ON THE STABILITY OF SECOND ORDER LINEAR DIFFERENCE AND LINEAR FUNCTIONAL EQUATIONS

Sasikala. $T^{\# 1}$

Department of Mathematics, Vivekanandha College of Arts and Sciences for Women [Autonomous], Tiruchengode, Namakkal.

ABSTRACT:

In this work, On the stability of second order linear difference and linear
functional equations of the form:
$x_{n+2}+\gamma x_{n+1}+\delta x_{n}=0$,
$x_{n+2}+\gamma x_{n+1}+\delta x_{n}=p_{n}$
and

$$
x_{n+2}-\gamma_{n} x_{n+1}+\delta_{n} x_{n}=p_{n}
$$

are studied, where $\gamma, \delta \in \mathbb{R}$ and $p_{n}, \gamma_{n}, \delta_{n}$ are sequence of reals.

1. INTRODUCTION

On the stability problem for functional equations was replaced by stability of differential equations. The differential equation

$$
\begin{aligned}
r_{n}(t) x^{(n)}(t)+ & r_{n-1}(t) x^{(n-1)}(t)+\cdots \\
& +r_{1}(t) x^{\prime}(t)+r_{0}(t) x(t) \\
& +h(t)=0
\end{aligned}
$$

has the stability, if for given $\epsilon>0$, I be an

Karthikeyan. $N^{\# 2}$
Assistant professor, Department of Mathematics, Vivekanandha college of Arts and Sciences for Women [Autonomous], Tiruchengode, Namakkal.
interval and for any function g satisfying the differential inequality

$$
\mid r_{n}(t) x^{(n)}(t)+r_{n-1}(t) x^{(n-1)}(t)+
$$

$$
\cdots+r_{1}(t) x^{\prime}(t)+r_{0}(t) x(t)+h(t) \mid=\epsilon
$$

then there exists a solution $g_{0}(t)$ of the above equation such that

$$
\begin{gathered}
\left|g(t)-g_{0}(t)\right| \leq L(\epsilon) \quad \text { and } \\
\lim _{\epsilon \rightarrow 0} L(\epsilon)=0, t \in I
\end{gathered}
$$

We have discussed on the stability of second order linear differential and linear functional equations of the form:
$x^{\prime \prime}+r x^{\prime}+s x=0$ \qquad
and

$$
\begin{equation*}
x^{\prime \prime}+r x^{\prime}+s x=g(t) \tag{1.2}
\end{equation*}
$$

Where $a, b \in \mathbb{R}$. The objective of this work is to study the stability of discrete analogue of the equations (1.1) and (1.2) as
$x_{n+2}+\gamma x_{n+1}+\delta x_{n}=0$ \qquad
and
$x_{n+2}+\gamma x_{n+1}+\delta x_{n}=p_{n}$

Where $\gamma, \delta \in \mathbb{R}$ and p_{n} is a sequence of reals. Also, an effort is made to study on the stability of
$x_{n+2}+\gamma_{n} x_{n+1}+\delta_{n} x_{n}=p_{n}--------(1.5)$

DEFINITION: 1.1

The difference equation

$$
\begin{aligned}
r_{k}(n) x(n+k)+ & r_{k-1}(n) x(n+k-1)+\cdots \\
& +r_{1}(n) x(n+1) \\
& +r_{0}(n) x(n)+h(n)=0
\end{aligned}
$$

has the stability, if for given $\epsilon>0$, I be an open interval and for any function g satisfying the inequality
$r_{k}(n) x(n+k)+r_{k-1}(n) x(n+k-1)+$ $\cdots+r_{1}(n) x(n+1)+r_{0}(n) x(n)+$ $h(n) \mid \leq \epsilon$,

Then there exists a solution g_{0} of the above difference equation such that
$\left|g(n)-g_{0}(n)\right| \leq L(\epsilon)$ and
for
$n \in I \subset N(0)=\{0,1,2,3, \ldots\}$.

