ON SUPRA g*bω - CONTINUOUS MAPS IN SUPRA TOPOLOGICAL SPACES

Dr. P. Priyadharsini

Assistant Professor, Department of Mathematics, Vivekanandha College of Arts and Sciences for Women (Autonomous), Elayampalayam, Namakkal, Tamil Nadu.

ABSTRACT :

In this paper, we introduce the concepts of supra $g^*b\omega$ - continuous maps and study their basic properties in supra topological spaces.

Keywords : supra topological spaces, supra $g^*b \omega$ - continuous maps, supra $g^*b\omega$ - irresolute maps.

1 INTRODUCTION

Levine [1] introduced the concept of generalized closed sets (briefly g - closed) in topological spaces. In 1983, A.S.Mashhour et al [2] introduced the notion of supra topological spaces and studied S-S continuous functions and S* - continuous functions. In 2010, O.R.Sayed and Takashi Noiri [4] introduced supra b - open sets and supra b - continuity on topological spaces. In 2018, P.Priyadharsini et al. [3] introduced supra $g^*b \omega$ - closed sets in supra topological spaces.

In this paper, we introduce the concepts of supra $g^*b\omega$ - continuous maps in supra topological spaces.

2 PRELIMINARIES

Definition 2.1 [2, 4] A subfamily μ of X is said to be a *supra topology* on X if

(i) *X*, *φ* ∈ μ
(ii) if A_i ∈ μ for all i, then ∪A_i ∈ μ

The pair (X, μ) is called *supra topological space*. The elements of μ are called *supra open* sets in (X, μ) and complement of a supra open set is called a *supra closed* set.

Definition 2.2 [2] The *supra closure* of a set A is defined as $cl^{\mu}(A) = \cap \{B : B \text{ is supra closed and } A \subseteq B\}$ and the *supra*

Dr. A. Parvathi

Professor, Department of Mathematics, Avinashilingam Institute for Home Science and Higher Education for Women University, Coimbatore, Tamil Nadu.

interior of a set A is defined as $int^{\mu}(A) = \bigcup \{ B : B \text{ is supra} open and A \supseteq B \}$.

Throughout this paper we shall denote by (X, μ) a supra topological space. For any subset $A \subseteq X$, $int^{\mu}(A)$ and $cl^{\mu}(A)$ denote the supra interior of A and the supra closure of A with respect to μ .

We shall require the following known definitions:

Definition 2.3 [2] Let (X, μ) be a supra topological spaces. A subset A of X is called

- supra semi open if $A \subseteq cl^{\mu}$ (int^{μ} (A)) and supra semi closed if $int^{\mu}(cl^{\mu}(A)) \subseteq A$
- supra pre open if $A \subseteq int^{\mu}$ (cl^{μ} (A)) and supra pre closed if $cl^{\mu}(int^{\mu}(A)) \subseteq A$
- supra α open if $A \subseteq int^{\mu}(cl^{\mu}(int^{\mu}(A)))$ and supra α closed if $cl^{\mu}(int^{\mu}(cl^{\mu}(A))) \subseteq A$
- supra regular open if $A = int^{\mu} (cl^{\mu} (A))$ and supra regular closed if $A = cl^{\mu} (int^{\mu} (A))$
- supra b open if $A \subseteq cl^{\mu}(int^{\mu}(A)) \cup int^{\mu}(cl^{\mu}(A))$ and supra b - closed if $cl^{\mu}(int^{\mu}(A)) \cap int^{\mu}(cl^{\mu}(A)) \subseteq A$.

Let (X, μ) or simply X denote a supra topological space. For any subset $A \subseteq X$, the intersection of all supra b - closed sets containing A is called the *supra b* - *closure* of A, denoted by $bcl^{\mu}(A)$. The union of all b-open sets contained in A is called the *supra b* - *interior* of A, denoted by $bint^{\mu}(A)$.

Definition 2.4: [2] Let (X, τ) be a topological space and μ be a supra topology on X. We call μ a supra topology associated with τ if $\tau \subseteq \mu$.

Definition 2.5 [2] A set A of a supra topological space (X, μ) is called *supra generalized semi closed* (briefly gs^{μ} - *closed*) if $scl^{\mu}(A) \subseteq U$ whenever $A \subseteq U$ and U is supra open in (X, μ).

Definition 2.6 [3] A set A of a supra topological space (X, μ) is called *supra generalized star b omega closed* (briefly, $g^*b\omega^{\mu}$ - closed) if $bcl^{\mu}(A) \subseteq U$ whenever $A \subseteq U$ and U is supra gs - open in (X, μ) .

