ON THE STABILITY OF SECOND ORDER LINEAR DIFFERENCE AND LINEAR FUNCTIONAL EQUATIONS

Sasikala T 1 \\
Department of Mathematics, Vivekanandha College of Arts and Sciences for Women [Autonomous], Tiruchengode, Namakkal.

Karthikeyan N 2 \\
Assistant professor, Department of Mathematics, Vivekanandha college of Arts and Sciences for Women [Autonomous], Tiruchengode, Namakkal.

ABSTRACT:

In this work, on the stability of second order linear difference and linear functional equations of the form:

\[x_{n+2} + \gamma x_{n+1} + \delta x_n = 0, \]
\[x_{n+2} + \gamma x_{n+1} + \delta x_n = p_n \]

and

\[x_{n+2} - \gamma_n x_{n+1} + \delta_n x_n = p_n \]

are studied, where \(\gamma, \delta \in \mathbb{R} \) and \(p_n, \gamma_n, \delta_n \) are sequence of reals.

1. INTRODUCTION

On the stability problem for functional equations was replaced by stability of differential equations. The differential equation

\[r_n(t)x^{(n)}(t) + r_{n-1}(t)x^{(n-1)}(t) + \cdots + r_1(t)x'(t) + r_0(t)x(t) + h(t) = 0 \]

has the stability, if for given \(\varepsilon > 0 \), I be an interval and for any function \(g \) satisfying the differential inequality

\[|r_n(t)x^{(n)}(t) + r_{n-1}(t)x^{(n-1)}(t) + \cdots + r_1(t)x'(t) + r_0(t)x(t) + h(t)| \leq \varepsilon \]

then there exists a solution \(g_0(t) \) of the above equation such that

\[|g(t) - g_0(t)| \leq L(\varepsilon) \]

\[\lim_{\varepsilon \to 0} L(\varepsilon) = 0, t \in I \]

We have discussed on the stability of second order linear differential and linear functional equations of the form:

\[x'' + ax' + bx = 0 \quad \text{(1.1)} \]

and

\[x'' + ax' + bx = g(t) \quad \text{(1.2)} \]

Where \(a, b \in \mathbb{R} \). The objective of this work is to study the stability of discrete analogue of the equations (1.1) and (1.2) as

\[x_{n+2} + \gamma x_{n+1} + \delta x_n = 0 \quad \text{(1.3)} \]

and

\[x_{n+2} + \gamma x_{n+1} + \delta x_n = p_n \quad \text{(1.4)} \]
Where \(\gamma, \delta \in \mathbb{R} \) and \(p_n \) is a sequence of reals. Also, an effort is made to study on the stability of \(x_{n+2} + \gamma x_{n+1} + \delta x_n = p_n \) \((1.5)\)

DEFINITION: 1.1

The difference equation
\[
r_k(n)x(n+k) + r_{k-1}(n)x(n+k-1) + \cdots + r_1(n)x(n+1) + r_0(n)x(n) + h(n) = 0
\]
has the stability, if for given \(\epsilon > 0 \), \(I \) be an open interval and for any function \(g \) satisfying the inequality
\[
|g(n) - g_0(n)| \leq L(\epsilon) \text{ for } n \in I \subset N(0) = \{0, 1, 2, 3, \ldots \}.
\]

DEFINITION: 1.2

We say that (1.4) has the stability if there exists a constant \(L > 0 \) with the property: for every \(\epsilon > 0 \), \(x_n, p_n \) defined for \(n \in (r, s + 1) \), \(0 < r < s < \infty \), if
\[
|x_{n+2} + \gamma x_{n+1} + \delta x_n - p_n| \leq \epsilon, \quad \text{-------- (1.6)}
\]
Then there exists some \(z_n, n \in (r, s + 1) \) satisfying
\[
z_{n+2} + \gamma z_{n+1} + \delta z_n = p_n
\]
Such that \(|x_n - z_n| < L \epsilon \). Let \(L \) be a Hyers–Ulam stability constant for (1.4).

2. STABILITY RESULTS FOR \(x_{n+2} + \gamma x_{n+1} + \delta x_n = 0 \) **and** \(x_{n+2} + \gamma x_{n+1} + \delta x_n = p_n \)

Now, in this section deals with the stability of \(x_{n+2} + \gamma x_{n+1} + \delta x_n = 0 \) and \(x_{n+2} + \gamma x_{n+1} + \delta x_n = p_n \).

