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Abstract 

 We  consider  existence  of  solutions to initial-value 

problems for second-order singular differential equations. 

We observe that the existence can be demonstrated in terms 

of simple initial-value problem. Local existence and 

uniqueness of solutions are proven. Under the conditions 

which are weaker than previously known conditions. 
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Introduction      

 In this paper, we study the singular initial value problems 

(IVPs) of the type 

                𝑦′′ + 2𝑡−1𝑦′ + 𝑦𝑛 (𝑡) = 0,      

            𝑦(0) = 1, 𝑦′(0) = 0,              (1) 

have seeked the concentration  of  many mathematicians and 

physicists. Our aim of this paper to study the more general 

IVPs of the form 

              𝑦′′ + 𝑝(𝑡) 𝑦′ + 𝑞 𝑡, 𝑦 𝑡   = 0,   

            𝑦(0) = a, 𝑦′(0) = b, 𝑡 > 0      (2) 

and to make further progress  beyond the  achievements 

made  so far in this regard. The case   

𝑞 = 𝑓 𝑡 𝑔 𝑥   corresponds to Emden - Fower equations[10].  

In above equation (2), the function 𝑝(𝑡) may be singular  at 𝑡 

= 0.It prolong  some          well–known IVPs in the 

literature[1,7] 

        In the case 𝑏 = 0 the existence  of  the  solution  for  the 

problem (2) has been  studied in [2],where the  authors 

illustrated the importance of the  condition 𝑏=0 for the  

existence. We find the conditions  for 𝑝(𝑡) and  𝑞(𝑡, 𝑦 𝑡 ) to 

guarantee  the  existence  of  the solution  for  𝑏 ≠ 0. 

Existence Theorems 

We say that 𝑦 𝑡 isasolution  to (2) if  and  only  if  there  

exists  some  𝑇 > 0  such  that 

  (1) 𝑦 𝑡  and 𝑦′ (𝑡) are  absolutely  continuous  on [0, 𝑇], 

 (2) 𝑦 𝑡  satisfies  the equation given in (2) a.e. on [0, 𝑇], 

 (3) 𝑦 𝑡  satisfies  the initial  condition  given in (2). 

And we  generalize  the  existence  theorem  of  solutions in 

[2]. 

Theorem 1. Let 𝑝 and 𝑞 satisfy the  following  conditions: 

(1)  𝑝  is  measurable  on [0, 1]; 

(2)  𝑝 ≥ 0; 

(3)   𝑠𝑝
1 

0
(s) ds < ∞; 

(4)  there  exist 𝛼 , 𝛽 with 𝛼 < 𝑎 < 𝛽 and 𝐾 > 0 such that  

             (a) for  each 𝑡 ∈ (0,1], 𝑞 𝑡, .   is continuous  on  [𝛼 

,𝛽]; 

              (b) for each 𝑦 ∈ [𝛼 ,𝛽], 𝑞 . , 𝑦  is measurable on [0 

,1]; 

               (c)  |𝑞(𝑡, 𝑦)| ≤ 𝐾. 

Then a  solution to the initial – value problem (2) with 𝑏 = 0 

exists. 

In  [4]  the  author illustrated  the  importance  of  the  

condition 𝑏 = 0  for  the  existence. 

To  overcome the  difficulties  in the  case  𝑏 ≠ 0  we  

consider  a  generalization  of  theorem 1 and  show  that  

the  statement  of  the theorem  is  true  without  condition  

(c) and with  weaker  conditions  on  𝑞 𝑡, 𝑦 . 