$3 g^* b \omega^{\mu}$ - CONTINUOUS MAPS

Definition 3.1 Let (X, τ) and (Y, σ) be two topological spaces and μ be an associated supra topology with τ . A map $f : (X, \tau) \rightarrow (Y, \sigma)$ is supra **generalized star b omega - continuous** (briefly, $g^*b\omega^{\mu}$ - continuous) if $f^{-1}(U)$ is $g^*b\omega^{\mu}$ - closed in (X, μ) for each closed set U in (Y, σ) .

Theorem 3.2 Every continuous map is $g^*b\omega^{\mu}$ - continuous.

Proof: Let $f : (X, \tau) \to (Y, \sigma)$ be continuous. Let U be a closed set in (Y, σ) . Then $f^{-1}(U)$ is closed in (X, τ) . Since μ is associated with supra topology τ then $\tau \subseteq \mu$. Therefore $f^{-1}(U)$ is closed in (X, μ) and it is $g^*b\omega^{\mu}$ - closed, f is $g^*b\omega^{\mu}$ - continuous.

The converse of the above theorem is not true in general as can be seen from the following example.

Example 3.3 Let $X = Y = \{a, b, c\}$ with the topologies $\tau = \{\varphi, X, \{a\}, \{a, b\}\}$ and $\mu = \{\varphi, Y, \{a\}, \{a, b\}, \{a, c\}\}$. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be a map defined by f(a) = c, f(b) = a, f(c) = b. Then f is $g^*b\omega^{\mu}$ - continuous but not continuous, since $\{c\}$ is $g^*b\omega^{\mu}$ - closed but $f^1(\{c\}) = \{a\}$ is not closed.

Theorem 3.4 Every supra continuous map is $g^*b \omega^{\mu}$ - continuous.

Proof: Obvious.

The converse of the above theorem is not true in general as can be seen from the following example.

Example 3.5 In example 3.3, f is $g^*b\omega^{\mu}$ - continuous but not supra continuous, since {c} is $g^*b\omega^{\mu}$ - closed but $f^1(\{c\}) = \{a\}$ is not supra closed.

Theorem 3.6 The following are equivalent for a map $f : (X, \tau) \rightarrow (Y, \sigma)$ and μ be an associated supra topology with τ .

- (a) f is $g^*b\omega^{\mu}$ continuous
- (b) $f^{1}(A)$ is $g^{*}b\omega^{\mu}$ open for each open set A in (Y, σ) .

Theorem 3.7 If $f : (X, \tau) \to (Y, \sigma)$ is $g^*b\omega^{\mu}$ - continuous then $f(g^*b\omega^{\mu}cl(A)) \subset cl(f(A))$ for every subset A of (X, τ) .

Proof: Since $A \subset f^1f(A)$, we have $A \subset f^1(cl(f(A)))$. Now cl(f(A)) is a closed set in (Y, σ) and hence $f^1(cl(f(A)))$ is a g*b ω^{μ} - closed set containing A. Consequently, g*b ω^{μ} cl(A) \subset $f^1(cl(f(A)))$. Therefore $f(g^*b\omega^{\mu}cl(A)) \subset ff^1(cl(f(A))) \subset cl(f(A))$.

Theorem 3.8 The following are equivalent for a map $f : (X, \tau) \rightarrow (Y, \sigma)$

- (a). For every subset A of (X, τ), f(g*b ω^{μ} cl(A)) \subset cl(f(A)).
- (b). For every subset B of (Y, σ), $g^*b \omega^{\mu} cl(f^1(B)) \subset f^1(cl(B))$.

Proof: Suppose that (a) holds and let B be any subset of Y. Replacing A by $f^{1}(B)$ we get from (a) $f(g^{*}b\omega^{\mu}cl(f^{1}(B))) \subset cl(ff^{1}(B)) \subset cl(B)$. Hence $g^{*}b\omega^{\mu}cl(f^{1}(B)) \subset f^{1}(cl(B))$.

Conversely, suppose that (b) holds and let B = f(A)where A is a subset of X. Then $g^*b\omega^{\mu}cl(A) \subset g^*b\omega^{\mu}cl(f^{-1}(B)) \subset f^{-1}(cl(B))$. Therefore $f(g^*b\omega^{\mu}cl(A)) \subset cl(B) = cl(f(A))$.

