OSCILLATION OF SOLUTION OF TIME FRACTIONAL PARTIAL DIFFERENTIAL EQUATION

Subhashini.J^{#1},

M.sc., (M.Phil), Department of Mathematics, Vivekanandha College of Arts and Sciences for Women [Autonomous], Tiruchengode, Namakkal.

Abstract

We concerned a time fractional partial differential equation with the Neumann boundary condition. We establish some sufficient conditions for oscillation of solution of such equation by using a generalized Riccati technique and the integral averaging method. The main results are illustrated.

Keywords:

Fractional partial differential equation, Oscillation, Fractional integral, fractional derivative.

Introduction

In this paper, we concerned the time fractional partial differential equation of the form

$$\frac{\partial}{\partial t} \left(r(t) D_{+,t}^{\gamma} u(x,t) \right) + q(x,t) f\left(\int_{0}^{t} (-v)^{-\gamma} u(x,v) dv \right) \\ = a(t) \Delta u(x,t),$$
$$(x,t) \in H = \Omega \times \mathbb{R}_{+}$$
(1)

 $(x,t) \in H = \Omega \times \mathbb{R}_+$

With the Neumann boundary condition

$$\frac{\partial u(x,t)}{\partial N} = 0,$$

$$(x,t) \in \partial \Omega \times \mathbb{R}_{+}, \qquad (2)$$

Where $D_{+,t}^{\gamma} u$ is the Riemann- Liouville fractional derivative of order γ of u with respect of t, $\gamma \epsilon$ (0,1) is a constant, Δ is the Laplacian operator, Ω is a bounded domain in \mathbb{R}^n with piecewise smooth boundary $\partial \Omega$ and N is the unit exterior normal vector to $\partial \Omega$.

The following conditions are assumed to hold:

(i)
$$r(t) \in C^1([0, ∞); [0, ∞)), a \in C([0, ∞); \mathbb{R}_+);$$

Karthikeyan. N^{#2},

Faculty of Mathematics, Vivekanandha College of Arts and Sciences for Women [Autonomous], Tiruchengode, Namakkal.

(ii) $q(x,t) \in C(\overline{H}; [0,\infty))$ and $\min_{x \in \Omega} q(x,t) = Q(t);$

(iii) $f: \mathbb{R} \to \mathbb{R}$ is a continuous function such that $f(u)/u \ge \mu$ for certain constant $\mu > 0$ and for all $u \ne 0$.

By a solution of equation (1) we mean a function

 $u(x,t) C^{1+\gamma}(\overline{\Omega}[0,\infty))$ such that

 $\int_0^t (t-v)^{-\gamma} u(x,v) dv \in C^1(\overline{H}; \mathbb{R}), D_{+,t}^{\gamma} u(x,t) \in C^1(\overline{H}; \mathbb{R})$ and satisfies (1) on \overline{H} .

In equation (1), solution u is oscillatory in H if it is neither eventually. Positive nor eventually negative, otherwise it is nonoscillatory. Equation (1) is oscillatory if all its solutions are oscillatory.

Preliminaries

In this paper, we use several kinds of definitions of fractional derivatives and integrals such as the Riemann – Liouville left – sided definition on the half-axis \mathbb{R}_+ . Our convenience, we use the following notation.

$$v(t) = \int_{\Omega} u(x,t) dx.$$

Definition2.1:

The Riemann-Liouville fractional partial derivative of Order $0 < \gamma < 1$ with respect to t of a function u(x, t) is given by

$$\left(D_{+,t}^{\gamma}u\right)(x,t) :=$$

$$\frac{\partial}{\partial t}\frac{1}{\Gamma(1-\gamma)}\int_{0}^{t}(t-\nu)^{-\gamma}u(x,\nu)\,d\nu$$
(3)

provided the right hand side is pointwise defined on \mathbb{R}_+ where Γ is the gamma function.