THEOREM: 2.1

Assume that the characteristic equation \(m^2 + \gamma m + \delta = 0 \) have two different positive roots. Then (1.3) has the stability.

Proof:

Let \(\epsilon > 0 \) and \(x_n, n \in (r, s + 1) \) be a solution of (1.3) satisfying the property
\[
|x_{n+2} + \gamma x_{n+1} + \delta x_n| \leq \epsilon.
\]

Let \(\lambda \) and \(\mu \) be the positive roots of the characteristic equation. For \(n \in (r, s + 1) \), define \(f_n = x_{n+1} - \lambda x_n \). Then
\[
f_{n+1} = x_{n+2} - \lambda x_{n+1}
\]
and hence
\[
|f_{n+1} - f_n| = |x_{n+2} - \lambda x_{n+1} - \mu x_{n+1} + \lambda \mu x_n|
\]
\[
= |x_{n+2} - (\lambda + \mu) x_{n+1} + \lambda \mu x_n|
\]
\[
= |x_{n+2} + \gamma x_{n+1} + \delta x_n| \leq \epsilon.
\]

Equivalently, \(f_n \) satisfies the relation
\[
-\epsilon \leq f_{n+1} - f_n \leq \epsilon \quad \text{-------- (2.1)}.
\]

Upon the choice of \(\lambda \) and \(\mu \), We have four possibilities.

\(i) \lambda > 1, \mu > 1; \quad ii) \lambda \leq 1, \mu > 1; \quad iii) \lambda > 1, \mu \leq 1; \quad iv) \lambda \leq 1, \mu > 1\)

Consider case \(i) \)

Then (2.1) can be viewed as
\[
-\epsilon \mu^{-(n+1)} \leq \mu^{-(n+1)}|f_{n+1} - \mu f_n| \leq \epsilon \mu^{-(n+1)},
\]

i.e.
\[
-\epsilon \mu^{-(n+1)} \leq \Delta(\mu^{-n}f_n) \leq \epsilon \mu^{-(n+1)} \quad \text{-------- (2.2)}
\]

Therefore for \(n \in (r, s + 1) \), it follows that
\[-\varepsilon \sum_{j=n}^{s} \mu^{-(j+1)} \leq \sum_{j=n}^{s} \Delta(f_{j}) \leq \varepsilon \sum_{j=n}^{s} \mu^{-(j+1)} \]

Which is implies that
\[-\varepsilon \mu^{-n} \leq \mu^{-(s+1)} f_{s+1} - \mu^{-n} f_{n} \leq \varepsilon \mu^{-n}.\]

Consequently,
\[-\varepsilon_{1} \leq \mu^{-(s-n+1)} f_{s+n} - f_{n} \leq \varepsilon_{1},\]

Where \(\varepsilon_{1} = \frac{\varepsilon}{\mu-1} \).

Let \(z_{n} = \mu^{-(s-n+1)} f_{s+n} \).

Then \(z_{n+1} - \mu z_{n} = 0 \). Now, \(|f_{n} - z_{n}| \leq \varepsilon_{1} \) implies that
\[-\varepsilon_{1} \leq x_{n+1} - \lambda x_{n} - z_{n} \leq \varepsilon_{1},\]

and hence
\[-\varepsilon_{1} \lambda^{-(n+1)} \leq \lambda^{-(n+1)}(x_{n+1} - \lambda x_{n} - z_{n}) \leq \varepsilon_{1} \lambda^{-(n+1)} \lambda^{-1}.\]

Proceeding as above, we obtain
\[-\varepsilon_{1} \lambda^{-n} \leq \lambda^{-(s+1)} x_{s+1} - \lambda^{-n} x_{n} - \sum_{j=n}^{s} \lambda^{-(j+1)} z_{j} \leq \varepsilon_{1} \lambda^{-n} \lambda^{-1}.\]

(i.e.,
\[-\varepsilon_{1} \lambda^{-n} \leq \lambda^{-(s-n+1)} x_{s+n+1} - x_{n} - \lambda^{n} \sum_{j=n}^{s} \lambda^{-(j+1)} z_{j} \leq \varepsilon_{1} \lambda^{-n} \lambda^{-1}.\]

Denote that,
\[u_{n} = \lambda^{-(s-n+1)} x_{s+n+1} - \sum_{j=n}^{s} \lambda^{-(j-n+1)} z_{j}.\]

Then \(|u_{n} - x_{n}| \leq \frac{\varepsilon}{\lambda-1} = \frac{\varepsilon}{(\lambda-1)(\mu-1)}.\)

It is easy to verify that \(u_{n+1} = \lambda u_{n} + z_{n} \) and hence
\[u_{n+2} - \lambda u_{n+1} = z_{n+1} = \mu z_{n} = \mu[u_{n+1} - \lambda u_{n}] \]

implies that
\[u_{n+2} + \gamma u_{n+1} + \delta u_{n} = 0.\]

Consequently, (1.3) has the stability with the stability constant
\[L = \frac{1}{(\lambda-1)(\mu-1)} \]

Next, we consider Case (ii).