Theorem 2.  Suppose  that  𝑝(𝑡)  is  integrable  on  the  

interval  [𝑐, 𝑑]  for  all  𝑐 > 0  and  𝑝 and 𝑞 satisfy the  

following  conditions: 

 (1)  𝑝  is  measurable  on [0, 1]; 

 (2) 𝑝 ≥ 0; 

 (3) there  exist 𝛼 , 𝛽 with 𝛼 < 𝑎 < 𝛽 and 𝐾 > 0, and  an 

integrable (improper, in general)  𝜑(𝑡)  such that  

            (a) for  each 𝑡 ∈ (0,1], 𝑞 𝑡, .   is continuous  on  [𝛼 

,𝛽]; 
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            (b) for  each 𝑥 ∈ [𝛼 ,𝛽], 𝑞 . , 𝑥  is measurable on [0 

,1]; 

            (c) |𝑞 𝑡, 𝑦 − 𝜑(𝑡) | ≤ 𝐾. 

Then a solution to the initial – value problem (2)  exists  for  

all  b ∈ R  such  that 

                 b = 𝑧 ′(0),                 (3)                                                  

where 𝑧(𝑡) ∈ 𝐶[0 ,1]  is  a  solution  of  the  problem 

          𝑧 ′′ + 𝑝 𝑡 𝑧 ′ + 𝜑(𝑡) = 0,   

𝑧(0) = 𝑎, 𝑧 ′(0) = b, 𝑡 > 0.       (4) 

That is, the  existence  of  the  problem (4) for  some  𝜑(𝑡).  
For  the  problems  with  b = 0,  the  initial-value  problem 

(4)  always  has a solution 𝑧 𝑡  = 𝑎, for 𝜑(𝑡) = 0. So 

Theorem 1 corresponds  to  the  cases  𝜑(𝑡) = 0  and  𝑧 𝑡  = 

𝑎. 

       The advantages  of  Theorem 2  is  that  the  problem 

(4)  always  has  a solution  for  some  appropriate 𝜑(𝑡);   for  

example,  for 𝜑(𝑡) = − b𝑝 𝑡 ,  it has  a  solution 𝑧(𝑡) = 𝑎 + 

b𝑡.  The  conclusion  of  the  theorem  remains  valid  for  all  

solutions  of  (4). 

       It  is  also  clear  from  the  conclusion  of  Theorem 2  

that  the  interval [0,1]  can  be  taken  as  [0, 𝑡0]  for  some  

small enough 𝑡0 > 0. 

Proof :  

 For  𝑡 ∈ (0,1],  we  define  the functions 

      𝑡  = exp(  𝑝
𝑡

1
(𝑠)𝑑𝑠 ) ≥ 0, 

    1(𝑡) = exp(−   𝑝
𝑡

1
(𝑠)𝑑𝑠 ),       (5)                                       

               𝐸(𝑡)  =  1
𝑡

1
(𝑡) 𝑑𝑠. 

where (𝑡)  is a  bounded  function  and  contionuous  for  

𝑡 ∈ (0,1].  It  is  continuous  or  has  a  removable  

discontinuity  at  𝑡 = 0  and  is  differentiable a.e. 

 Show that the problem (2) is equivalent to the following  

integral  equation 

     𝑦(𝑡) =   𝐸(𝑠)
𝑡

0
𝑒 𝑝 𝜏 𝑑𝜏

𝑠
1 – 𝐸(𝑡)𝑒 𝑝 𝜏 𝑑𝜏

𝑠
1  

×[𝑞 𝑠, 𝑦 𝑠  − 𝜑(𝑠)]𝑑𝑠 + 𝑧(𝑡).    (6)                  

Let us show  the  existence  of  the  integral  in  (6).  For any 

𝛿 > 0,we have 

|  𝐸 𝑠 
𝑡

𝛿
𝑒 𝑝 𝜏 𝑑𝜏

𝑠
1 [𝑞 𝑠, 𝑦 𝑠  − 𝜑(𝑠)]𝑑𝑠| 

    ≤ 𝑘|  𝐸(𝑠)
𝑡

𝛿
𝑒 𝑝 𝜏 𝑑𝜏

𝑠
1 𝑑𝑠|          (7) 

           = 𝑘|   1
𝑠

1
 𝑢 

𝑡

𝛿
𝑒 𝑝 𝜏 𝑑𝜏

𝑠
1  𝑑𝑢𝑑𝑠|  

           =   𝑒− 𝑝 𝑣 𝑑𝑣
𝑢

1
𝑠

1

𝑡

𝛿
𝑒 𝑝 𝜏 𝑑𝜏

𝑠
1  𝑑𝑢𝑑𝑠 . 