Definition 2.2:

The Riemann-Liouville fractional integral of order $\gamma > 0$ of a function $z: \mathbb{R}_+ \to \mathbb{R}$ on the half-axis \mathbb{R}_+ is given by

$$(I_{+}^{\gamma} u)(t) \coloneqq \frac{1}{\Gamma(\gamma)} \int_{0}^{t} (-v)^{\gamma-1} z(v) dv$$

for $t > 0$ (4)

provided the right hand side is pointwise defined on \mathbb{R}_+ .

Definition 2.3:

The Riemann-Liouville fractional derivative of order $\gamma > 0$ of a function $z: \mathbb{R}_+ \to \mathbb{R}$ on the half-axis \mathbb{R}_+ is given by

$$(D_{+}^{\gamma}z)(t) := \frac{d^{[\gamma]}}{dt^{[\gamma]}} \left(I_{+}^{[\gamma]-\gamma}y \right)(t)$$

= $\frac{1}{\Gamma([\gamma]-\gamma)} \frac{d^{[\gamma]}}{dt^{[\gamma]}} \int_{0}^{t} (t-v)^{[\gamma]-\gamma-1}y(v)dv,$
for t> q (5)

provided the right hand side is pointwise defined on \mathbb{R}_+ where $[\gamma]$ is the ceiling function of γ .

Lemma :

Let y be a solution of
$$\frac{\partial}{\partial t} (r(t)D_{+,t}^{\gamma}u(x,t)) + q(x,t)$$

 $f(\int_0^t (t-v)^{-\gamma} u(x,v) dv) = a(t)\Delta u(x,t)$

 $(x,t) \in H = \Omega \times \mathbb{R}_+$ and

$$H(t) \coloneqq \int_0^t (t-v)^{-\gamma} z(v) dv$$

(6)

(7)

for $\alpha \in (0,1)$ and t > 0

Then

 $H'(t) = \Gamma(1-\gamma) \left(D_{+}^{\gamma} z \right)(t).$

Proof

Multiplying and dividing by $\Gamma(1 - \gamma)$ in equation (6)

$$H(t) = \frac{\Gamma(1-\gamma)}{\Gamma(1-\gamma)} \int_0^t (t-v)^{-\gamma} Z(v) dv$$

Differentiating the above equation

$$\frac{d}{dt}H(t) = \frac{d}{dt} \left[\frac{\Gamma(1-\gamma)}{\Gamma(1-\gamma)} \int_0^t (t-v)^{-\gamma} Z(v) dv \right]$$
$$H'(t) = \Gamma(-\gamma) \left[\frac{1}{\Gamma(1-\gamma)} \frac{d}{dt} \int_0^t (t-v)^{-\gamma} Z(v) dv \right]$$

By using (5) in above equation

H'(t) =

$$\Gamma(1-\gamma) \left[\frac{1}{\Gamma[\gamma]-\gamma} \frac{d^{[\gamma]}}{dt^{[\gamma]}} \int_0^t (t-v)^{[\gamma]-\gamma-1} z(v) dv \right]$$

= $\Gamma(1-\gamma) (D_+^{\gamma} z)(t)$

Hence the proof

Theorem

If the fractional differential inequality

$$\frac{d}{dt}\left[r(t)D_{+}^{\gamma}v(t)\right] + Q(t)f(H(t)) \le 0 \tag{8}$$

has no eventually positive solution, then every solution of (1) and (2) is oscillatory in H.

Proof

Suppose that u is a non oscillatory solution of (1) and (2) is oscillatory in H.

We may assume that u(x, t) > 0 in $H \times [t_0, \infty)$ for some $t_0 > 0$.

Integrating (1) over Ω , we obtain

$$\frac{d}{dt} [r(t)(\int_{\Omega} D_{+,t}^{\gamma} u)(x,t)dx)] + \int_{\Omega} q(x,t)f\left(\int_{0}^{t} (t - v)^{-\gamma} u(x,v)dv\right)dx$$
$$= a(t) \int \Delta u(x,t)dx.$$
(9)

