μ-β-generalized α-continuous mappings in generalized topological spaces

Kowsalya M¹, sentamilselvi M²

¹Mphil Mathematics, Vivekanandha College of Arts and Sciences for Women [Autonomous], Tiruchengode, Namakkal. Tamil Nadu, India

²Assistant professor of Mathematics, Mathematics, Vivekanandha College of Arts and Sciences for Women [Autonomous], Tiruchengode, Namakkal.Tamil Nadu, India

Abstract: In this paper, we have introduced μ - β -generalized α -continuous mapsand also introduced almost μ - β -generalized α -continuous mapsin generalized topological spaces by using μ - β -generalized α -closed sets (briefly μ - β G α CS). Also we have introduced some of their basic properties.

Keywords: Generalized topology, generalized topological spaces, μ - α -closed sets, μ - β -generalized α -continuous, almost μ - β -generalized α -continuous, almost μ - β -generalized α -continuous.

1. Introduction

In 1970, Levin [4] introduced the idea of continuous function. He also introduced the concepts of semi-open sets and semi-continuity [3] in a topological space. Mashhour [5] introduced and studied α -continuous function in topological spaces. The notation of μ - β -generalized α -closed sets (briefly μ - β G α CS) was defined and investigated by Kowsalya. M and Jayanthi. D [2]. In this paper, we have introduced μ - β -generalized α -continuous mapsand also introduced almost μ - β -generalized α -continuous mapsin generalized topological spaces. Also we have investigated some of their basic properties and produced many interesting theorems.

2. Preliminaries

Let us recall the following definitions which are used in sequel.

Definition 2.1: [1] Let X be a nonempty set. A collection μ of subsets of X is a generalized topology (or briefly GT) on X if it satisfies the following:

- (1) \emptyset , $X \in \mu$ and
- (2) If $\{M_i : i \in I\} \subseteq \mu$, then $\bigcup_{i \in I} M_i \in \mu$.

If μ is a GT on X, then (X, μ) is called a generalized topological space(or briefly GTS) and the elements of μ are called μ -open sets and their complement are called μ -closed sets.

Definition 2.2: [1] Let (X, μ) be a GTS and let $A \subseteq X$. Then the μ -closure of A, denoted by $c_{\mu}(A)$, is the intersection of all μ -closed sets containing A.

Definition 2.3: [1] Let (X, μ) be a GTS and let $A \subseteq X$. Then the μ -interior of A, denoted by $i_{\mu}(A)$, is the union of all μ -open sets contained in A.

Definition 2.4: [1] Let (X, μ) be a GTS. A subset A of X is said to be

- i. μ -semi-closed set if $i_{\mu}(c_{\mu}(A)) \subseteq A$
- ii. μ -pre-closed set if $c_u(i_u(A)) \subseteq A$
- iii. μ - α -closed set if $c_{\mu}(i_{\mu}(c_{\mu}(A))) \subseteq A$
- iv. μ - β -closed set if $i_{\mu}(c_{\mu}(i_{\mu}(A))) \subseteq A$
- v. μ -regular-closed set if $A = c_{\mu}(i_{\mu}(A))$

Definition2.5:[7] Let (X, μ_1) and (Y, μ_2) be GTSs. Then a mapping $f: (X, \mu_1) \to (Y, \mu_2)$ is called

- i. μ -Continuous mappingif $f^{-1}(A)$ is μ -closed in (X, μ_1) for each μ -closed in (Y, μ_2) .
- ii. μ -Semi-continuous mapping if $f^{-1}(A)$ is μ -semi-closed in (X, μ_1) for every μ -closed in (Y, μ_2) .
- iii. μ -pre-continuous mapping if $f^{-1}(A)$ is μ -pre-closed in (X, μ_1) for every μ -closed in (Y, μ_2) .
- iv. μ - α -continuous mapping if $f^{-1}(A)$ is μ - α -closed in (X, μ_1) for every μ -closed in (Y, μ_2) .
- v. μ - β -continuous mapping if $f^{-1}(A)$ is μ - β -closed in (X, μ_1) for every μ -closed in (Y, μ_2) .