It  follows  from  𝑢 ≥ 𝑠  on  the  set [𝑠, 1] ×[0,𝑡]  that 

𝑒− 𝑝 𝑣 𝑑𝑣
𝑢

1 𝑒 𝑝 𝜏 𝑑𝜏
𝑠

1 = 𝑒− 𝑝 𝑣 𝑑𝑣
𝑢

1 ≤1  (8)                                                                 

                        

 |  𝐸(𝑠)
𝑡

𝛿
𝑒 𝑝 𝜏 𝑑𝜏

𝑠
1 [𝑞 𝑠, 𝑦 𝑠  − 𝜑(𝑠)]𝑑𝑠| 

                           ≤  𝑘|𝑡 −  
𝑡2

2
 |                 (9) 

Likewise,  we  obtain 

  |  𝐸(𝑡)
𝑡

𝛿
𝑒 𝑝 𝜏 𝑑𝜏

𝑠
1 [𝑞(𝑠, 𝑦 𝑠 ) − 𝜑(𝑠)]𝑑𝑠|  

         ≤ 𝑘 |  𝐸(𝑡)
𝑡

𝛿
𝑒 𝑝 𝜏 𝑑𝜏

𝑠
1  𝑑𝑠|   

          = 𝑘|   1
𝑡

1

𝑡

𝛿
 𝑢 𝑒 𝑝 𝜏 𝑑𝜏

𝑠
1  𝑑𝑢𝑑𝑠|  

          ≤ 𝑘|𝑡 −  𝑡2 |                                  (10)                            

  So  the  right-hand  side  of  (6)  makes  sense  for  any  

𝑝 𝑡 ≥ 0  and |[𝑞(𝑠, 𝑦 𝑠 ) − 𝜑(𝑠)]| ≤ 𝑘  and 

lim𝛿→0  (𝐸(𝑠)
𝑡

𝛿
𝑒 𝑝 𝜏 𝑑𝜏

𝑠
1  − 

𝐸 𝑡 𝑒 𝑝 𝜏 𝑑𝜏
𝑠

1 ) ×[𝑞(𝑠, 𝑦 𝑠 )𝜑(𝑠)] 𝑑𝑠 + 𝑧 𝑡   = 

 (𝐸(𝑠)
𝑡

0
𝑒 𝑝 𝜏 𝑑𝜏

𝑠
1 −

𝐸 𝑡 𝑒 𝑝 𝜏 𝑑𝜏
𝑠

1 ×[𝑞 𝑠, 𝑦 𝑠  𝜑(𝑠)]𝑑𝑠 +𝑧(𝑡).    (11)                                   

    Now calculate  the  derivatives  𝑦′ (𝑡) and  𝑦′′ (𝑡)  from  

(6)  by  using  the  Leibniz  rule: 

  𝑦′ (𝑡) =( 𝐸 𝑠 
𝑡

0
𝑒 𝑝 𝜏 𝑑𝜏

𝑠
1   [𝑞(𝑠, 𝑦 𝑠 ) − 𝜑(𝑠)]𝑑𝑠   

−  𝐸(𝑡)
𝑡

0
𝑒 𝑝 𝜏 𝑑𝜏

𝑠
1 [𝑞(𝑠, 𝑦 𝑠 ) − 𝜑(𝑠)]𝑑𝑠 + 𝑧(𝑡) )′  

      = 𝐸(𝑡)𝑒 𝑝 𝜏 𝑑𝜏
𝑠

1 [𝑞(𝑡, 𝑦 𝑡 )𝜑(𝑡)]    

