if $bcl^\mu(A) \subseteq U$ whenever $A \subseteq U$ and U is supra gs - open in (X, μ).

3 $g^*b\omega^\mu$ - CONTINUOUS MAPS

Definition 3.1 Let (X, τ) and (Y, σ) be two topological spaces and μ be an associated supra topology with τ. A map $f : (X, \tau) \rightarrow (Y, \sigma)$ is supra **generalized star b omega - continuous** (briefly, $g^*b\omega^\mu$ - continuous) if $f^\dagger(U)$ is $g^*b\omega^\mu$ - closed in (X, μ) for each closed set U in (Y, σ).

Theorem 3.2 Every continuous map is $g^*b\omega^\mu$ - continuous.

Proof: Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be continuous. Let U be a closed set in (Y, σ). Then $f(U)$ is closed in (X, τ). Since μ is associated with supra topology τ then $\tau \subseteq \mu$. Therefore $f^\dagger(U)$ is closed in (X, μ) and it is $g^*b\omega^\mu$ - closed, f is $g^*b\omega^\mu$ - continuous.

The converse of the above theorem is not true in general as can be seen from the following example.

Example 3.3 Let $X = Y = \{a, b, c\}$ with the topologies $\tau = \{\emptyset, X, \{a\}, \{a, b\}\}$ and $\mu = \{\emptyset, Y, \{a\}, \{a, b\}, \{a, c\}\}$. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be a map defined by $f(a) = c$, $f(b) = a$, $f(c) = b$. Then f is $g^*b\omega^\mu$ - continuous but not continuous, since $\{c\}$ is $g^*b\omega^\mu$ - closed but $f^\dagger(\{c\}) = \{a\}$ is not closed.

Theorem 3.4 Every supra continuous map is $g^*b\omega^\mu$ - continuous.

Proof: Obvious.

The converse of the above theorem is not true in general as can be seen from the following example.

Example 3.5 In example 3.3, f is $g^*b\omega^\mu$ - continuous but not supra continuous, since $\{c\}$ is $g^*b\omega^\mu$ - closed but $f^\dagger(\{c\}) = \{a\}$ is not supra closed.

Theorem 3.6 The following are equivalent for a map $f : (X, \tau) \rightarrow (Y, \sigma)$ and μ be an associated supra topology with τ.

(a) f is $g^*b\omega^\mu$ - continuous
(b) $f^\dagger(A)$ is $g^*b\omega^\mu$ - open for each open set A in (Y, σ).

Theorem 3.7 If $f : (X, \tau) \rightarrow (Y, \sigma)$ is $g^*b\omega^\mu$ - continuous then $f(g^*b\omega^\mu cl(A)) \subseteq cl(f(A))$ for every subset A of (X, τ).

Proof: Since $A \subseteq f^\dagger(f(A))$, we have $A \subseteq f^\dagger(cl(f(A)))$. Now $cl(f(A))$ is a closed set in (Y, σ) and hence $f^\dagger(cl(f(A)))$ is a $g^*b\omega^\mu$ - closed set containing A. Consequently, $g^*b\omega^\mu cl(A) \subseteq f^\dagger(cl(f(A)))$. Therefore $f(g^*b\omega^\mu cl(A)) \subseteq f^\dagger(cl(f(A))) \subseteq cl(f(A))$.

Theorem 3.8 The following are equivalent for a map $f : (X, \tau) \rightarrow (Y, \sigma)$.

(a) For every subset A of (X, τ), $f(g^*b\omega^\mu cl(A)) \subseteq cl(f(A))$.
(b) For every subset B of (Y, σ), $g^*b\omega^\mu cl(f^\dagger(B)) \subseteq f^\dagger(cl(B))$.

Proof: Suppose that (a) holds and let $B = f(A)$ where A is a subset of X. Then $g^*b\omega^\mu cl(A) \subseteq g^*b\omega^\mu cl(f^\dagger(B)) \subseteq f^\dagger(cl(B))$. Therefore $f(g^*b\omega^\mu cl(A)) \subseteq cl(B) = cl(f(A))$.