Definition 2.6: [6] Let (X, μ_1) and (Y, μ_2) be GTSs. Then a mapping $f: (X, \mu_1) \to (Y, \mu_2)$ is called

- i. almost μ -Continuous mapping if $f^{-1}(A)$ is μ -closed in (X, μ_1) for every μ -regular closed set A of (Y, μ_2) .
- ii. almost μ -semi continuous mappings if f $^{-1}$ (A) is μ -semi closed in (X, μ_1) for every μ -regular closed set A of (Y, μ_2).
- iii. almost μ -pre-continuous mappings if f $^{-1}$ (A) is μ -pre closed in (X, μ_1) for every μ -regular closed set A of (Y, μ_2).
- iv. almost μ - α -continuous mapping if $f^1(A)$ is μ - α -closed in (X, μ_1) for every μ -regular closed set A of (Y, μ_2) .
- v. almost μ - β -continuous mapping if f $^{-1}$ (A) is μ - β -closed in (X, μ_1) for every μ -regular closed set A of (Y, μ_2).

3. μ-β-generalized α-continuous mappings in topological spaces

In this section we have introduced μ - β -generalized α -continuous mappings in generalized topological spaces and discussed some of their basic properties.

Definition 3.1: A mapping $f: (X, \mu_1) \to (Y, \mu_2)$ is called a μ -β-generalized α-continuous (briefly μ -βGα-continuous) if $f^{-1}(A)$ is a μ -β-generalized α-closed set (briefly μ -βGαCS) in (X, μ_1) for each μ -closed set A in (Y, μ_2) .

Example 3.2: Let $X = Y = \{a, b, c\}$ with $\mu_1 = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$ and $\mu_2 = \{\emptyset, \{a, b\}, Y\}$. Let $f: (X, \mu_1) \rightarrow (Y, \mu_2)$ be a mapping defined by f(a) = a, f(b) = b, f(c) = c. Now, μ - $\beta O(X) = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, c\}, X\}$. Let $A = \{c\}$, then A is a μ -closed set in (Y, μ_2) . Then $f^{-1}(\{c\})$ is a μ - $\beta G\alpha CS$ in (X, μ) . Hence f is a μ - $\beta G\alpha$ -continuous mapping.

Theorem 3.3: Every μ -continuous mapping is a μ - β G α -continuous mapping but not conversely in general.

Proof: Let $f: (X, \mu_1) \to (Y, \mu_2)$ be a μ -continuous mapping. Let A be μ -closed set in (Y, μ_2) . Since f is a μ -continuous mapping, $f^{-1}(A)$ is a μ -closed set in (X, μ_1) . Since every μ -closed set is a μ - $\beta G\alpha CS$, $f^{-1}(A)$ is a μ - $\beta G\alpha CS$ in (X, μ_1) . Hence f is a μ - $\beta G\alpha$ -continuous mapping.

Example 3.4: Let $X = Y = \{a, b, c, d\}$ with $\mu_1 = \{\emptyset, \{a\}, \{c\}, \{a, c\}, X\}$ and $\mu_2 = \{\emptyset, \{a, b, c\}, Y\}$. Let $f: (X, \mu_1) \to (Y, \mu_2)$ be a mapping defined by f(a) = a, f(b) = b, f(c) = c, f(d) = d. Now, μ -βO(X) = $\{\emptyset, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{c, d\}, \{a, b, c\}, \{b, c, d\}, \{a, c, d\}, \{a, b, d\}, X\}$. Let $A = \{d\}$, then A is a μ -closed set in (Y, μ_2) . Then $f^{-1}(\{d\})$ is a μ -βGαCS in (X, μ_1) , but not μ -closed as $c_{\mu}(f^{-1}(A)) = cd\}$) = $\{b, d\} \neq f^{-1}(A)$. Hence f is a μ -βGα-continuous mapping, but not a μ -continuous mapping.

Theorem 3.5: Every μ - α -continuous mapping is a μ - β G α -continuous mapping in general.