        −𝐸′ (𝑡) 𝑒 𝑝 𝜏 𝑑𝜏
𝑠

1
𝑡

0
[𝑞 𝑠, 𝑦 𝑠  𝜑(𝑠)]𝑑𝑠 −

          𝐸 𝑡 𝑒 𝑝 𝜏 𝑑𝜏
𝑡

1  [𝑞(𝑡, 𝑦 𝑡 ) − 𝜑(𝑡)] + 𝑧′ (𝑡) 

      = −1(𝑡)  𝑒 𝑝 𝜏 𝑑𝜏
𝑠

1  
𝑡

0
[𝑞 𝑠, 𝑦 𝑠    

         −𝜑(𝑠)]𝑑𝑠 + 𝑧′ (𝑡), 

𝑦′′ (𝑡) = (−1𝑡)  𝑒 𝑝 𝜏 𝑑𝜏   
𝑠

1
𝑡

0
[𝑞 𝑠, 𝑦 𝑠  − 𝜑(𝑠)]𝑑𝑠 + 

𝑧′ (𝑡))′  

      = − 1
′ (𝑡)  𝑒 𝑝 𝜏 𝑑𝜏

𝑠
1

𝑡

0
[𝑞 𝑠, 𝑦 𝑠  − 𝜑(𝑠)]𝑑𝑠 −

            1(𝑡)  𝑒 𝑝 𝜏 𝑑𝜏
𝑡

1 [𝑞(𝑡, 𝑦 𝑡 ) − 𝜑(𝑡)] + 𝑧′′ (𝑡) 

      

=− 1
′ (𝑡)  𝑒 𝑝 𝜏 𝑑𝜏

𝑠
1

𝑡

0
[𝑞 𝑠, 𝑦 𝑠  −

           𝜑(𝑠)]𝑑𝑠 −[𝑞(𝑡, 𝑦 𝑡 ) − 𝜑(𝑡)]+𝑧′′ (𝑡).     (12)                                   

It  follows  from  (12)  that 

 𝑥 ′′ (𝑡) + 𝑝(𝑡)𝑥 ′ (𝑡) + 𝑞(𝑡, 𝑦 𝑡 )  

     =− 1
′ (𝑡)  𝑒 𝑝 𝜏 𝑑𝜏

𝑠
1

𝑡

0
[𝑞 𝑠, 𝑦 𝑠   

       −𝜑(𝑠)]𝑑𝑠 −[𝑞 𝑡, 𝑦 𝑡  − 𝜑(𝑡)]+ 𝑧′′ (𝑡) 

       −𝑝 𝑡  1(𝑡)   𝑒 𝑝 𝜏 𝑑𝜏
𝑠

1
𝑡

0
[𝑞 𝑠, 𝑦 𝑠  − 
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         𝜑(𝑠)]𝑑𝑠+ 𝑝(𝑡)𝑧′ (𝑡) + 𝑞(𝑡, 𝑦 𝑡 )              (13) 

                                                                                                                                                                

    = 𝑧′′ (𝑡) + 𝑝 𝑡 𝑧′ (𝑡) + 𝜑(𝑡) 

    = 0. 

That  is,  the  problem  (2)  is  equivalent  to (4). We define  

the  recurrence  relations 

               𝑦0(𝑡) = 𝑧 𝑡 ,                 (14)                                 

In general, 

𝑦𝑛 (𝑡) = (𝐸(𝑠)
𝑡

0
𝑒 𝑝 𝜏 𝑑𝜏

𝑠
1 – 𝐸(𝑡) 𝑒 𝑝 𝜏 𝑑𝜏

𝑠
1 ) 

  ×[𝑞(𝑠, 𝑥𝑛−1 𝑡 ) −𝜑(𝑠)]𝑑𝑠 + 𝑧(𝑡),  

                                                              (15)                                     

where  𝑧(𝑡)  is  a  solution  of   the  problem (4).  It  follows  

from  (9), (10), and (14)  that  𝛼 < 𝑦𝑛 (𝑡) < 𝛽  for 𝛼 < 

𝑦𝑛−1(𝑡) < 𝛽  and  for  small  enough  𝑡 ∈ [0,𝑡0). 

