µ-β-generalized α-continuous mappings in generalized topological spaces

Kowsalya M¹, sentamilselvi M²

¹Mphil Mathematics, Vivekanandha College of Arts and Sciences for Women [Autonomous], Tiruchengode, Namakkal. Tamil Nadu, India
²Assistant professor of Mathematics, Mathematics, Vivekanandha College of Arts and Sciences for Women [Autonomous], Tiruchengode, Namakkal. Tamil Nadu, India

Abstract: In this paper, we have introduced µ-β-generalized α-continuous maps and also introduced almost µ-β-generalized α-continuous maps in generalized topological spaces by using µ-β-generalized α-closed sets (briefly µ-βGaCS). Also we have introduced some of their basic properties.

Keywords: Generalized topology, generalized topological spaces, µ-α-closed sets, µ-β-generalized α-closed sets, µ-α-continuous, µ-β-generalized α-continuous, almost µ-α-continuous, almost µ-β-generalized α-continuous.

1. Introduction

In 1970, Levin [4] introduced the idea of continuous function. He also introduced the concepts of semi-open sets and semi-continuity [3] in a topological space. Mashhour [5] introduced and studied α-continuous function in topological spaces. The notation of µ-β-generalized α-closed sets (briefly µ-βGaCS) was defined and investigated by Kowsalya. M and Jayanthi. D [2]. In this paper, we have introduced µ-β-generalized α-continuous maps and also introduced almost µ-β-generalized α-continuous maps in generalized topological spaces. Also we have investigated some of their basic properties and produced many interesting theorems.

2. Preliminaries

Let us recall the following definitions which are used in sequel.

Definition 2.1: [1] Let X be a nonempty set. A collection µ of subsets of X is a generalized topology (or briefly GT) on X if it satisfies the following:

(1) Ø, X∈ µ and
(2) If {Mᵢ : i∈ I} ⊆ µ, then ∪ᵢ∈ IMᵢ∈ µ.

If µ is a GT on X, then (X, µ) is called a generalized topological space (or briefly GTS) and the elements of µ are called µ-open sets and their complement are called µ-closed sets.
Definition 2.2: [1] Let \((X, \mu)\) be a GTS and let \(A \subseteq X\). Then the \(\mu\)-closure of \(A\), denoted by \(c_\mu(A)\), is the intersection of all \(\mu\)-closed sets containing \(A\).

Definition 2.3: [1] Let \((X, \mu)\) be a GTS and let \(A \subseteq X\). Then the \(\mu\)-interior of \(A\), denoted by \(i_\mu(A)\), is the union of all \(\mu\)-open sets contained in \(A\).

Definition 2.4: [1] Let \((X, \mu)\) be a GTS. A subset \(A\) of \(X\) is said to be

i. \(\mu\)-semi-closed set if \(i_\mu(c_\mu(A)) \subseteq A\)

ii. \(\mu\)-pre-closed set if \(c_\mu(i_\mu(A)) \subseteq A\)

iii. \(\mu\)-\(\alpha\)-closed set if \(c_\mu(i_\mu(c_\mu(A))) \subseteq A\)

iv. \(\mu\)-\(\beta\)-closed set if \(i_\mu(c_\mu(i_\mu(A))) \subseteq A\)

v. \(\mu\)-regular-closed set if \(A = c_\mu(i_\mu(A))\)

Definition 2.5:[7] Let \((X, \mu_1)\) and \((Y, \mu_2)\) be GTSs. Then a mapping \(f: (X, \mu_1) \rightarrow (Y, \mu_2)\) is called

i. \(\mu\)-Continuous mapping if \(f^{-1}(A)\) is \(\mu\)-closed in \((X, \mu_1)\) for each \(\mu\)-closed in \((Y, \mu_2)\).

ii. \(\mu\)-Semi-continuous mapping if \(f^{-1}(A)\) is \(\mu\)-semi-closed in \((X, \mu_1)\) for every \(\mu\)-closed in \((Y, \mu_2)\).

iii. \(\mu\)-pre-continuous mapping if \(f^{-1}(A)\) is \(\mu\)-pre-closed in \((X, \mu_1)\) for every \(\mu\)-closed in \((Y, \mu_2)\).

iv. \(\mu\)-\(\alpha\)-continuous mapping if \(f^{-1}(A)\) is \(\mu\)-\(\alpha\)-closed in \((X, \mu_1)\) for every \(\mu\)-closed in \((Y, \mu_2)\).

v. \(\mu\)-\(\beta\)-continuous mapping if \(f^{-1}(A)\) is \(\mu\)-\(\beta\)-closed in \((X, \mu_1)\) for every \(\mu\)-closed in \((Y, \mu_2)\).

