EXISTENCE OF SOLUTIONS TO INITIAL-VALUE PROBLEM FOR

SECOND ORDER DIFFERENTIAL EQUATIONS

Jothika.K ${ }^{\# 1}$,

M.sc., (M.Phil), Department of
Mathematics,Vivekanandha College of Arts and Sciences for Women [Autonomous], Tiruchengode, Namakkal.

Abstract

We consider existence of solutions to initial-value problems for second-order singular differential equations. We observe that the existence can be demonstrated in terms of simple initial-value problem. Local existence and uniqueness of solutions are proven. Under the conditions which are weaker than previously known conditions.

Keywords: Initial - value problem, singular differential equation, emden -fowler equation.

Introduction

In this paper, we study the singular initial value problems (IVPs) of the type

$$
\begin{align*}
& y^{\prime \prime}+2 t^{-1} y^{\prime}+y^{n}(t)=0 \\
& y(0)=1, y^{\prime}(0)=0 \tag{1}
\end{align*}
$$

have seeked the concentration of many mathematicians and physicists. Our aim of this paper to study the more general IVPs of the form

$$
\begin{align*}
& y^{\prime \prime}+p(t) y^{\prime}+q(t, y(t))=0 \\
& y(0)=\mathrm{a}, y^{\prime}(0)=\mathrm{b}, t>0 \tag{2}
\end{align*}
$$

and to make further progress beyond the achievements made so far in this regard. The case $q=f(t) g(x)$ corresponds to Emden - Fower equations[10]. In above equation (2), the function $p(t)$ may be singular at t $=0$.It prolong some well-known IVPs in the literature [1,7]

In the case $b=0$ the existence of the solution for the problem (2) has been studied in [2], where the authors illustrated the importance of the condition $b=0$ for the existence. We find the conditions for $p(t)$ and $q(t, y(t))$ to guarantee the existence of the solution for $b \neq 0$.

Existence Theorems

We say that $y(t)$ isasolution to (2) if and only if there exists some $T>0$ such that

$$
\text { (1) } y(t) \text { and } y^{\prime}(t) \text { are absolutely continuous on }[0, T] \text {, }
$$

Savitha. $\mathrm{S}^{\# 2}$,
Faculty of Mathematics, Vivekanandha
College of Arts and Sciences for Women
[Autonomous], Tiruchengode, Namakkal.

(2) $y(t)$ satisfies the equation given in (2) a.e. on $[0, T]$,
(3) $y(t)$ satisfies the initial condition given in (2).

And we generalize the existence theorem of solutions in [2].

Theorem 1. Let p and q satisfy the following conditions:
(1) p is measurable on $[0,1]$;
(2) $p \geq 0$;
(3) $\int_{0}^{1} s p(\mathrm{~s}) \mathrm{ds}<\infty$;
(4) there exist α, β with $\alpha<a<\beta$ and $K>0$ such that
(a) for each $t \in(0,1], q(t,$.$) is continuous on [\alpha$, β];
(b) for each $y \in[\alpha, \beta], q(., y)$ is measurable on $[0$,1];
(c) $|q(t, y)| \leq K$.

Then a solution to the initial - value problem (2) with $b=0$ exists.

In [4] the author illustrated the importance of the condition $b=0$ for the existence.

To overcome the difficulties in the case $b \neq 0$ we consider a generalization of theorem 1 and show that the statement of the theorem is true without condition (c) and with weaker conditions on $q(t, y)$.

Theorem 2. Suppose that $p(t)$ is integrable on the interval $[c, d]$ for all $c>0$ and p and q satisfy the following conditions:
(1) p is measurable on $[0,1]$;
(2) $p \geq 0$;
(3) there exist α, β with $\alpha<a<\beta$ and $K>0$, and an integrable (improper, in general) $\varphi(t)$ such that
(a) for each $t \in(0,1], q(t,$.$) is continuous on [\alpha$, β];
(b) for each $x \in[\alpha, \beta], q(., x)$ is measurable on [0 ,1];
(c) $|q(t, y)-\varphi(t)| \leq K$.

Then a solution to the initial - value problem (2) exists for all $b \in R$ such that

$$
\begin{equation*}
\mathrm{b}=z^{\prime}(0) \tag{3}
\end{equation*}
$$

where $z(t) \in C[0,1]$ is a solution of the problem

$$
\begin{gather*}
z^{\prime \prime}+p(t) z^{\prime}+\varphi(t)=0, \\
z(0)=a, z^{\prime}(0)=\mathrm{b}, t>0 . \tag{4}
\end{gather*}
$$

That is, the existence of the problem (4) for some $\varphi(t)$. For the problems with $\mathrm{b}=0$, the initial-value problem (4) always has a solution $z(t)=a$, for $\varphi(t)=0$. So Theorem 1 corresponds to the cases $\varphi(t)=0$ and $z(t)=$ a.

The advantages of Theorem 2 is that the problem (4) always has a solution for some appropriate $\varphi(t)$; for example, for $\varphi(t)=-\mathrm{b} p(t)$, it has a solution $z(t)=a+$ $\mathrm{b} t$. The conclusion of the theorem remains valid for all solutions of (4).

It is also clear from the conclusion of Theorem 2 that the interval $[0,1]$ can be taken as $\left[0, t_{0}\right]$ for some small enough $t_{0}>0$.