For  𝑡1, 𝑡2 ∈ [0, 𝑡0),  from equation (9)  and (10),we have 

|𝑦𝑛 (𝑡2) − 𝑦𝑛 (𝑡1)| = 

|  (𝐸(𝑠)
𝑡2

𝑡1

𝑒 𝑝 𝜏 𝑑𝜏
𝑠

1 – 𝐸(𝑡) 𝑒 𝑝 𝜏 𝑑𝜏
𝑠

1 ) 

         × [𝑞(𝑠, 𝑦𝑛−1 𝑠 ) − 𝜑(𝑠)]𝑑𝑠 | 

         ≤ 2𝐾[ (𝑡2 − 
𝑡2

2

2
 ) – (𝑡1 − 

𝑡1
2

2
)] 

         ≤ 2𝐾(𝑡2 − 𝑡1)(1 + 
𝑡1

2
  + 

𝑡2

2
) 

         ≤ 𝐾(𝑡2 − 𝑡1).                             (16)                                         

for  some  constant 𝐾1.  Thus,  the  sequence  𝑦𝑛 (𝑡) is  

uniformly  bounded  and uniformly  continuous. By using 

Ascoli – Arzela  lemma,  there  exists  a  continuous  𝑦(𝑡) 

such  that  𝑦𝑛𝑘
(𝑡) → 𝑦(𝑡)  uniformly  on [0,T],   for  any  

fixed  T∈ [0, 𝑡0). Without  loss  of  generality,  say  𝑦𝑛 (𝑡) → 

𝑦 𝑡 .  Then  

𝑦 𝑡 =lim𝑛→∞  (
𝑡

0
 𝐸(𝑠) 𝑒 𝑝 𝜏 𝑑𝜏

𝑠
1  − 𝐸(𝑡) 𝑒 𝑝 𝜏 𝑑𝜏

𝑠
1 ) 

          ×[𝑞(𝑠, 𝑦𝑛 𝑠 ) − 𝜑(𝑠)]𝑑𝑠+𝑧(𝑡)      (17) 

   (𝐸(𝑠)
𝑡

0
𝑒 𝑝 𝜏 𝑑𝜏

𝑠
1  – 𝐸(𝑡) 𝑒 𝑝 𝜏 𝑑𝜏

𝑠
1 ) 

       × [𝑞(𝑠, 𝑦 𝑠 ) − 𝜑(𝑠)]𝑑𝑠 + 𝑧 𝑡 , 

using  the  lebesgue  dominated  convergence  theorem. 

Note that the  positivity condition of  the  function  𝑝 𝑡  can 

be weakened. the  positivity  of  𝑝 𝑡   has  been  used  in  

the   proof of Theorem  2 to show  the  (removable)  

continuity  of  the  function  𝑡   at  0. Assuming  that  the  

following  condition  holds 

(i) |𝑝|  is  integrable  on  [𝑐, 𝑑]  

for  any  fixed  𝑐,𝑑 ∈ (0, 1],  𝑐 < 𝑑 and 

                     𝑀 ≤  𝑝 𝑠 𝑑𝑠 < +∞
𝑑

𝑐
;    

             for  some  fixed 𝑀               (18) 

we  can  prove  a  similar  theorem 

               Theorem 3. The conclusion of the Theorem 2 remains valid  

if condition (2)  is  replaced  by (i) . 