Definition 2.6:[6] Let \((X, \mu_1)\) and \((Y, \mu_2)\) be GTSs. Then a mapping \(f: (X, \mu_1) \rightarrow (Y, \mu_2)\) is called

i. almost \(\mu\)-Continuous mapping if \(f^{-1}(A)\) is \(\mu\)-closed in \((X, \mu_1)\) for every \(\mu\)-regular closed set \(A\) of \((Y, \mu_2)\).

ii. almost \(\mu\)-semi continuous mappings if \(f^{-1}(A)\) is \(\mu\)-semi closed in \((X, \mu_1)\) for every \(\mu\)-regular closed set \(A\) of \((Y, \mu_2)\).

iii. almost \(\mu\)-pre-continuous mappings if \(f^{-1}(A)\) is \(\mu\)-pre closed in \((X, \mu_1)\) for every \(\mu\)-regular closed set \(A\) of \((Y, \mu_2)\).

iv. almost \(\mu\)-\(\alpha\)-continuous mapping if \(f^{-1}(A)\) is \(\mu\)-\(\alpha\)-closed in \((X, \mu_1)\) for every \(\mu\)-regular closed set \(A\) of \((Y, \mu_2)\).

v. almost \(\mu\)-\(\beta\)-continuous mapping if \(f^{-1}(A)\) is \(\mu\)-\(\beta\)-closed in \((X, \mu_1)\) for every \(\mu\)-regular closed set \(A\) of \((Y, \mu_2)\).

3. \(\mu\)-\(\beta\)-generalized \(\alpha\)-continuous mappings in topological spaces

In this section we have introduced \(\mu\)-\(\beta\)-generalized \(\alpha\)-continuous mappings in generalized topological spaces and discussed some of their basic properties.
Definition 3.1: A mapping \(f: (X, \mu_1) \to (Y, \mu_2) \) is called a \(\mu\)-\(\beta\)-generalized \(\alpha\)-continuous (briefly \(\mu\)-\(\beta\)\(\alpha\)-continuous) if \(f^{-1}(A) \) is a \(\mu\)-\(\beta\)-generalized \(\alpha\)-closed set (briefly \(\mu\)-\(\beta\)\(\alpha\)CS) in \((X, \mu_1) \) for each \(\mu\)-closed set \(A \) in \((Y, \mu_2) \).

Example 3.2: Let \(X = Y = \{a, b, c\} \) with \(\mu_1 = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\} \) and \(\mu_2 = \{\emptyset, \{a, b\}, Y\} \). Let \(f: (X, \mu_1) \to (Y, \mu_2) \) be a mapping defined by \(f(a) = a, f(b) = b, f(c) = c \). Now, \(\mu\)-\(\beta\)O(X) = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, c\}, X\}. Let \(A = \{c\} \), then \(A \) is a \(\mu\)-closed set in \((Y, \mu_2) \). Then \(f^{-1}(\{c\}) \) is a \(\mu\)-\(\beta\)\(\alpha\)CS in \((X, \mu_1) \). Hence \(f \) is a \(\mu\)-\(\beta\)\(\alpha\)-continuous mapping.

Theorem 3.3: Every \(\mu\)-continuous mapping is a \(\mu\)-\(\beta\)\(\alpha\)-continuous mapping but not conversely in general.

Proof: Let \(f: (X, \mu_1) \to (Y, \mu_2) \) be a \(\mu\)-continuous mapping. Let \(A \) be \(\mu\)-closed set in \((Y, \mu_2) \). Since \(f \) is a \(\mu\)-continuous mapping, \(f^{-1}(A) \) is a \(\mu\)-closed set in \((X, \mu_1) \). Since every \(\mu\)-closed set is a \(\mu\)-\(\beta\)\(\alpha\)CS, \(f^{-1}(A) \) is a \(\mu\)-\(\beta\)\(\alpha\)CS in \((X, \mu_1) \). Hence \(f \) is a \(\mu\)-\(\beta\)\(\alpha\)-continuous mapping.

