μ-β-generalized α-continuous mappings in generalized topological spaces ## Kowsalya M¹, sentamilselvi M² ¹Mphil Mathematics, Vivekanandha College of Arts and Sciences for Women [Autonomous], Tiruchengode, Namakkal. Tamil Nadu, India ²Assistant professor of Mathematics, Mathematics, Vivekanandha College of Arts and Sciences for Women [Autonomous], Tiruchengode, Namakkal.Tamil Nadu, India **Abstract:** In this paper, we have introduced μ - β -generalized α -continuous mapsand also introduced almost μ - β -generalized α -continuous mapsin generalized topological spaces by using μ - β -generalized α -closed sets (briefly μ - β G α CS). Also we have introduced some of their basic properties. **Keywords:** Generalized topology, generalized topological spaces, μ - α -closed sets, μ - β -generalized α -continuous, almost μ - β -generalized α -continuous, almost μ - β -generalized α -continuous. #### 1. Introduction In 1970, Levin [4] introduced the idea of continuous function. He also introduced the concepts of semi-open sets and semi-continuity [3] in a topological space. Mashhour [5] introduced and studied α -continuous function in topological spaces. The notation of μ - β -generalized α -closed sets (briefly μ - β G α CS) was defined and investigated by Kowsalya. M and Jayanthi. D [2]. In this paper, we have introduced μ - β -generalized α -continuous mapsand also introduced almost μ - β -generalized α -continuous mapsin generalized topological spaces. Also we have investigated some of their basic properties and produced many interesting theorems. #### 2. Preliminaries Let us recall the following definitions which are used in sequel. **Definition 2.1:** [1] Let X be a nonempty set. A collection μ of subsets of X is a generalized topology (or briefly GT) on X if it satisfies the following: - (1) \emptyset , $X \in \mu$ and - (2) If $\{M_i : i \in I\} \subseteq \mu$, then $\bigcup_{i \in I} M_i \in \mu$. If μ is a GT on X, then (X, μ) is called a generalized topological space(or briefly GTS) and the elements of μ are called μ -open sets and their complement are called μ -closed sets. **Definition 2.2:** [1] Let (X, μ) be a GTS and let $A \subseteq X$. Then the μ -closure of A, denoted by $c_{\mu}(A)$, is the intersection of all μ -closed sets containing A. **Definition 2.3:** [1] Let (X, μ) be a GTS and let $A \subseteq X$. Then the μ -interior of A, denoted by $i_{\mu}(A)$, is the union of all μ -open sets contained in A. #### **Definition 2.4:** [1] Let (X, μ) be a GTS. A subset A of X is said to be - i. μ -semi-closed set if $i_{\mu}(c_{\mu}(A)) \subseteq A$ - ii. μ -pre-closed set if $c_u(i_u(A)) \subseteq A$ - iii. μ - α -closed set if $c_{\mu}(i_{\mu}(c_{\mu}(A))) \subseteq A$ - iv. μ - β -closed set if $i_{\mu}(c_{\mu}(i_{\mu}(A))) \subseteq A$ - v. μ -regular-closed set if $A = c_{\mu}(i_{\mu}(A))$ #### **Definition2.5:**[7] Let (X, μ_1) and (Y, μ_2) be GTSs. Then a mapping $f: (X, \mu_1) \to (Y, \mu_2)$ is called - i. μ -Continuous mappingif $f^{-1}(A)$ is μ -closed in (X, μ_1) for each