DEFINITION: 1.2

We say that (1.4) has the stability if there exists a constant $L>0$ with the property: for every $\epsilon>0, x_{n}, p_{n}$ defined for $n \in(r, s+1), 0<r<s<\infty$, if
$\left|x_{n+2}+\gamma x_{n+1}+\delta x_{n}-p_{n}\right| \leq \epsilon$,
Then there exists some $z_{n}, n \in(r, s+1)$ satisfyng

$$
z_{n+2}+\gamma z_{n+1}+\delta z_{n}=p_{n}
$$

Such that $\left|x_{n}-z_{n}\right|<L \epsilon$. Let L be a Hyers -Ulam stability constant for (1.4).
2. STABILITY RESULTS FOR $\boldsymbol{x}_{\boldsymbol{n}+2}+$ $\gamma x_{n+1}+\delta x_{n}=0 \quad$ and $x_{n+2}+\gamma x_{n+1}+$ $\delta x_{n}=\boldsymbol{p}_{\boldsymbol{n}}$

Now, in this section deals with the stability of $x_{n+2}+\gamma x_{n+1}+\delta x_{n}=0$ and $x_{n+2}+\gamma x_{n+1}+\delta x_{n}=p_{n}$.

THEOREM: 2.1

Assume that the characteristic equation $m^{2}+\gamma m+\delta=0$ have two different positive roots. Then (1.3) has the stability.

Proof:

Let $\epsilon>0$ and $x_{n}, n \in(r, s+1)$ be a solution of (1.3) satisfying the property
$\left|x_{n+2}+\gamma x_{n+1}+\delta x_{n}\right| \leq \epsilon$.
Let λ and μ be the positive roots of the characteristic equation. For $n \in(r, s+1)$, define $f_{n}=x_{n+1}-\lambda \mathrm{x}_{\mathrm{n}}$. Then

$$
f_{n+1}=x_{n+2}-\lambda x_{n+1}
$$

and hence
$\left|f_{n+1}-\mu \mathrm{f}_{\mathrm{n}}\right|=\mid x_{n+2}-\lambda x_{n+1}-\mu \mathrm{x}_{\mathrm{n}+1}+$ $\lambda \mu \mathrm{x}_{\mathrm{n}} \mid$
$=\left|x_{n+2}-(\lambda+\mu) x_{n+1}+\lambda \mu \mathrm{x}_{\mathrm{n}}\right|$
$=\left|x_{n+2}+\gamma \mathrm{x}_{\mathrm{n}+1}+\delta \mathrm{x}_{\mathrm{n}}\right| \leq \epsilon$.
Equivalently, f_{n} satisfies the relation

$$
-\epsilon \leq f_{n+1}-\mu f_{n} \leq \epsilon
$$

Upon the choice of λ and μ, We have four possibilities.
i) $\lambda>1, \mu>1$; ii) $\lambda \leq 1, \mu \leq 1$; iii) $\lambda>$ $1, \mu \leq 1$; iv) $\lambda \leq 1, \mu>1$

Consider case i)
Then (2.1) can be viewed as

$$
\begin{align*}
& \quad-\epsilon \mu^{-(n+1)} \leq \mu^{-(n+1)}\left[f_{n+1}-\mu f_{n}\right] \leq \\
& \epsilon \mu^{-(n+1)}, \\
& \text { i.e) } \quad-\epsilon \mu^{-(n+1)} \leq \Delta\left(\mu^{-n} f_{n}\right) \leq \\
& \epsilon \mu^{-(n+1)} \quad-\cdots----\quad(2.2) \tag{2.2}
\end{align*}
$$

Therefore for $n \in(r, s+1)$, it follows that

$$
\begin{aligned}
-\epsilon \sum_{j=n}^{s} \mu^{-(j+1)} \leq & \sum_{j=n}^{s} \Delta\left(\mu^{-j} f_{j}\right) \leq \\
& \in \sum_{j=n}^{s} \mu^{-(j+1)}
\end{aligned}
$$