Example 3.4: Let \(X = Y = \{a, b, c, d\} \) with \(\mu_1 = \{\emptyset, \{a\}, \{c\}, \{a, c\}, X\} \) and \(\mu_2 = \{\emptyset, \{a, b\}, Y\} \). Let \(f: (X, \mu_1) \to (Y, \mu_2) \) be a mapping defined by \(f(a) = a, f(b) = b, f(c) = c, f(d) = d \). Now, \(\mu\)-\(\beta\)O(X) = \{\emptyset, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{c, d\}, \{a, b, c\}, \{b, c, d\}, \{a, c, d\}, \{a, b, d\}, X\}. Let \(A = \{d\} \), then \(A \) is a \(\mu\)-closed set in \((Y, \mu_2) \). Then \(f^{-1}(\{d\}) \) is a \(\mu\)-\(\beta\)\(\alpha\)CS in \((X, \mu_1) \), but not \(\mu\)-closed as \(c_p(f^{-1}(A)) = \{d\} \neq f^{-1}(A) \). Hence \(f \) is a \(\mu\)-\(\beta\)\(\alpha\)-continuous mapping, but not a \(\mu\)-continuous mapping.

Theorem 3.5: Every \(\mu\)-\(\alpha\)-continuous mapping is a \(\mu\)-\(\beta\)\(\alpha\)-continuous mapping in general.

Proof: Let \(f: (X, \mu_1) \to (Y, \mu_2) \) be a \(\mu\)-\(\alpha\)-continuous mapping. Let \(A \) be any \(\mu\)-closed set in \((Y, \mu_2) \). Since \(f \) is a \(\mu\)-\(\alpha\)-continuous mapping, \(f^{-1}(A) \) is a \(\mu\)-\(\alpha\)-closed set in \((X, \mu_1) \). Since every \(\mu\)-\(\alpha\)-closed set is a \(\mu\)-\(\beta\)\(\alpha\)CS, \(f^{-1}(A) \) is a \(\mu\)-\(\beta\)\(\alpha\)CS in \((X, \mu_1) \). Hence \(f \) is a \(\mu\)-\(\beta\)\(\alpha\)-continuous mapping.

Remark 3.6: A \(\mu\)-pre-continuous mapping is not a \(\mu\)-\(\beta\)\(\alpha\)-continuous mapping in general.

Example 3.7: Let \(X = Y = \{a, b, c\} \) with \(\mu_1 = \{\emptyset, \{a, b\}, X\} \) and \(\mu_2 = \{\emptyset, \{b, c\}, Y\} \). Let \(f: (X, \mu_1) \to (Y, \mu_2) \) be a mapping defined by \(f(a) = a, f(b) = b, f(c) = c \). Now, \(\mu\)-\(\beta\)O(X) = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, c\}, X\}. Let \(A = \{a\} \), then \(A \) is a \(\mu\)-closed set in \((Y, \mu_2) \). Then \(f^{-1}(\{a\}) \) is a \(\mu\)-pre-closed set in \((X, \mu_1) \) as \(c_p(i_p(f^{-1}(A))) = c_p(i_p(\{a\})) = \emptyset \subseteq f^{-1}(A) \), but not \(\mu\)-\(\beta\)\(\alpha\)CS as \(\alpha c_p(f^{-1}(A)) = X \notin U = \{a, b\} \) in \((X, \mu_1) \). Hence \(f \) is a \(\mu\)-pre-continuous mapping, but not a \(\mu\)-\(\beta\)\(\alpha\)-continuous mapping.

Remark 3.8: A \(\mu\)-\(\beta\)-continuous mapping is not a \(\mu\)-\(\beta\)\(\alpha\)-continuous mapping in general.

Example 3.9: Let \(X = Y = \{a, b, c\} \) with \(\mu_1 = \{\emptyset, \{a, b\}, X\} \) and \(\mu_2 = \{\emptyset, \{b, c\}, Y\} \). Let \(f: (X, \mu_1) \to (Y, \mu_2) \) be a mapping defined by \(f(a) = a, f(b) = b, f(c) = c \). Now, \(\mu\)-\(\beta\)O(X) = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, c\}, X\}. Let \(A = \{a\} \), then \(A \) is a \(\mu\)-closed set in \((Y, \mu_2) \). Then \(f^{-1}(\{a\}) \) is a \(\mu\)-\(\beta\)-closed in \((X, \mu_1) \) as \(i_p(c_p(i_p(f^{-1} \{a\}))) = X \notin U = \{a, b\} \) in \((X, \mu_1) \). Hence \(f \) is a \(\mu\)-\(\beta\)\(\alpha\)-continuous mapping, but not a \(\mu\)-\(\beta\)\(\alpha\)-continuous mapping.
(A))) = \sum_{\mu(a)}(\mu((a))) = \emptyset \subseteq f^{-1}(A)$, but not a μ-βGαCS as $\alpha e_{\mu}(f^{-1}(A)) = X \not\subseteq U = \{a, b\}$ in (X, μ_1). Hence f is a μ-β-continuous mapping, but not a μ-βGα-continuous mapping.