μ -closed in (Y, μ_2) . - ii. μ -Semi-continuous mapping if $f^{-1}(A)$ is μ -semi-closed in (X, μ_1) for every μ -closed in (Y, μ_2) . - iii. μ -pre-continuous mapping if $f^{-1}(A)$ is μ -pre-closed in (X, μ_1) for every μ -closed in (Y, μ_2) . - iv. μ - α -continuous mapping if $f^{-1}(A)$ is μ - α -closed in (X, μ_1) for every μ -closed in (Y, μ_2) . - v. μ - β -continuous mapping if $f^{-1}(A)$ is μ - β -closed in (X, μ_1) for every μ -closed in (Y, μ_2) . ### **Definition 2.6:** [6] Let (X, μ_1) and (Y, μ_2) be GTSs. Then a mapping $f: (X, \mu_1) \to (Y, \mu_2)$ is called - i. almost μ -Continuous mapping if $f^{-1}(A)$ is μ -closed in (X, μ_1) for every μ -regular closed set A of (Y, μ_2) . - ii. almost μ -semi continuous mappings if f $^{-1}$ (A) is μ -semi closed in (X, μ_1) for every μ -regular closed set A of (Y, μ_2). - iii. almost μ -pre-continuous mappings if f $^{-1}$ (A) is μ -pre closed in (X, μ_1) for every μ -regular closed set A of (Y, μ_2). - iv. almost μ - α -continuous mapping if $f^1(A)$ is μ - α -closed in (X, μ_1) for every μ -regular closed set A of (Y, μ_2) . - v. almost μ - β -continuous mapping if f $^{-1}$ (A) is μ - β -closed in (X, μ_1) for every μ -regular closed set A of (Y, μ_2). # 3. μ-β-generalized α-continuous mappings in topological spaces In this section we have introduced μ - β -generalized α -continuous mappings in generalized topological spaces and discussed some of their basic properties. **Definition 3.1:** A mapping $f: (X, \mu_1) \to (Y, \mu_2)$ is called a μ -β-generalized α-continuous (briefly μ -βGα-continuous) if $f^{-1}(A)$ is a μ -β-generalized α-closed set (briefly μ -βGαCS) in (X, μ_1) for each μ -closed set A in (Y, μ_2) . **Example 3.2:** Let $X = Y = \{a, b, c\}$ with $\mu_1 = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$ and $\mu_2 = \{\emptyset, \{a, b\}, Y\}$. Let $f: (X, \mu_1) \rightarrow (Y, \mu_2)$ be a mapping defined by f(a) = a, f(b) = b, f(c) = c. Now, μ - $\beta O(X) = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, c\}, X\}$. Let $A = \{c\}$, then A is a μ -closed set in (Y, μ_2) . Then $f^{-1}(\{c\})$ is a μ - $\beta G\alpha CS$ in (X, μ) . Hence f is a μ - $\beta G\alpha$ -continuous mapping. **Theorem 3.3:** Every μ -continuous mapping is a μ - β G α -continuous mapping but not conversely in general. **Proof:** Let $f: (X, \mu_1) \to (Y, \mu_2)$ be a μ -continuous mapping. Let A be μ -closed set in (Y, μ_2) . Since f is a μ -continuous mapping, $f^{-1}(A)$ is a μ -closed set in (X, μ_1) . Since every μ -closed set is a μ - $\beta G\alpha CS$, $f^{-1}(A)$ is a μ - $\beta G\alpha CS$ in (X, μ_1) . Hence f is a μ - $\beta G\alpha$ -continuous mapping. **Example 3.4:** Let $X = Y = \{a, b, c, d\}$ with $\mu_1 = \{\emptyset, \{a\}, \{c\}, \{a, c\}, X\}$ and $\mu_2 = \{\emptyset, \{a, b, c\}, Y\}$. Let $f: (X, \mu_1) \to (Y, \mu_2)$ be a mapping defined by f(a) = a, f(b) = b, f(c) = c, f(d) = d. Now, μ -βO(X) = $\{\emptyset, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{c, d\}, \{a, b, c\}, \{b, c, d\}, \{a, c, d\}, \{a, b, d\}, X\}$. Let $A = \{d\}$, then A is a μ -closed set in (Y, μ_2) . Then $f^{-1}(\{d\})$ is a μ -βGαCS in (X, μ_1) , but not μ -closed as $c_{\mu}(f^{-1}(A)) = cd\}$) = $\{b, d\} \neq f^{-1}(A)$. Hence f is a μ -βGα-continuous mapping, but not a μ -continuous mapping. **Theorem 3.5:** Every μ - α -continuous mapping is a μ - β G α -continuous mapping in general. **Proof:** Let $f: (X, \mu_1) \to (Y, \mu_2)$ be a μ - α -continuous mapping. Let A be any μ -closed set in (Y, μ_2) . Since f is a μ - α -continuous mapping, $f^{-1}(A)$ is a μ - α -closed set in (X, μ_1) . Since every μ - α -closed set is a μ - $\beta G\alpha CS$, $f^{-1}(A)$ is μ - $\beta G\alpha CS$ in (X, μ_1) . Hence f is a μ - $\beta G\alpha$ -continuous mapping. **Remark 3.6:** A μ -pre-continuous mapping is not a μ - β G α -continuous mapping in general. **Example 3.7:** Let $X = Y = \{a, b, c\}$ with $\mu_1 = \{\emptyset, \{a, b\}, X\}$ and $\mu_2 = \{\emptyset, \{b, c\}, Y\}$. Let $f: (X, \mu_1) \rightarrow (Y, \mu_2)$ be a mapping defined by f(a) = a, f(b) = b, f(c) = c. Now, μ -βO(X) = $\{\emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, c\}, X\}$. Let $A = \{a\}$, then A is a μ -closed set in (Y, μ_2) . Then $f^{-1}(\{a\})$ is a μ -pre-closed set in (X, μ_1) as $c_{\mu}(i_{\mu}(f^{-1}(A))) = c_{\mu}(i_{\mu}(\{a\})) = \emptyset \subseteq f^{-1}(A)$, but not μ -βGαCS as $\alpha c_{\mu}(f^{-1}(A)) = X \not\subseteq U = \{a, b\}$ in (X, μ_1) . Hence f is a μ -pre-continuous mapping, but not a μ -βGα-continuous mapping. **Remark 3.8:** A μ - β -continuous mapping is not a μ - β G α -continuous mapping in general. **Example 3.9:** Let $X = Y = \{a, b, c\}$ with $\mu_1 = \{\emptyset, \{a, b\}, X\}$ and $\mu_2 = \{\emptyset, \{b, c\}, Y\}$. Let $f: (X, \mu_1) \to (Y, \mu_2)$ be a mapping defined by f(a) = a, f(b) = b, f(c) = c. Now, μ - β O(X) = $\{\emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, c\}, X\}$. Let $A = \{a\}$, then A is a μ -closed set in (Y, μ_2) . Then $f^{-1}(\{a\})$ is a μ - β -closed in (X, μ_1) as $i_{\mu}(c_{\mu}(i_{\mu}(f^{-1})))$. (A)))) $=i_{\mu}(c_{\mu}(i_{\mu}(\{a\})))=\emptyset\subseteq f^{-1}$ (A), but not a μ - β G α CS as $\alpha c_{\mu}(f^{-1}(A))=X\nsubseteq U=\{a,b\}$ in (X,μ_1) . Hence f is a μ - β -continuous mapping, but not a μ - β G α -continuous mapping. In the following diagram, we have provided relation between various types of μ -continuous mappings. **Theorem 3.10:** A mapping f: $(X, \mu_1) \rightarrow (Y, \mu_2)$ is a μ - β G α -continuous mapping if and only if the inverse image of every μ -open set in (Y, μ_2) is a μ - β G α OS in (X, μ_1) . **Proof:** Necessity: Let U be a μ -open set in (Y, μ_2) . Then Y-U is a μ -closed set in (Y, μ_2) . Since f is a μ - β G α -continuous mapping, $f^{-1}(Y-U) = X - f^{-1}(U)$ is a μ - β G α CS in (X, μ_1) . Hence $f^{-1}(U)$ is a μ - β G α OS in (X, μ_1) . **Sufficiency:** Assume that $f^{-1}(V)$ is a μ - β G α OS in (X, μ_1) for each μ -open set V in (Y, μ_2) . Let V be any μ -closed set in (Y, μ_2) . Then Y-V is μ -open in (Y, μ_2) . By assumption, $f^{-1}(Y$ - $V) = X - f^{-1}(V)$ is a μ - β G α OS in (X, μ_1) which implies that $f^{-1}(V)$ is a μ - β -generalized α -closed set in (X, μ_1) . Hence f is a μ - β G α -continuous mapping. **Theorem 3.11**: If f: $(X, \mu_1) \to (Y, \mu_2)$ is a μ - β G α -continuous mapping and g: $(Y, \mu_2) \to (Z, \mu_3)$ is a μ -continuous mapping then $g \circ f: (X, \mu_1) \to (Z, \mu_3)$ is a μ - β G α -continuous mapping. **Proof:** Let V be any μ -closed set in (Z, μ_3). Since g is a μ -continuous mapping, g $^{-1}$ (V) is a μ -closed set in (Y, μ_2). Since f is a μ - β G α -continuous mapping, (g \circ f) $^{-1}$ (V) = f $^{-1}$ (g $^{-1}$ (V)) is a μ - β G α -CSin (X, μ_1). Therefore g \circ f is a μ - β G α -continuous mapping. **Theorem 3.12:** If $f: (X, \mu_1) \to (Y, \mu_2)$ is a μ -continuous mapping and $g: (Y, \mu_2) \to (Z, \mu_3)$ is a μ -continuous mapping then $g \circ f: (X, \mu_1) \to (Z, \mu_3)$ is a μ - $\beta G\alpha$ -continuous mapping. **Proof:** Let V be any μ -closed set in (Z, μ_3) . Since g is a μ -continuous mapping, $g^{-1}(V)$ is a μ -closed set in (Y, μ_2) . Since f is a μ -continuous mapping, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is a μ -closed set in (X, μ_1) . Since every μ -closed set is a μ - β G α CS, $(g \circ f)^{-1}(V)$ is a μ - β G α CS. Therefore $g \circ f$ is a μ - β G α -continuous mapping. **Theorem 3.13:** If $f: (X, \mu_1) \to (Y, \mu_2)$ is a μ - α -continuous mapping and $g: (Y, \mu_2) \to (Z, \mu_3)$ is a μ -continuous mapping then $g \circ f: (X, \mu_1) \to (Z, \mu_3)$ is a μ - β G α -continuous mapping. **Proof:** Let V be any μ -closed set in (Z, μ_3). Since g is a μ -continuous mapping $g^{-1}(V)$ is a μ -closed in (Y, μ_2). Since f is a μ - α -continuous mapping, (g \circ f) $^{-1}(V) = f^{-1}(g^{-1}(V))$ is a μ - α -closed in (X, μ_1). Since every μ - α -closed set is a μ - β G α CS, (g \circ f) $^{-1}(V)$ is a μ - β G α CSin (X, μ_1). Therefore g \circ f is a μ - β G α -continuous mapping. ## 4. ALMOST μ-β-GENERALIZED α-CONTINUOUS MAPPINGS In this section we have introduced almost μ - β -generalized α -continuous mappings in generalized topological spaces and studied some of their basic properties. **Definition 4.1:** A mapping f: $(X, \mu_1) \rightarrow (Y, \mu_2)$ is called an almost μ-β-generalized α-continuous mapping (brieflyalmost μ-βGα-continuous) if f⁻¹ (A)is a μ-β-generalized α-closed set (briefly μ-βGαCS) in (X, μ_1) for eachμ-regular closed set A in (Y, μ_2) . **Example 4.2:** Let $X = Y = \{a, b, c\}$ with $\mu_1 = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$ and $\mu_2 = \{\emptyset, \{c\}, \{a, b\}, Y\}$. Let $f: (X, \mu_1) \to (Y, \mu_2)$ be a mapping defined by f(a) = a, f(b) = b, f(c) = c. Now, μ - β O(X) = $\{\emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, c\}, X\}$. Let $A = \{c\}$, then A is a μ -regular closed set in (Y, μ_2) . Then $f^{-1}(\{c\})$ is μ - β GαCSin (X, μ_1) . Hence f is an almost μ - β Gα-continuous mapping. **Theorem 