Proof: Let $f: (X, \mu_1) \to (Y, \mu_2)$ be a μ - α -continuous mapping. Let A be any μ -closed set in (Y, μ_2) . Since f is a μ - α -continuous mapping, $f^{-1}(A)$ is a μ - α -closed set in (X, μ_1) . Since every μ - α -closed set is a μ - $\beta G\alpha CS$, $f^{-1}(A)$ is μ - $\beta G\alpha CS$ in (X, μ_1) . Hence f is a μ - $\beta G\alpha$ -continuous mapping.

Remark 3.6: A μ -pre-continuous mapping is not a μ - β G α -continuous mapping in general.

Example 3.7: Let $X = Y = \{a, b, c\}$ with $\mu_1 = \{\emptyset, \{a, b\}, X\}$ and $\mu_2 = \{\emptyset, \{b, c\}, Y\}$. Let $f: (X, \mu_1) \rightarrow (Y, \mu_2)$ be a mapping defined by f(a) = a, f(b) = b, f(c) = c. Now, μ -βO(X) = $\{\emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, c\}, X\}$. Let $A = \{a\}$, then A is a μ -closed set in (Y, μ_2) . Then $f^{-1}(\{a\})$ is a μ -pre-closed set in (X, μ_1) as $c_{\mu}(i_{\mu}(f^{-1}(A))) = c_{\mu}(i_{\mu}(\{a\})) = \emptyset \subseteq f^{-1}(A)$, but not μ -βGαCS as $\alpha c_{\mu}(f^{-1}(A)) = X \not\subseteq U = \{a, b\}$ in (X, μ_1) . Hence f is a μ -pre-continuous mapping, but not a μ -βGα-continuous mapping.

Remark 3.8: A μ - β -continuous mapping is not a μ - β G α -continuous mapping in general.

Example 3.9: Let $X = Y = \{a, b, c\}$ with $\mu_1 = \{\emptyset, \{a, b\}, X\}$ and $\mu_2 = \{\emptyset, \{b, c\}, Y\}$. Let $f: (X, \mu_1) \to (Y, \mu_2)$ be a mapping defined by f(a) = a, f(b) = b, f(c) = c. Now, μ - β O(X) = $\{\emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, c\}, X\}$. Let $A = \{a\}$, then A is a μ -closed set in (Y, μ_2) . Then $f^{-1}(\{a\})$ is a μ - β -closed in (X, μ_1) as $i_{\mu}(c_{\mu}(i_{\mu}(f^{-1})))$.

(A)))) $=i_{\mu}(c_{\mu}(i_{\mu}(\{a\})))=\emptyset\subseteq f^{-1}$ (A), but not a μ - β G α CS as $\alpha c_{\mu}(f^{-1}(A))=X\nsubseteq U=\{a,b\}$ in (X,μ_1) . Hence f is a μ - β -continuous mapping, but not a μ - β G α -continuous mapping.

In the following diagram, we have provided relation between various types of μ -continuous mappings.

Theorem 3.10: A mapping f: $(X, \mu_1) \rightarrow (Y, \mu_2)$ is a μ - β G α -continuous mapping if and only if the inverse image of every μ -open set in (Y, μ_2) is a μ - β G α OS in (X, μ_1) .

Proof: Necessity: Let U be a μ -open set in (Y, μ_2) . Then Y-U is a μ -closed set in (Y, μ_2) . Since f is a μ - β G α -continuous mapping, $f^{-1}(Y-U) = X - f^{-1}(U)$ is a μ - β G α CS in (X, μ_1) . Hence $f^{-1}(U)$ is a μ - β G α OS in (X, μ_1) .

Sufficiency: Assume that $f^{-1}(V)$ is a μ - β G α OS in (X, μ_1) for each μ -open set V in (Y, μ_2) . Let V be any μ -closed set in (Y, μ_2) . Then Y-V is μ -open in (Y, μ_2) . By assumption, $f^{-1}(Y$ - $V) = X - f^{-1}(V)$ is a μ - β G α OS in (X, μ_1) which implies that $f^{-1}(V)$ is a μ - β -generalized α -closed set in (X, μ_1) . Hence f is a μ - β G α -continuous mapping.