               Proof:  We  need  to  make  some  modifications  to  the  

proof  of Theorem  2;  for  example,  instead  of  the  

inequality 

        𝑒− 𝑝 𝑣 𝑑𝑣
𝑢

1 𝑒 𝑝 𝜏 𝑑𝜏
𝑠

1 ≤1,       (19)                       

for  𝑢 ≥ 𝑠,  we  have 

  𝑒− 𝑝 𝑣 𝑑𝑣
𝑢

1 𝑒 𝑝 𝜏 𝑑𝜏
𝑠

1 = 𝑒− 𝑝 𝑣 𝑑𝑣
𝑢
𝑠 ≤  𝑒−𝐿,    

                                                           (20)             

for  small enough  𝑢 and 𝑠. Note that the existence of the 

solution of  the  problems  like 

𝑦′′  +  ( 
𝑎𝑚

𝑡𝑚  + 
𝑎𝑚 −1

𝑡𝑚 −1  + . . . + 
𝑎1

𝑡
  + 𝐴(𝑡)𝑦′  + 𝑞(𝑡, 𝑦 𝑡 ) = 0, 

 𝑥 0  = 𝑎,  𝑥 ′ (0) = 𝑏, 𝑡 > 0,      (21) 

follows  from  theorem 2,  where  𝐴(𝑡)  is differentiable 

function,    𝑞 𝑡, 𝑥  satisfies  the  conditions (3), 𝑎1, 
𝑎2 , … , 𝑎𝑚   are  real constants,  and  𝑎𝑚  > 0.  Indeed  for  

small  enough  𝑡 we  have  𝑝 𝑡 > 0 and  therefore  the  

hypotheses  of  theorem 2  and 3 are  true  for  small  enough  

𝑡 ∈ [0,𝑇];  for  𝑏 = 0  the problem (4)  has  a 

solution  𝑧 𝑡 = 𝑎,  and  so  (21)  has  a  solution  for  all  

bounded 𝑞(𝑡, 𝑦 𝑡 ) with  carathedory  conditions,  but  for  

𝑏 ≠ 0  the  problem  (21)  has  a  solution  for 𝑞(𝑡, 𝑦 𝑡 )  

with  

| 𝑞(𝑡, 𝑦 𝑡 ) + 𝑏(
𝑎𝑚

𝑡𝑚  + 
𝑎𝑚 −1

𝑡𝑚 −1  + . . . +       
𝑎1

𝑡
)| < 𝐾   

some small enough neighbourhood  of 0, since  the  

corresponding  problem  (4)  can  be  taken (e.g.)  as 

𝑧′′  + (
𝑎𝑚

𝑡𝑚  + 
𝑎𝑚 −1

𝑡𝑚 −1  + . . . + 
𝑎1

𝑡  
+ 𝐴(𝑡))𝑧′    − 𝑏(

𝑎𝑚

𝑡𝑚  + 
𝑎𝑚 −1

𝑡𝑚 −1  + . . . 

+ 
𝑎1

𝑡  
+  𝐴(𝑡)) = 0,  

     𝑧 0 =  𝑎, 𝑧′ 0 = 𝑏, 𝑡 > 0,     (22) 

has a solution 𝑧(𝑡)  = 𝑎 + 𝑏𝑡. For  𝑏 ≠ 0 the condition 

𝑞(𝑡, 𝑦 𝑡 ) can be changed by using different functions for 

𝜑 𝑡  can be taken as 

    𝜑(𝑡) = 
𝑏𝑚

𝑡𝑚  + 
𝑏𝑚 −1

𝑡𝑚 −1 + . . . 