4.3:** Every almost μ -continuous mapping is an almost μ - β G α -continuous mapping but not conversely in general. **Proof:** Let $f: (X, \mu_1) \to (Y, \mu_2)$ be an almost μ -continuous mapping. Let A be a μ -regular closed set in (Y, μ_2) . Since f is an almost μ -continuous mapping, $f^{-1}(A)$ is a μ -closed set in (X, μ_1) . Since every μ -closed set is a μ - $\beta G\alpha CS$, $f^{-1}(A)$ is a μ - $\beta G\alpha CS$ in (X, μ_1) . Hence f is an almost μ - $\beta G\alpha$ -continuous mapping. **Example 4.4:** Let $X = Y = \{a, b, c, d\}$ with $\mu_1 = \{\emptyset, \{a\}, \{c\}, \{a, c\}, X\}$ and $\mu_2 = \{\emptyset, \{a, b\}, \{a, b, c\}, Y\}$. Let $f: (X, \mu_1) \to (Y, \mu_2)$ be a mapping defined by f(a) = a, f(b) = b, f(c) = c. Now, μ - β O(X) = $\{\emptyset, \{a\}, \{a, b\}, \{a, c\}, X\}$. Let $A = \{b\}$, then A is a μ -regular closed set in (Y, μ_2) . Then $f^{-1}(A)$ is a μ - β G α CS, but not μ -closed as $c_{\mu}(f^{-1}(A)) = c_{\mu}(\{b\}) = \{b, c\} \neq f^{-1}(A)$ in (X, μ_1) . Hence f is an almost μ - β G α -continuous mapping, but not an almost μ -continuous mapping. **Theorem 4.5:** Every almost μ - α -continuous mapping is an almost μ - β G α -continuous mapping in general. **Proof:** Let f: $(X, \mu_1) \to (Y, \mu_2)$ be an almost μ - α -continuous mapping. Let A be any μ -regular closed set in (Y, μ_2) . Since f is an almost μ - α -continuous mapping, f⁻¹(A) is a μ - α -closed set in (X, μ_1) . Since every μ - α closed set is a μ - β G α CS, f $^{-1}$ (A) is a μ - β -generalized α -closed set in (X, μ_1). Hence f is an almost μ - β G α continuous mapping. **Remark 4.6:** An almost μ -pre-continuous mapping is not an almost μ - β G α -continuous in general. **Example 4.7:** Let $X = Y = \{a, b, c\}$ with $\mu_1 = \{\emptyset, \{a, b\}, X\}$ and $\mu_2 = \{\emptyset, \{a\}, \{b, c\}, Y\}$. Let $f: (X, \mu_1)$ \rightarrow (Y, μ_2) be a mapping defined by f(a) = a, f(b) = b, f(c) = c. Now, μ - β O(X) = {Ø, {a}, {b}, {a, b}, {b, c}, {a, c}, X}.Let A = {a}, then A is a μ -regular closed set in (Y, μ ₂). Then f ⁻¹(A) is a μ -pre closed set as $c_u(i_u(f^{-1}(A))) = c_u(i_u(\{a\})) = \emptyset \subseteq f^{-1}(A)$, but not μ - $\beta G\alpha CS$ as $\alpha c_u(f^{-1}(A)) = X \nsubseteq U = \{a, b\}$ in (X, μ_1) . Hence f is an almost μ -pre-continuous, but not an almost μ - β G α -continuous mapping. **Remark 4.8:** An almost μ - β -continuous mapping is not an almost μ - β G α -continuous mapping in general. (Y, μ_2) be a mapping defined by f(a) = a, f(b) = b, f(c) = c. Now, μ - β O(X) = {Ø, {a}, {b}, {a, b}, {b, c}, {a, c}, X}. Let A = {a}, then A is a μ -regular closed set in (Y, μ_2). Then f⁻¹(A) is a μ -β-closed set as $i_u(c_u(i_u(f^{-1}(A)))) = i_u(c_u(i_u(\{a\}))) = \emptyset \subseteq f^{-1}(A)$, but not a μ -βGαCS as $\alpha c_{\mu}(f^{-1}(A)) = X \nsubseteq U = \{a, b\}$ in (X, μ_1) . Hence f is an almost μ - β -continuous mapping, but not an almost μ βGα-continuous mapping. In the following diagram, we have provided the relation between various types