Using Green's formula, it is obvious that

$$\int_{\Omega} \Delta u(x,t) dx \le 0, t \ge t_1$$
(10)
By using Jensen's inequality and (I), we have

$$\int_{\Omega} q(x,t) f\left(\int_{0}^{t} (t-v)^{-\gamma} u(x,v) dv\right) dx$$

$$\geq Q(t) \left(\int_{\Omega} \left(\int_{0}^{t} (t-v)^{-\gamma} u(x,v) dv\right) dx\right)$$

$$= Q(t) f\left(\int_{0}^{t} (t-v)^{-\gamma} \left(\int_{\Omega} u(x,v) dx\right) dv\right)$$
(11)

Combining equation (9) - (11) and by using definition, we have

$$\frac{d}{dt}\left[r(t)D_{+}^{\gamma}v(t)\right] + Q(t)f(H(t)) \leq 0 \qquad (12)$$

Since,
$$H(t) = \left(\int_0^t (t-v)^{-\gamma} \left(\int_\Omega u(x,v) dx\right) dv\right)$$

Therefore v(t) is an eventually positive solution of (8). This contradicts the hypothesis and completes the proof.

© 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

Theorem

Suppose that the conditions (I)-(II) and
$$\int_{t_0}^{\infty} \frac{1}{r(t)} dt = \infty$$
 (13)

Furthermore, assume that there exists a positive function c $\epsilon C^1[t_0, \infty)$ such that

$$\lim_{t \to \infty} \sup \int_{t_1}^t \left[\mu c(s) Q(s) - \frac{1}{4} \frac{\left(c'(s)\right)^2 r(s)}{c(s) \Gamma(1-\gamma)} \right] ds = \infty$$
(14)

Then every solution of (8) is oscillatory

Proof

Suppose that v(t) is a non oscilatory solution of (8).

Without loss of generality we may assume that v is an eventually positive solution of (8).

Then there exists $t_1 \ge t_0$, Such that v(t) > 0 for $t \ge t_1$. Then it is obvious that

$$\left[r(t)D_{+}^{\gamma}(v(t))\right]' \leq -Q(t)f(H(t)) < 0, t \geq t_{0}.$$
(15)

Thus

$$D_+^{\gamma} v(t) \ge 0 \text{ or } D_+^{\gamma} v(t) < 0, t \ge t_1 \text{ for some } t_1 \ge t_0.$$

We now claim that

 $\left(D_+^{\gamma}v(t)\right) \geq 0 \text{ for } t \geq t_1.$

Suppose not, then $(D_+^{\gamma}v(t)) < 0$ and there exists $T \ge t_1$ such that $(D_+^{\gamma}v(t)) < 0$.

Since
$$\left[r(t)\left(D_{+}^{\gamma}v(t)\right)\right]' < 0$$
 for $t \ge t_1$, It is clear that
 $r(t)\left(D_{+}^{\gamma}v(t)\right) < r(T)\left(D_{+}^{\gamma}v(T)\right)$ for $t \ge T$

Therefore, from equation (6). We have

$$\frac{H'(t)}{\Gamma(1-\gamma)} = \left(D^{\gamma}_{+}v(t)\right) \le \frac{r(T)\left(D^{\gamma}_{+}v(T)\right)}{r(t)}$$

Integrating the above inequality from T to t, we have

$$\frac{H(t) - H(T)}{\Gamma(1 - \gamma)} = r(T) \left(D_{+}^{\gamma} v(t) \right) \int_{T}^{t} \frac{1}{r(s)} ds$$

$$H(t) = H(T) - \Gamma(1 - \gamma)r(T) \left(D_{+}^{\gamma} v(T) \right) \int_{T}^{t} \frac{1}{r(s)} ds \text{ Letting}$$

$$t \to \infty, \text{ we get } \lim_{t \to \infty} G(t) \leq -\infty \text{ which is contradiction.}$$

Hence
$$\left(D_{+}^{\gamma} v(t) \right) \geq 0$$
 for $t \geq t_1$ holds.