In the following diagram, we have provided relation between various types of μ-continuous mappings.

![Diagram showing the relationship between different types of μ-continuous mappings]

Theorem 3.10: A mapping f: $(X, \mu_1) \to (Y, \mu_2)$ is α-μ-βGα-continuous mapping if and only if the inverse image of every μ-open set in (Y, μ_2) is a μ-βGαOS in (X, μ_1).

Proof:

Necessity: Let U be a μ-open set in (Y, μ_2). Then $Y-U$ is a μ-closed set in (Y, μ_2). Since f is α-μ-βGα-continuous mapping, $f^{-1}(Y-U) = X - f^{-1}(U)$ is a μ-βGαCS in (X, μ_1). Hence $f^{-1}(U)$ is a μ-βGαOS in (X, μ_1).

Sufficiency: Assume that $f^{-1}(V)$ is a μ-βGαOS in (X, μ_1) for each μ-open set V in (Y, μ_2). Let V be any μ-closed set in (Y, μ_2). Then $Y-V$ is μ-open in (Y, μ_2). By assumption, $f^{-1}(Y-V) = X - f^{-1}(V)$ is α-μ-βGαOS in (X, μ_1) which implies that $f^{-1}(V)$ is a μ-β-generalized α-closed set in (X, μ_1). Hence f is α-μ-βGα-continuous mapping.

Theorem 3.11: If f: $(X, \mu_1) \to (Y, \mu_2)$ is a μ-βGα-continuous mapping and g: $(Y, \mu_2) \to (Z, \mu_3)$ is a μ-continuous mapping then $g \circ f$: $(X, \mu_1) \to (Z, \mu_3)$ is a μ-βGα-continuous mapping.

Proof: Let V be any μ-closed set in (Z, μ_3). Since g is a μ-continuous mapping, $g^{-1}(V)$ is a μ-closed set in (Y, μ_2). Since f is a μ-βGα-continuous mapping, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is a μ-βGαCSin (X, μ_1). Therefore $g \circ f$ is a μ-βGα-continuous mapping.

Theorem 3.12: If f: $(X, \mu_1) \to (Y, \mu_2)$ is a μ-continuous mapping and g: $(Y, \mu_2) \to (Z, \mu_3)$ is a μ-continuous mapping then $g \circ f$: $(X, \mu_1) \to (Z, \mu_3)$ is a μ-βGα-continuous mapping.
Proof: Let V be any μ-closed set in (Z, μ_3). Since g is a μ-continuous mapping, $g^{-1}(V)$ is a μ-closed set in (Y, μ_2). Since f is a μ-continuous mapping, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is a μ-closed set in (X, μ_1). Since every μ-closed set is a_μ-$\beta G\alpha CS$, $(g \circ f)^{-1}(V)$ is a_μ-$\beta G\alpha CS$. Therefore $g \circ f$ is a μ-$\beta G\alpha$-continuous mapping.

Theorem 3.13: If $f: (X, \mu_1) \to (Y, \mu_2)$ is a μ-α-continuous mapping and $g: (Y, \mu_2) \to (Z, \mu_3)$ is a μ-continuous mapping then $g \circ f: (X, \mu_1) \to (Z, \mu_3)$ is a μ-$\beta G\alpha$-continuous mapping.

Proof: Let V be any μ-closed set in (Z, μ_3). Since g is a μ-continuous mapping $g^{-1}(V)$ is a μ-closed in (Y, μ_2). Since f is a μ-α-continuous mapping, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is a μ-α-closed in (X, μ_1). Since every μ-α-closed set is a_μ-$\beta G\alpha CS$, $(g \circ f)^{-1}(V)$ is a μ-$\beta G\alpha CS$ in (X, μ_1). Therefore $g \circ f$ is a μ-$\beta G\alpha$-continuous mapping.

4. ALMOST μ-β-GENERALIZED α-CONTINUOUS MAPPINGS

In this section we have introduced almost μ-β-generalized α-continuous mappings in generalized topological spaces and studied some of their basic properties.