Which is implies that
$\frac{-\epsilon \mu^{-n}}{\mu-1} \leq \mu^{-(s+1)} f_{s+1}-\mu^{-n} f_{n} \leq \frac{\epsilon \mu^{-n}}{\mu-1}$.
Consequently,

$$
-\epsilon_{1} \leq \mu^{-(s-n+1)} f_{s+1}-f_{n} \leq \epsilon_{1},
$$

Where $\epsilon_{1}=\frac{\epsilon}{\mu-1}$.
Let $\quad z_{n}=\mu^{-(s-n+1)} f_{s+1}$.
Then $z_{n+1}-\mu z_{n}=0$. Now, $\left|f_{n}-z_{n}\right| \leq$ ϵ_{1} implies that

$$
-\epsilon_{1} \leq x_{n+1}-\lambda x_{n}-z_{n} \leq \epsilon_{1}
$$

and hence

$$
\begin{aligned}
& -\epsilon_{1} \lambda^{-(n+1)} \leq \lambda^{-(n+1)}\left[x_{n+1}-\lambda x_{n}-z_{n}\right] \leq \\
& \epsilon_{1} \lambda^{-(n+1)} .
\end{aligned}
$$

Proceeding as above, we obtain

$$
-\epsilon_{1} \frac{\lambda^{-n}}{\lambda-1} \leq \lambda^{-(s+1)} x_{s+1}-\lambda^{-n} x_{n}
$$

(i.e),

$$
\begin{aligned}
\frac{-\epsilon_{1}}{\lambda-1} \leq \lambda^{-(s-n+1)} & x_{s+1}-x_{n} \\
& -\lambda^{n} \sum_{j=n}^{s} \lambda^{-(j+1)} z_{j} \\
& \leq \frac{\epsilon_{1}}{\lambda-1}
\end{aligned}
$$

Denote that,

$$
u_{n}=\lambda^{-(s-n+1)} x_{s+1}-\sum_{j=n}^{s} \lambda^{-(j-n+1)} z_{j}
$$

Then $\left|u_{n}-x_{n}\right| \leq \frac{\epsilon_{1}}{\lambda-1}=\frac{\epsilon}{(\lambda-1)(\mu-1)}$
It is easy to verify that $u_{n+1}=\lambda u_{n}+z_{n}$ and hence

$$
\begin{aligned}
u_{n+2}-\lambda u_{n+1}= & z_{n+1}=\mu z_{n} \\
& =\mu\left[u_{n+1}-\lambda u_{n}\right]
\end{aligned}
$$

implies that

$$
u_{n+2}+\gamma u_{n+1}+\delta u_{n}=0 .
$$

Consequently, (1.3) has the stability with the stability constant

$$
L=\frac{1}{(\lambda-1)(\mu-1)} .
$$

Next, we consider Case(ii).
Assume that there exist positive integers $\mathrm{M}, \mathrm{N}>0$ such that $\mu M>1$ and $\lambda \mathrm{N}>1$. Using the same type of argument as in case (i), we get the equation (2.2) and hence

$$
\begin{array}{r}
-\epsilon \sum_{j=n}^{s}(\mu M)^{-(j+1)} M^{j+1} \leq \sum_{j=n}^{s} \Delta\left(\mu^{-j} f_{j}\right) \\
\leq \epsilon \sum_{j=1}^{s}(\mu M)^{-(j+1)} M^{i+1} \tag{2.3}
\end{array}
$$

Let $\quad M^{*}=\max \left\{M^{n+1}, M^{n+2}, \ldots M^{s+1}\right\}, r \leq$ $n<s+1$.

Then (2.3) becomes

$$
-\epsilon M^{*} \sum_{j=n}^{s}(\mu M)^{-(j+1)}
$$

$$
\begin{align*}
& \leq \mu^{-(s+1)} f_{s+1} \\
& -\mu^{-n} f_{n} \\
& \leq \in M^{*} \sum_{j=n}^{s}(\mu M)^{-(j+1)}, \tag{i.e}
\end{align*}
$$

$$
\begin{aligned}
M^{*} \frac{-\epsilon(\mu M)^{-n}}{(\mu M-1)} \leq & \mu^{-(s+1)} f_{s+1}-\mu^{-n} f_{n} \\
& \leq M^{*} \frac{\epsilon(\mu M)^{-n}}{(\mu M-1)}
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
\frac{-\epsilon M^{*}}{(\mu M-1) M^{r}} \leq & \mu^{-(s-n+1)} f_{s+1}-f_{n} \\
& \leq \frac{-\epsilon M^{*}}{(\mu M-1) M^{r}}
\end{aligned}
$$

The rest of the proof follows from Case (i).we note that the stability constant is given
by

$$
K=\frac{\epsilon M^{*} N^{*}}{(\mu M-1)(\lambda N-1) M N)^{r}},
$$

Where
$N^{*}=\max \left\{N^{n+1}, N^{n+2}, \ldots N^{s+1}\right\}, r \leq n<$
$s+$ 1. Cases (iii) and (iv) follow from Cases (i) and (ii).