Assume that there exist positive integers \(M,N > 0 \) such that \(\mu M > 1 \) and \(\lambda N > 1 \).

Using the same type of argument as in case (i), we get the equation (2.2) and hence
\[-\varepsilon \sum_{j=n}^{s} (\mu M)^{-(j+1)} M^{j+1} \leq \sum_{j=n}^{s} \Delta(\mu^{-j} f_{j}) \leq \varepsilon \sum_{j=n}^{s} (\mu M)^{-(j+1)} M^{j+1} \]

Then (2.3) becomes
\[-\varepsilon M^{*} \sum_{j=n}^{s} (\mu M)^{-(j+1)} \leq \mu^{-(s+1)} f_{s+1} - \mu^{-n} f_{n} \leq \varepsilon M^{*} \sum_{j=n}^{s} (\mu M)^{-(j+1)}, \]

(i.e.,
\[M^{*} - \varepsilon (\mu M)^{-n} \leq \mu^{-(s+1)} f_{s+1} - \mu^{-n} f_{n} \leq M^{*} \varepsilon (\mu M)^{-n}. \]
Consequently,

\[
\frac{-\epsilon M^*}{(\mu M - 1)M^*} \leq \mu^{-(s-n+1)} f_{n+1} - f_n
\]

\[
\leq \frac{-\epsilon M^*}{(\mu M - 1)M^*}
\]

The rest of the proof follows from Case (i). We note that the stability constant is given by

\[
K = \frac{e^{\mu N^*}}{(\mu M - 1)(M - 1)^{MN + 1}}
\]

Where

\[
N^* = \max\{N^{n+1}, N^{n+2}, \ldots, N^{s+1}\}, r \leq n < s + 1.\]

Cases (iii) and (iv) follow from Cases (i) and (ii).

Hence the proof.

THEOREM 2.2:

Assume that the characteristic equation

\[
m^2 + \gamma m + \delta = 0
\]

have two different positive roots. Furthermore, assume that (1.6) holds. Then (1.4) has the Hyers-Ulam stability.

Proof:

Proceeding as in the proof of theorem 2.1, we obtain

\[
|f_{n+1} - \mu f_n - p_n| = |x_{n+2} - \lambda x_{n+1} - \mu x_n + \lambda \mu x_n - p_n|
\]

\[
= |x_{n+2} - (\lambda + \mu) x_{n+1} + \lambda \mu x_n - p_n|
\]

\[
= |x_{n+2} + \gamma x_{n+1} + \delta x_n - p_n| \leq \epsilon.
\]

Equivalently, \(f_n\) satisfies the relation

\[-\epsilon \leq f_{n+1} - \mu f_n - p_n \leq \epsilon.
\]

Similar to Theorem 2.1, we have four possibilities upon the choices of \(\lambda\) and \(\mu\).

We consider Case (i) only.

And hence, similar to the equation (2.2),

\[
\text{We have}
\]

\[
-\epsilon \mu^{-(n+1)} \leq \Delta(\mu^{-n} f_n) - \mu^{-(n+1)} p_n
\]

\[
\leq \epsilon \mu^{-(n+1)}
\]

and let

\[
z_n = \mu^{-(s-n+1)} f_{s+1} - \mu^n \sum_{j=n}^{s} \mu^{-(j+1)} p_j
\]

Therefore, \(z_n\) satisfies \(z_{n+1} - \mu z_n - p_n = 0\), and \(|f_n - z_n| \leq \epsilon_1\).

Using the same type of argument as in Theorem 2.1, we can show that there exists

\[
u_n = \lambda^{-(s-n+1)} x_{n+1} - \sum_{j=n}^{s} \lambda^{-(j-n+1)} z_j
\]

such that \(|u_n - x_n| \leq \epsilon\) and \(u_n\) satisfies

\[
u_{n+2} + \gamma u_{n+1} + \delta u_n - p_n = 0.
\]

Hence the proof.

REFERENCE