Definition 4.1: A mapping $f: (X, \mu_1) \to (Y, \mu_2)$ is called an almost μ-β-generalized α-continuous mapping (briefly almost μ-$\beta G\alpha$-continuous) if $f^{-1}(A)$ is a μ-β-generalized α-closed set (briefly μ-$\beta G\alpha CS$) in (X, μ_1) for each μ-regular closed set A in (Y, μ_2).

Example 4.2: Let $X = Y = \{a, b, c\}$ with $\mu_1 = \emptyset, \{a\}, \{b\}, \{a, b\}, X$ and $\mu_2 = \emptyset, \{c\}, \{a, b\}, Y$. Let $f: (X, \mu_1) \to (Y, \mu_2)$ be a mapping defined by $f(a) = a, f(b) = b, f(c) = c$. Now, μ-$\beta O(X) = \emptyset, \{a\}, \{a, b\}, \{b, c\}, \{a, c\}, X$. Let $A = \{c\}$, then A is a μ-regular closed set in (Y, μ_2). Then $f^{-1}(\{c\})$ is μ-$\beta G\alpha CS$ in (X, μ_1). Hence f is an almost μ-$\beta G\alpha$-continuous mapping.

Theorem 4.3: Every almost μ-continuous mapping is an almost μ-$\beta G\alpha$-continuous mapping but not conversely in general.

Proof: Let $f: (X, \mu_1) \to (Y, \mu_2)$ be an almost μ-continuous mapping. Let A be a μ-regular closed set in (Y, μ_2). Since f is an almost μ-continuous mapping, $f^{-1}(A)$ is a μ-closed set in (X, μ_1). Since every μ-closed set is a μ-$\beta G\alpha CS$, $f^{-1}(A)$ is a μ-$\beta G\alpha CS$ in (X, μ_1). Hence f is an almost μ-$\beta G\alpha$-continuous mapping.

Example 4.4: Let $X = Y = \{a, b, c, d\}$ with $\mu_1 = \emptyset, \{a\}, \{c\}, \{a, c\}, X$ and $\mu_2 = \emptyset, \{a, b\}, \{a, b, c\}, Y$. Let $f: (X, \mu_1) \to (Y, \mu_2)$ be a mapping defined by $f(a) = a, f(b) = b, f(c) = c$. Now, μ-$\beta O(X) = \emptyset, \{a\}, \{a, b\}, \{a, c\}, X$. Let $A = \{b\}$, then A is a μ-regular closed set in (Y, μ_2). Then $f^{-1}(\{b\})$ is a_μ-$\beta G\alpha CS$, but not μ-closed as $c_\mu(f^{-1}(A)) = c_\mu(\{b\}) = \{b, c\} \neq f^{-1}(A)$ in (X, μ_1). Hence f is an almost μ-$\beta G\alpha$-continuous mapping, but not an almost μ-continuous mapping.
Theorem 4.5: Every almost μ-α-continuous mapping is an almost μ-βGα-continuous mapping in general.

Proof: Let $f: (X, \mu_1) \rightarrow (Y, \mu_2)$ be an almost μ-α-continuous mapping. Let A be any μ-regular closed set in (Y, μ_2). Since f is an almost μ-α-continuous mapping, $f^{-1}(A)$ is a μ-α-closed set in (X, μ_1). Since every μ-α-closed set is α-μ-βGαCS, $f^{-1}(A)$ is a μ-β-generalized α-closed set in (X, μ_1). Hence f is an almost μ-βGα-continuous mapping.

Remark 4.6: An almost μ-pre-continuous mapping is not an almost μ-βGα-continuous mapping in general.

Example 4.7: Let $X = Y = \{a, b, c\}$ with $\mu_1 = \{\emptyset, \{a, b\}, X\}$ and $\mu_2 = \{\emptyset, \{a\}, \{b, c\}, Y\}$. Let $f: (X, \mu_1) \rightarrow (Y, \mu_2)$ be a mapping defined by $f(a) = a$, $f(b) = b$, $f(c) = c$. Now, μ-βO$(X) = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, c\}, X\}$. Let $A = \{a\}$, then A is a μ-regular closed set in (Y, μ_2). Then $f^{-1}(A)$ is a μ-pre closed set as $c_\mu(i_\mu(f^{-1}(A))) = c_\mu(i_\mu(\{a\})) = \emptyset \subseteq f^{-1}(A)$, but not μ-βGαCS as $\alpha c_\mu(f^{-1}(A)) = X \not\subseteq U = \{a, b\}$ in (X, μ_1). Hence f is an almost μ-pre-continuous, but not an almost μ-βGα-continuous mapping.