Theorem 3.11: If f: $(X, \mu_1) \to (Y, \mu_2)$ is a μ - β G α -continuous mapping and g: $(Y, \mu_2) \to (Z, \mu_3)$ is a μ -continuous mapping then $g \circ f: (X, \mu_1) \to (Z, \mu_3)$ is a μ - β G α -continuous mapping.

Proof: Let V be any μ -closed set in (Z, μ_3). Since g is a μ -continuous mapping, g $^{-1}$ (V) is a μ -closed set in (Y, μ_2). Since f is a μ - β G α -continuous mapping, (g \circ f) $^{-1}$ (V) = f $^{-1}$ (g $^{-1}$ (V)) is a μ - β G α -CSin (X, μ_1). Therefore g \circ f is a μ - β G α -continuous mapping.

Theorem 3.12: If $f: (X, \mu_1) \to (Y, \mu_2)$ is a μ -continuous mapping and $g: (Y, \mu_2) \to (Z, \mu_3)$ is a μ -continuous mapping then $g \circ f: (X, \mu_1) \to (Z, \mu_3)$ is a μ - $\beta G\alpha$ -continuous mapping.

Proof: Let V be any μ -closed set in (Z, μ_3) . Since g is a μ -continuous mapping, $g^{-1}(V)$ is a μ -closed set in (Y, μ_2) . Since f is a μ -continuous mapping, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is a μ -closed set in (X, μ_1) . Since every μ -closed set is a μ - β G α CS, $(g \circ f)^{-1}(V)$ is a μ - β G α CS. Therefore $g \circ f$ is a μ - β G α -continuous mapping.

Theorem 3.13: If $f: (X, \mu_1) \to (Y, \mu_2)$ is a μ - α -continuous mapping and $g: (Y, \mu_2) \to (Z, \mu_3)$ is a μ -continuous mapping then $g \circ f: (X, \mu_1) \to (Z, \mu_3)$ is a μ - β G α -continuous mapping.

Proof: Let V be any μ -closed set in (Z, μ_3). Since g is a μ -continuous mapping $g^{-1}(V)$ is a μ -closed in (Y, μ_2). Since f is a μ - α -continuous mapping, (g \circ f) $^{-1}(V) = f^{-1}(g^{-1}(V))$ is a μ - α -closed in (X, μ_1). Since every μ - α -closed set is a μ - β G α CS, (g \circ f) $^{-1}(V)$ is a μ - β G α CSin (X, μ_1). Therefore g \circ f is a μ - β G α -continuous mapping.

4. ALMOST μ-β-GENERALIZED α-CONTINUOUS MAPPINGS

In this section we have introduced almost μ - β -generalized α -continuous mappings in generalized topological spaces and studied some of their basic properties.

Definition 4.1: A mapping f: $(X, \mu_1) \rightarrow (Y, \mu_2)$ is called an almost μ-β-generalized α-continuous mapping (brieflyalmost μ-βGα-continuous) if f⁻¹ (A)is a μ-β-generalized α-closed set (briefly μ-βGαCS) in (X, μ_1) for eachμ-regular closed set A in (Y, μ_2) .

Example 4.2: Let $X = Y = \{a, b, c\}$ with $\mu_1 = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$ and $\mu_2 = \{\emptyset, \{c\}, \{a, b\}, Y\}$. Let $f: (X, \mu_1) \to (Y, \mu_2)$ be a mapping defined by f(a) = a, f(b) = b, f(c) = c. Now, μ - β O(X) = $\{\emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, c\}, X\}$. Let $A = \{c\}$, then A is a μ -regular closed set in (Y, μ_2) . Then $f^{-1}(\{c\})$ is μ - β GαCSin (X, μ_1) . Hence f is an almost μ - β Gα-continuous mapping.

Theorem 4.3: Every almost μ -continuous mapping is an almost μ - β G α -continuous mapping but not conversely in general.