Hence the proof.

THEOREM 2.2:

Assume that the characteristic equation $m^{2}+\gamma m+\delta=0$ have two different positive roots. Furthermore, assume that (1.6) holds .Then (1.4) has the Hyers-ulam stability.

Proof:

Proceeding as in the proof of theorem 2.1, we obtain

$$
\begin{aligned}
& \left|f_{n+1}-\mu f_{n}-p_{n}\right| \\
& \quad=\mid x_{n+2}-\lambda x_{n+1}-\mu x_{n+1} \\
& \quad+\lambda \mu x_{n}-p_{n} \mid \\
& =\left|x_{n+2}-(\lambda+\mu) x_{n+1}+\lambda \mu x_{n}-p_{n}\right| \\
& =\left|x_{n+2}+\gamma x_{n+1}+\delta x_{n}-p_{n}\right| \leq \epsilon .
\end{aligned}
$$

Equivalently, f_{n} satisfies the relation
$-\epsilon \leq f_{n+1}-\mu f_{n}-p_{n} \leq \epsilon$.
Similar to Theorem 2.1,we have four possibilities upon the choices of λ and μ.

We consider Case (i) only.
And hence, similar to the equation (2.2),

We have

$$
\begin{gathered}
-\epsilon \mu^{-(n+1)} \leq \Delta\left(\mu^{-n} f_{n}\right)-\mu^{-(n+1)} p_{n} \\
\leq \epsilon \mu^{-(n+1)}
\end{gathered}
$$

and
let

$$
z_{n}=\mu^{-(s-n+1)} f_{s+1}-\mu^{n} \sum_{j=n}^{s} \mu^{-(j+1)} p_{j}
$$

Therefore, z_{n} satisfies $z_{n+1}-\mu z_{n}-p_{n}=$ 0 , and $\left|f_{n}-z_{n}\right| \leq \epsilon_{1}$.

Using the same type of argument as in Theorem 2.1, We can show that there exists

such that $\left|u_{n}-x_{n}\right| \leq \frac{\epsilon}{(\lambda-1)(\mu-1)}$ and u_{n} satisfies

$$
u_{n+2}+\gamma u_{n+1}+\delta u_{n}-p_{n}=0
$$

Hence the proof.

REFERENCE

[1] D.H.Hyers, On the stability of the linear functional equations.Proc.natl.acad.Sci.,27 (1941), 222-224.
[2] S.M. Jung, Hyers -Ulam stability of linear be differential equations of first order, Appl. Math. Lett., (2004), 1135-1140.
[3] S.M. Jung, Hyers -Ulam stability of linear be differential equations of first order (III), J. Math. Anal. Appl., 311 (2005), 139146.
[4] K.W. Jun, Y.H. Lee, A generalization of the Hyers-Ulam - Rassias stability of the Jenson's equation, J. Math. Anal. Appl., 238 (1999), 305-315.
[5] T. Mirura, S.E. Takahasi, H. Choda, On the Hyers - Ulam stability of real continuous function valued differentiable map, Tokyo J. Math. (2006), 467-476.
[6] T. Mirura, On the Hyers - Ulam stability of a differentiable map, Sci. Math Japan, 55 (2002), 17-24.
[7] M.Obloza, Hyers stability of the linear differential equation, Rocznik NaukDydakt, Proce. Mat., 13 (1993), 259 - 270.
[8] Th. M. Rassias, On the stability of linear mapping in banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297 - 300.
[9] Th. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math., 62 (2000), 23-30.
[10] S.M. Ham, Problems in Modern Mathematices, Chapter VI Wiley, New York, 1964.