Remark 4.8: An almost μ-β-continuous mapping is not an almost μ-βGα-continuous mapping in general.

Example 4.9: Let $X = Y = \{a, b, c\}$ with $\mu_1 = \{\emptyset, \{a, b\}, X\}$ and $\mu_2 = \{\emptyset, \{a\}, \{b, c\}, Y\}$. Let $f: (X, \mu_1) \rightarrow (Y, \mu_2)$ be a mapping defined by $f(a) = a$, $f(b) = b$, $f(c) = c$. Now, μ-βO$(X) = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, c\}, X\}$. Let $A = \{a\}$, then A is a μ-regular closed set in (Y, μ_2). Then $f^{-1}(A)$ is a μ-β-closed set as $i_\mu(c_\mu(i_\mu(f^{-1}(A)))) = i_\mu(c_\mu(i_\mu(\{a\}))) = \emptyset \subseteq f^{-1}(A)$, but not μ-βGαCS as $\alpha c_\mu(f^{-1}(A)) = X \not\subseteq U = \{a, b\}$ in (X, μ_1). Hence f is an almost μ-β-continuous mapping, but not an almost μ-βGα-continuous mapping. In the following diagram, we have provided the relation between various types of almost μ-continuous mappings.
Theorem 4.10: A mapping $f: (X, \mu_1) \to (Y, \mu_2)$ is an almost μ-$\beta G\alpha$-continuous mapping if and only if the inverse image of every μ-regular open set in (Y, μ_2) is μ-$\beta G\alpha OS$ in (X, μ_1).

Proof: Necessity: Let U be a μ-regular open set in (Y, μ_2). Then $Y-U$ is μ-regular closed in (Y, μ_2). Since f is an almost μ-$\beta G\alpha$-continuous mapping, $f^{-1}(Y-U) = X - f^{-1}(U)$ is a μ-$\beta G\alpha CS$ in (X, μ_1). Hence $f^{-1}(U)$ is a μ-$\beta G\alpha OS$ in (X, μ_1).

Sufficiency: Let V be any μ-regular closed set in (Y, μ_2). Then $Y-V$ is μ-regular open in (Y, μ_2). By hypothesis, $f^{-1}(Y-V) = X - f^{-1}(V)$ is $\alpha\mu$-$\beta G\alpha OS$ in (X, μ_1) which implies that $f^{-1}(V)$ is a μ-$\beta G\alpha CS$ in (X, μ_1). Hence f is an almost μ-$\beta G\alpha$-continuous mapping.

Theorem 4.11: If $f: (X, \mu_1) \to (Y, \mu_2)$ is a μ-continuous mapping and $g: (Y, \mu_2) \to (Z, \mu_3)$ is an almost μ-continuous mapping then $g \circ f: (X, \mu_1) \to (Z, \mu_3)$ is an almost μ-$\beta G\alpha$-continuous mapping.

Proof: Let V be any μ-regular closed set in (Z, μ_3). Since g is an almost μ-continuous mapping, $g^{-1}(V)$ is a μ-closed set in (Y, μ_2). Since f is μ-continuous, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is a μ-closed set in (X, μ_1). Since every μ-closed set is $\alpha\mu$-$\beta G\alpha CS$, $(g \circ f)^{-1}(V)$ is a μ-$\beta G\alpha CS$ in (X, μ_1). Therefore $g \circ f$ is an almost μ-$\beta G\alpha$-continuous mapping.

Theorem 4.12: If $f: (X, \mu_1) \to (Y, \mu_2)$ is a μ-α-continuous mapping and $g: (Y, \mu_2) \to (Z, \mu_3)$ is an almost μ-continuous mapping then $g \circ f: (X, \mu_1) \to (Z, \mu_3)$ is an almost μ-$\beta G\alpha$-continuous mapping.

Proof: Let V be any μ-regular closed set in (Z, μ_3). Since g is almost μ-continuous, $g^{-1}(V)$ is μ-closed in (Y, μ_2). Since f is μ-α-continuous, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is μ-α-closed in (X, μ_1). Since every μ-α-closed set is $\alpha\mu$-$\beta G\alpha CS$, $(g \circ f)^{-1}(V)$ is $\alpha\mu$-$\beta G\alpha CS$. Therefore $g \circ f$ is an almost μ-$\beta G\alpha$-continuous mapping.

REFERENCE