of almost ucontinuous mappings. **Theorem 4.10:** A mapping f: $(X, \mu_1) \to (Y, \mu_2)$ is an almost μ - β G α -continuous mapping if and only if the inverse image of every μ -regular open set in (Y, μ_2) is μ - β G α OS in (X, μ_1) . **Proof:Necessity:** Let U be a μ -regular open set in (Y, μ_2) . Then Y-U is μ -regular closed in (Y, μ_2) . Since f is an almost μ - β G α -continuous mapping, $f^{-1}(Y-U) = X - f^{-1}(U)$ is a μ - β G α OS in (X, μ_1) . Hence f $f^{-1}(U)$ is a μ - $g^{-1}(U)$ is a μ - $g^{-1}(U)$. **Sufficiency:**Let V be any μ -regular closed set in (Y, μ_2) . Then Y-V is a μ -regular open in (Y, μ_2) . By hypothesis, $f^{-1}(Y-V) = X - f^{-1}(V)$ is a μ - β G α OS in (X, μ_1) which implies that $f^{-1}(V)$ is a μ - β G α CS in (X, μ_1) . Hence f is an almost μ - β G α -continuous mapping. **Theorem 4.11:** If $f: (X, \mu_1) \to (Y, \mu_2)$ is a μ -continuous mapping and $g: (Y, \mu_2) \to (Z, \mu_3)$ is an almost μ -continuous mapping then $g \circ f: (X, \mu_1) \to (Z, \mu_3)$ is an almost μ - $\beta G\alpha$ -continuous mapping. **Proof:** Let V be any μ -regular closed set in (Z, μ_3) . Since g is an almost μ -continuous mapping, $g^{-1}(V)$ is a μ -closed set in (Y, μ_2) . Since f is μ -continuous, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is a μ -closed set in (X, μ_1) . Since every μ -closed set is a μ - β G α CS, $(g \circ f)^{-1}(V)$ is a μ - β G α CS in (X, μ_1) . Therefore $g \circ f$ is an almost μ - β G α -continuous mapping. **Theorem 4.12:** If $f: (X, \mu_1) \to (Y, \mu_2)$ is a μ - α -continuous mapping and $g: (Y, \mu_2) \to (Z, \mu_3)$ is an almost μ -continuous mapping then $g \circ f: (X, \mu_1) \to (Z, \mu_3)$ is an almost μ - $\beta G \alpha$ -continuous mapping. **Proof:** Let V be any μ -regular closed set in (Z, μ_3) . Since g is almost μ -continuous, $g^{-1}(V)$ is μ -closed in (Y, μ_2) . Since f is μ - α -continuous, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is μ - α -closed in (X, μ_1) . Since every μ - α -closed set is $a\mu$ - $\beta G\alpha CS$, $(g \circ f)^{-1}(V)$ is $a\mu$ - $\beta G\alpha CS$. Therefore $g \circ f$ is an almost μ - $\beta G\alpha$ -continuous mapping. #### **REFERENCE** - [1] **Csaszar, A.,** Generalized topology, generalized continuity, ActaMathematicaHungar., 96 (4) (2002), 351 357. - [2] Kowsalya, M. and Jayanthi, D., μ - β generalized α -closed sets in generalized topological spaces (submitted). - [3] **Levine, N.,** Semi open sets and semi continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41. - [4] Levine, N., Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19 (1970), 89-96. - [5] **Mashhour, A.S., Hasanein, I.A., and EI-Deeb S.N.,**α- continuous and α-open mappings, Acta. Math. Hungar, 41 (1983), no. 3-4, 213-218. - Min. W. K., Almost continuity on generalized topological spaces, Acta. Math. Hungar., 125 (1-2) [6] (2009), 121-125. - [7] Min. W. K., Generalized continuous functions defined by generalized open sets on generalized topological spaces, Acta. Math. Hungar.,2009.