            =−
𝑏𝑎𝑚

𝑡𝑚  +
1

𝑡𝑚 −2 (
𝑏𝑎𝑚 −1

𝑎𝑚
 −  𝑏𝑎𝑚−2) 

    +
1

𝑡𝑚 −3 (
𝑏𝑎𝑚 −1𝑎𝑚 −2

𝑎𝑚
 −  𝑏𝑎𝑚−3)  

    +
1

𝑡
(
𝑏𝑎𝑚 −1𝑎2

𝑎𝑚
− 𝑏𝑎1)+ 

𝑏𝑎𝑚 −1𝑎1

𝑎𝑚
−   𝑏𝐴 𝑡 −

𝑏𝑎𝑚 −1

𝑎𝑚
  

 𝑧′′   + (
𝑎𝑚

𝑡𝑚  + 
𝑎𝑚 −1

𝑡𝑚 −1  + . . . + 
𝑎1

𝑡  
+  𝐴(𝑡))𝑧′  + 𝜑(𝑡) = 0,  
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       𝑧 0 = 𝑎, 𝑧′ 0 = 𝑏, 𝑡 > 0,       (24)            

with solution    𝑧 𝑡 = 𝑎 + 𝑏𝑡 −  
𝑏𝑎𝑚 −1

2𝑎𝑚
 𝑡2. 

 continuing this process, the  condition 𝑞 𝑡, 𝑦 𝑡   can be 

reduced to | 𝑞 𝑡, 𝑦 𝑡   +
𝑏𝑎𝑚

𝑡𝑚 | < 𝐾. 

The inequalities (7),(8),(9) and (10) can be easily 

established for the function 𝑞(𝑡, 𝑦) with 

       |𝑞 𝑡, 𝑦 𝑡  − 𝜑(𝑡)| ≤ 𝑚 𝑡 ,   (25)                     

where 𝑚(𝑡) is absolutely integrable function. 

Applications 

 By using existence and uniqueness criteria, we can find the 

wide classes of the initial- value problems. Adding a 

function 𝜑(𝑡) to 𝑞 𝑡, 𝑦  in the class of solvable problem, it 

can be extended, where 𝜑(𝑡) is taken from equation (4) with 

a solution. 

       𝑦′′ + 𝑝 𝑡 𝑦′ + 𝜑 𝑡, 𝑦 𝑡  = 0, 

       𝑦 0 = 𝑎, 𝑦′ 0  = 𝑏, 𝑡 > 0,    (26)                         

has a solution,then 

𝑦′′ + 𝑝 𝑡 𝑦 ′ + 𝜑 𝑡, 𝑦 𝑡  + 𝑞 𝑡, 𝑦 𝑡  = 0, 

       𝑦 0 = 𝑎, 𝑦′ 0  = 𝑏, 𝑡 > 0,     (27)             

where  𝑞 𝑡, 𝑦  is a bounded function with caratheodary 

conditions, has also a solution. 

Example. The problem 

𝑦′′ + 𝑝 𝑡 𝑦′ + 𝑞 𝑡, 𝑦 𝑡  − 𝑏𝑝(𝑡) = 0, 

   𝑦 0 = 𝑎, 𝑦′ 0  = 𝑏, 𝑡 ≥ 0,    (28)                           

has a solution for all bounded 𝑞 𝑡, 𝑦 𝑡  . Indeed the 

problem 

      𝑧′′ (𝑡) + 𝑝 𝑡 𝑧′(𝑡) − 𝑏𝑝(𝑡) = 0, 

             𝑧 0 = 𝑎, 𝑧′ 0  = 𝑏,     (29)                                     

has a solution 𝑧 𝑡 =  𝑏𝑡 + 𝑎 Then the existence of solution 

of (28) follows from Theorem 2. 

Conclusion 

We extended the class of second order- singular IVPs and 

established difficulties related to the singularity overcome 

for the problem (2) with 𝑝 ≥ 0 or 

              𝑀 ≤  𝑝 𝑠 𝑑𝑠 < +∞
𝑑

𝑐
;    

       for  some  fixed  𝑀.                  (30) 

The existence of a solution reduced to finding a solution 

some problems like (4). The conditions are weaker than the 

previously known is obtained and can be easily reduced to 

several special cases.                                           
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