Proof: Let $f: (X, \mu_1) \to (Y, \mu_2)$ be an almost μ -continuous mapping. Let A be a μ -regular closed set in (Y, μ_2) . Since f is an almost μ -continuous mapping, $f^{-1}(A)$ is a μ -closed set in (X, μ_1) . Since every μ -closed set is a μ - $\beta G\alpha CS$, $f^{-1}(A)$ is a μ - $\beta G\alpha CS$ in (X, μ_1) . Hence f is an almost μ - $\beta G\alpha$ -continuous mapping.

Example 4.4: Let $X = Y = \{a, b, c, d\}$ with $\mu_1 = \{\emptyset, \{a\}, \{c\}, \{a, c\}, X\}$ and $\mu_2 = \{\emptyset, \{a, b\}, \{a, b, c\}, Y\}$. Let $f: (X, \mu_1) \to (Y, \mu_2)$ be a mapping defined by f(a) = a, f(b) = b, f(c) = c. Now, μ - β O(X) = $\{\emptyset, \{a\}, \{a, b\}, \{a, c\}, X\}$. Let $A = \{b\}$, then A is a μ -regular closed set in (Y, μ_2) . Then $f^{-1}(A)$ is a μ - β G α CS, but not μ -closed as $c_{\mu}(f^{-1}(A)) = c_{\mu}(\{b\}) = \{b, c\} \neq f^{-1}(A)$ in (X, μ_1) . Hence f is an almost μ - β G α -continuous mapping, but not an almost μ -continuous mapping.

Theorem 4.5: Every almost μ - α -continuous mapping is an almost μ - β G α -continuous mapping in general.

Proof: Let f: $(X, \mu_1) \to (Y, \mu_2)$ be an almost μ - α -continuous mapping. Let A be any μ -regular closed set in (Y, μ_2) . Since f is an almost μ - α -continuous mapping, f⁻¹(A) is a μ - α -closed set in (X, μ_1) . Since every μ - α closed set is a μ - β G α CS, f $^{-1}$ (A) is a μ - β -generalized α -closed set in (X, μ_1). Hence f is an almost μ - β G α continuous mapping.

Remark 4.6: An almost μ -pre-continuous mapping is not an almost μ - β G α -continuous in general.

Example 4.7: Let $X = Y = \{a, b, c\}$ with $\mu_1 = \{\emptyset, \{a, b\}, X\}$ and $\mu_2 = \{\emptyset, \{a\}, \{b, c\}, Y\}$. Let $f: (X, \mu_1)$ \rightarrow (Y, μ_2) be a mapping defined by f(a) = a, f(b) = b, f(c) = c. Now, μ - β O(X) = {Ø, {a}, {b}, {a, b}, {b, c}, {a, c}, X}.Let A = {a}, then A is a μ -regular closed set in (Y, μ ₂). Then f ⁻¹(A) is a μ -pre closed set as $c_u(i_u(f^{-1}(A))) = c_u(i_u(\{a\})) = \emptyset \subseteq f^{-1}(A)$, but not μ - $\beta G\alpha CS$ as $\alpha c_u(f^{-1}(A)) = X \nsubseteq U = \{a, b\}$ in (X, μ_1) . Hence f is an almost μ -pre-continuous, but not an almost μ - β G α -continuous mapping.

Remark 4.8: An almost μ - β -continuous mapping is not an almost μ - β G α -continuous mapping in general.

 (Y, μ_2) be a mapping defined by f(a) = a, f(b) = b, f(c) = c.

Now, μ - β O(X) = {Ø, {a}, {b}, {a, b}, {b, c}, {a, c}, X}. Let A = {a}, then A is a μ -regular closed set in (Y, μ_2). Then f⁻¹(A) is a μ -β-closed set as $i_u(c_u(i_u(f^{-1}(A)))) = i_u(c_u(i_u(\{a\}))) = \emptyset \subseteq f^{-1}(A)$, but not a μ -βGαCS as $\alpha c_{\mu}(f^{-1}(A)) = X \nsubseteq U = \{a, b\}$ in (X, μ_1) . Hence f is an almost μ - β -continuous mapping, but not an almost μ βGα-continuous mapping.