Definition 3.9 Let (X, τ) and (Y, σ) be two topological spaces and μ be an associated supra topology with τ . A map f : $(X, \tau) \rightarrow (Y, \sigma)$ is called $g^*b\omega^{\mu}$ - irresolute if f⁻¹(U) is $g^*b\omega^{\mu}$ closed in

 (X, μ) for every g*b ω^{μ} - closed set U in (Y, σ) .

Theorem 3.10 A map $f: (X, \tau) \to (Y, \sigma)$ is $g^*b\omega^{\mu}$ - irresolute if and only if $f^1(V)$ is $g^*b\omega^{\mu}$ - open in (X, μ) for every $g^*b\omega^{\mu}$ - open set V in (Y, σ) .

Theorem 3.11 Every $g^*b \omega^{\mu}$ - irresolute map is $g^*b \omega^{\mu}$ - continuous.

Proof: Let U be any closed set in (Y, σ) . Then U is a $g^*b\omega^{\mu}$ closed set in (Y, σ) . Since f is $g^*b\omega^{\mu}$ - irresolute, $f^1(U)$ is $g^*b\omega^{\mu}$ - closed in (X, τ) . Since μ is associated with supra topology τ then $\tau \subseteq \mu$. Therefore $f^1(U)$ is $g^*b\omega^{\mu}$ - closed in (X, μ) . Therefore f is $g^*b\omega^{\mu}$ - continuous.

Definition 3.12: A supra topological space (X, μ) is called ${}_{g^*b}\omega^{\mu}T_c$ - *space* if every $g^*b\omega^{\mu}$ - closed subset of (X, μ) is closed in (X, μ) .

Theorem 3.13 Let $f : (X, \tau) \to (Y, \sigma)$ be a $g^*b\omega^{\mu}$ - continuous map where (X, μ) is a ${}_{g^*b}\omega^{\mu}T_c$ - space. Then f is continuous.

Proof: Let U be any closed set in (Y, σ) . Since $f: (X, \tau) \rightarrow (Y, \sigma)$ is $g^*b\omega^{\mu}$ - continuous, $f^1(U)$ is $g^*b\omega^{\mu}$ - closed in (X, τ) . Since μ is associated with supra topology τ then $\tau \subseteq \mu$. Therefore $f^1(U)$ is $g^*b\omega^{\mu}$ - closed in (X, μ) . Since (X, μ) is a $_{g^*b}\omega^{\mu}T_c$ - space, $f^1(U)$ is closed in (X, μ) . Hence f is continuous.

Theorem 3.14 If (X, μ) is a ${}_{g^*b}\omega^{\mu}T_c$ - space then $g^*b\omega^{\mu}cl(B) = cl(B)$ for each subset B of (X, μ) .

Proof: Since (X, μ) is a $_{g^*b}\omega^{\mu}T_c$ - space, every $g^*b\omega^{\mu}$ - closed set is closed. Since every closed set is $g^*b\omega^{\mu}$ - closed set in (X, μ) , $G^*b\omega^{\mu}C(X, \mu) = C(X, \mu)$. Hence $g^*b\omega^{\mu}cl(B) = cl(B)$ for each subset B of (X, μ) .

Theorem 3.15 If (X, μ) is a ${}_{g^*b}\omega^{\mu}T_c$ - space then for each $x \in X$ either $\{x\}$ is supra gs - closed or supra open.

Proof: Let $x \in X$ and suppose $\{x\}$ is not supra gs - closed in (X, τ) . Then $X \setminus \{x\}$ is not supra gs - open. Hence X is the only supra gs - open set containing $X \setminus \{x\}$. This implies that $X \setminus \{x\}$ is a $g^*b\omega^{\mu}$ - closed set of (X, τ) . Since (X, μ) is a $g^*b\omega^{\mu}T_c$ - space, $X \setminus \{x\}$ is a closed set in (X, μ) or equivalently $\{x\}$ is open in (X, μ) .

REFERENCE

- 1. Levine. N, Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19, 89 – 96, 1970.
- Mashhour, A.S., Allam, A.A., Mahamoud, F.S. and Khedr, F.H., On supra topological spaces, Indian J.Pure and Appl. Math., No. 4, 14, 502 – 510, 1983.
- Priyadharsini, P. and Parvathi, A, On supra g*bω closed sets in supra Topological spaces, Shanlax Int. J. of Arts, Sci. and Human., Vol. 5 No. 3 , 247 -252, 2018.
- Sayed, O.R. and Takashi Noiri, on supra b open sets and supra b –Continuity on topological spaces, European Journal of pure and applied Mathematics, 3(2), 295 – 302, 2010.