Conversely, suppose that (b) holds and let $B = f(A)$ where A is a subset of X. Then $g^*b\omega^\mu cl(A) \subseteq g^*b\omega^\mu cl(f^\dagger(B)) \subseteq f^\dagger(cl(B))$. Therefore $f(g^*b\omega^\mu cl(A)) \subseteq cl(f(A))$.

Definition 3.9 Let (X, τ) and (Y, σ) be two topological spaces and μ be an associated supra topology with τ. A map $f : (X, \tau) \rightarrow (Y, \sigma)$ is called **$g^*b\omega^\mu$ - irresolute** if $f^\dagger(U)$ is $g^*b\omega^\mu$ - closed in (X, μ) for every $g^*b\omega^\mu$ - closed set U in (Y, σ).

Theorem 3.10 A map $f : (X, \tau) \rightarrow (Y, \sigma)$ is $g^*b\omega^\mu$ - irresolute if and only if $f(V)$ is $g^*b\omega^\mu$ - open in (X, μ) for every $g^*b\omega^\mu$ - open set V in (Y, σ).

Theorem 3.11 Every $g^*b\omega^\mu$ - irresolute map is $g^*b\omega^\mu$ - continuous.

Proof: Let U be any closed set in (Y, σ). Then U is a $g^*b\omega^\mu$ - closed set in (Y, σ). Since f is $g^*b\omega^\mu$ - irresolute, $f^\dagger(U)$ is $g^*b\omega^\mu$ - closed in (X, τ). Since μ is associated with supra topology τ then $\tau \subseteq \mu$. Therefore $f^\dagger(U)$ is $g^*b\omega^\mu$ - closed in (X, μ). Therefore f is $g^*b\omega^\mu$ - continuous.

Definition 3.12: A supra topological space (X, μ) is called $g^*b\omega^\mu T_c$ - space if every $g^*b\omega^\mu$ - closed subset of (X, μ) is closed in (X, μ).

Theorem 3.13 Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be a $g^*b\omega^\mu$ - continuous map where (X, μ) is a $g^*b\omega^\mu T_c$ - space. Then f is continuous.
Proof: Let U be any closed set in (Y, σ). Since $f : (X, \tau) \rightarrow (Y, \sigma)$ is $g^*b^\omega -$ continuous, $f^{-1}(U)$ is $g^*b^\omega -$ closed in (X, τ). Since μ is associated with supra topology τ then $\tau \subseteq \mu$. Therefore $f^{-1}(U)$ is $g^*b^\omega -$ closed in (X, μ). Since (X, μ) is a $g^*b^\omega T_c$ - space, $f^{-1}(U)$ is closed in (X, μ). Hence f is continuous.

Theorem 3.14 If (X, μ) is a $g^*b^\omega T_c$ - space then $g^*b^\omega \text{cl}(B) = \text{cl}(B)$ for each subset B of (X, μ).

Proof: Since (X, μ) is a $g^*b^\omega T_c$ - space, every $g^*b^\omega -$ closed set is closed. Since every closed set is $g^*b^\omega -$ closed set in (X, μ), $G^*b^\omega C(X, \mu) = C(X, \mu)$. Hence $g^*b^\omega \text{cl}(B) = \text{cl}(B)$ for each subset B of (X, μ).

Theorem 3.15 If (X, μ) is a $g^*b^\omega T_c$ - space then for each $x \in X$ either $\{x\}$ is supra gs - closed or supra open.

Proof: Let $x \in X$ and suppose $\{x\}$ is not supra gs - closed in (X, τ). Then $X \setminus \{x\}$ is not supra gs - open. Hence X is the only supra gs - open set containing $X \setminus \{x\}$. This implies that $X \setminus \{x\}$ is a $g^*b^\omega -$ closed set of (X, τ). Since (X, μ) is a $g^*b^\omega T_c$ - space, $X \setminus \{x\}$ is a closed set in (X, μ) or equivalently $\{x\}$ is open in (X, μ).

REFERENCE