Define the function ω by the generalized Riccati substitution

$$\omega(t) = c(t) \frac{r(t) \left(D_{+}^{\gamma} v(t) \right)}{H(t)}$$

for
$$t \ge t_1 \dots (16)$$

Then we have $\omega(t) > 0$ for $t \ge t_1$. From (III), (6),(8),

It follows that

$$\begin{split} \omega'(t) &= c'(t) \left[\frac{r(t) \left(D_{+}^{\gamma} v(t) \right) \right]}{H(t)} \\ &+ c(t) \left[\frac{(r(t) (D_{+}^{\gamma} v(t)))'}{H(t)} \\ &- \frac{H'(t) r(t) \left(D_{+}^{\gamma} v(t) \right) \right]}{H(t)} \\ &\leq \frac{C'(t)}{C(t)} \omega(t) - \frac{C(t) Q(t) f(H(t))}{H(t)} \\ &- \frac{C(t) r(t) \Gamma(1 - \gamma) (D_{+}^{\gamma} v(t))^{2}}{H^{2}(t)} \\ &\leq \frac{c'(t)}{c(t)} \omega(t) - \mu c(t) Q(t) \\ &- \frac{\Gamma(1 - \gamma)}{c(t) r(t)} \omega^{2}(t) \qquad \dots (17) \\ &= -\mu c(t) Q(t) - (\sqrt{\frac{\Gamma(1 - \gamma)}{c(t) r(t)}} \omega(t) - \frac{1}{2} \sqrt{\frac{c(t) r(t)}{\Gamma(1 - \gamma)} \frac{c'^{(t)}}{c(t)}})^{2} \\ &+ \frac{1}{4} \frac{(c'(t))^{2} r(t)}{c(t) \Gamma(1 - \gamma)} \\ &\leq -\mu c(t) Q(t) + \frac{1}{4} \frac{(c'(t)) r(t)}{c(t) \Gamma(1 - \gamma)}. \end{split}$$

Integrating both sides from t_1 to t, we have

$$\begin{aligned}
\phi(t) &\leq \omega(t_1) \\
&- \int_{t_1}^t [\mu c(s) Q(s) \\
&- \frac{1}{4} \frac{(c'(s))^2 r(s)}{c(s) \Gamma(1 - \gamma)}] \, ds \qquad \dots (18)
\end{aligned}$$

Letting $t \to \infty$, we get $\lim_{t\to\infty} \omega(t) \le -\infty$, which contradicts (14).

Hence proved.

References

[1] D. X. CHEN, Oscillation criteria of fractional differential equation, Adu. Difference Equ. 2012, No. 33, 10 pp. MR2915631

[2] K. S. MILLER, B. ROSS, An introduction to the fractional calculus and fractional differential equation, John Wiley & Sons, New York, 1993. MR1219954

JUCR

[3] K. DIETHELE, The analysis of fractional differential equation, Springer, Berlin, 2010. MR2680847

[4] B. ZHENG, Oscillation for A class of nonlinear fractional differential equation with damping term, J. Adv. Math. Stud. 6(2013), 107-115. MR3088028

[5]S.G.SAMKO,A.A.KILBAS, O.I. MARICHEV, Fractional lintegrals and derivatives. Theory and applications, Gordon and Breach Science Publishers, Yverdon, 1993. MR1347689

[6] C. QI, J. CHENC, Interval oscillation criteria for a class of fractional differential equations with damping term, Math. Probl. Eng. 2013, Art. ID 301085, 1-8, MR3043862

[7] H. QIN, B. ZHENG, Oscillation of a class of fractional differential equation with damping term, The Scientific World Journal 2013, Art. ID 685621, 1-9. url

[8]S .L. MARIAN, M.R. SAGAYARAJ, A. G. M. SELVAM, M. P. LOGANATHAN, Oscillation of fractional nonlinear difference equations, Math. Aeterna 2(2012), 805-813. MR3008955

[9] S. R. GRACE, R.P. AGARWAL, P. J. Y. WONG, A. ZAFER, On the oscillation of fractional differential equation, Fract. Calc. Appl. Anal. 15(2012), 222-231. MR 2897775; url

[10] S. ABBAS, M. BENCHOHRA, J. J. NIETO, Global attractivity of solutions for nonlinear fractional order Riemann-Liouville Volterra-Stieltjes partial integral equation, Electron. J. Qual. Theory Differ. Equ. 2012, No. 81, 1-15. MR2991437