In the following diagram, we have provided the relation between various types of almost ucontinuous mappings.

Theorem 4.10: A mapping f: $(X, \mu_1) \to (Y, \mu_2)$ is an almost μ - β G α -continuous mapping if and only if the inverse image of every μ -regular open set in (Y, μ_2) is μ - β G α OS in (X, μ_1) .

Proof:Necessity: Let U be a μ -regular open set in (Y, μ_2) . Then Y-U is μ -regular closed in (Y, μ_2) . Since f is an almost μ - β G α -continuous mapping, $f^{-1}(Y-U) = X - f^{-1}(U)$ is a μ - β G α OS in (X, μ_1) . Hence f $f^{-1}(U)$ is a μ - $g^{-1}(U)$ is a μ - $g^{-1}(U)$.

Sufficiency:Let V be any μ -regular closed set in (Y, μ_2) . Then Y-V is a μ -regular open in (Y, μ_2) . By hypothesis, $f^{-1}(Y-V) = X - f^{-1}(V)$ is a μ - β G α OS in (X, μ_1) which implies that $f^{-1}(V)$ is a μ - β G α CS in (X, μ_1) . Hence f is an almost μ - β G α -continuous mapping.

Theorem 4.11: If $f: (X, \mu_1) \to (Y, \mu_2)$ is a μ -continuous mapping and $g: (Y, \mu_2) \to (Z, \mu_3)$ is an almost μ -continuous mapping then $g \circ f: (X, \mu_1) \to (Z, \mu_3)$ is an almost μ - $\beta G\alpha$ -continuous mapping.

Proof: Let V be any μ -regular closed set in (Z, μ_3) . Since g is an almost μ -continuous mapping, $g^{-1}(V)$ is a μ -closed set in (Y, μ_2) . Since f is μ -continuous, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is a μ -closed set in (X, μ_1) . Since every μ -closed set is a μ - β G α CS, $(g \circ f)^{-1}(V)$ is a μ - β G α CS in (X, μ_1) . Therefore $g \circ f$ is an almost μ - β G α -continuous mapping.

Theorem 4.12: If $f: (X, \mu_1) \to (Y, \mu_2)$ is a μ - α -continuous mapping and $g: (Y, \mu_2) \to (Z, \mu_3)$ is an almost μ -continuous mapping then $g \circ f: (X, \mu_1) \to (Z, \mu_3)$ is an almost μ - $\beta G \alpha$ -continuous mapping.

Proof: Let V be any μ -regular closed set in (Z, μ_3) . Since g is almost μ -continuous, $g^{-1}(V)$ is μ -closed in (Y, μ_2) . Since f is μ - α -continuous, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is μ - α -closed in (X, μ_1) . Since every μ - α -closed set is $a\mu$ - $\beta G\alpha CS$, $(g \circ f)^{-1}(V)$ is $a\mu$ - $\beta G\alpha CS$. Therefore $g \circ f$ is an almost μ - $\beta G\alpha$ -continuous mapping.

REFERENCE

- [1] **Csaszar, A.,** Generalized topology, generalized continuity, ActaMathematicaHungar., 96 (4) (2002), 351 357.
- [2] Kowsalya, M. and Jayanthi, D., μ - β generalized α -closed sets in generalized topological spaces (submitted).
- [3] **Levine, N.,** Semi open sets and semi continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41.
- [4] Levine, N., Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19 (1970), 89-96.
- [5] **Mashhour, A.S., Hasanein, I.A., and EI-Deeb S.N.,**α- continuous and α-open mappings, Acta. Math. Hungar, 41 (1983), no. 3-4, 213-218.

- Min. W. K., Almost continuity on generalized topological spaces, Acta. Math. Hungar., 125 (1-2) [6] (2009), 121-125.
- [7] Min. W. K., Generalized continuous functions defined by generalized open sets on generalized topological spaces, Acta. Math. Hungar.,2009.