Proof :

For $t \in(0,1]$, we define the functions

$$
\begin{align*}
& h(t)=\exp \left(\int_{1}^{t} p(s) d s\right) \geq 0, \\
& h_{1}(t)=\exp \left(-\int_{1}^{t} p(s) d s\right), \tag{5}\\
& E(t)=\int_{1}^{t} h_{1}(t) d s .
\end{align*}
$$

where $h(t)$ is a bounded function and contionuous for $t \in(0,1]$. It is continuous or has a removable discontinuity at $t=0$ and is differentiable a.e.

Show that the problem (2) is equivalent to the following integral equation

$$
\begin{gather*}
y(t) \quad=\int_{0}^{t} E(s) e^{\int_{1}^{s} p(\tau) d \tau}- \\
\times[q(s, y(s))-\varphi(s)] d s+z(t) . \tag{6}
\end{gather*}
$$

Let us show the existence of the integral in (6). For any $\delta>0$, we have

$$
\begin{aligned}
& \left|\int_{\delta}^{t} E(s) e^{\int_{1}^{s} p(\tau) d \tau}[q(s, y(s))-\varphi(s)] d s\right| \\
& \quad \leq k\left|\int_{\delta}^{t} E(s) e^{\int_{1}^{s} p(\tau) d \tau} d s\right| \\
& \quad=k\left|\int_{\delta}^{t} \int_{1}^{s} h_{1}(u) e^{\int_{1}^{s} p(\tau) d \tau} d u d s\right| \\
& \quad=\left|\int_{\delta}^{t} \int_{1}^{s} e^{-\int_{1}^{u} p(v) d v} e^{\int_{1}^{s} p(\tau) d \tau} d u d s\right|
\end{aligned}
$$

It follows from $u \geq s$ on the set $[s, 1] \times[0, t]$ that
$e^{-\int_{1}^{u} p(v) d v} e^{\int_{1}^{s} p(\tau) d \tau}=e^{-\int_{1}^{u} p(v) d v} \leq 1$

$$
\begin{align*}
\mid \int_{\delta}^{t} E(s) e^{\int_{1}^{s} p(\tau) d \tau} & {[q(s, y(s))-\varphi(s)] d s \mid } \\
& \leq k\left|t-\frac{t^{2}}{2}\right| \tag{9}
\end{align*}
$$

Likewise, we obtain

$$
\begin{align*}
& \left|\int_{\delta}^{t} E(t) e^{\int_{1}^{s} p(\tau) d \tau}[q(s, y(s))-\varphi(s)] d s\right| \\
& \quad \leq k\left|\int_{\delta}^{t} E(t) e^{\int_{1}^{s} p(\tau) d \tau} d s\right| \\
& \quad=k\left|\int_{\delta}^{t} \int_{1}^{t} h_{1}(u) e^{\int_{1}^{s} p(\tau) d \tau} d u d s\right| \\
& \quad \leq k\left|t-t^{2}\right| \tag{10}
\end{align*}
$$

So the right-hand side of (6) makes sense for any $p(t) \geq 0$ and $|[q(s, y(s))-\varphi(s)]| \leq k$ and
$\lim _{\delta \rightarrow 0} \int_{\delta}^{t}\left(E(s) e^{\int_{1}^{s} p(\tau) d \tau}-\right.$
$\left.E(t) e^{\int_{1}^{s} p(\tau) d \tau}\right) \times[q(s, y(s)) \varphi(s)] d s+z(t)=$ $\int_{0}^{t}\left(E(s) e^{\int_{1}^{s} p(\tau) d \tau}\right.$
$E(t) e^{\int_{1}^{s} p(\tau) d \tau} \times[q(s, y(s)) \varphi(s)] d s+z(t)$.
Now calculate the derivatives $y^{\prime}(t)$ and $y^{\prime \prime}(t)$ from (6) by using the Leibniz rule:

$$
\begin{aligned}
& y^{\prime}(t)=\left(\int_{0}^{t} E(s) e^{\int_{1}^{s} p(\tau) d \tau}[q(s, y(s))-\varphi(s)] d s\right. \\
& \left.-\int_{0}^{t} E(t) e^{\int_{1}^{s} p(\tau) d \tau}[q(s, y(s))-\varphi(s)] d s+z(t)\right)^{\prime} \\
& =E(t) e^{\int_{1}^{s} p(\tau) d \tau}[q(t, y(t)) \varphi(t)] \\
& -E^{\prime}(t) \int_{0}^{t} e^{\int_{1}^{s} p(\tau) d \tau}[q(s, y(s)) \varphi(s)] d s- \\
& E(t) e^{\int_{1}^{t} p(\tau) d \tau}[q(t, y(t))-\varphi(t)]+z^{\prime}(t) \\
& = \\
& -h_{1}(t) \int_{0}^{t} e^{\int_{1}^{s} p(\tau) d \tau}[q(s, y(s)) \\
& -\varphi(s)] d s+z^{\prime}(t),
\end{aligned}
$$

$y^{\prime \prime}(t)=\left(-h_{1} t\right) \int_{0}^{t} e^{\int_{1}^{s} p(\tau) d \tau}[q(s, y(s))-\varphi(s)] d s$ $\left.z^{\prime}(t)\right)^{\prime}$

$$
\begin{aligned}
&=-h_{1}^{\prime}(t) \int_{0}^{t} e^{\int_{1}^{s} p(\tau) d \tau}[q(s, y(s))-\varphi(s)] d s- \\
& h_{1}(t) e^{\int_{1}^{t} p(\tau) d \tau}[q(t, y(t))-\varphi(t)]+z^{\prime \prime}(t)
\end{aligned}
$$

$$
\begin{align*}
& =-h_{1}^{\prime}(t) \int_{0}^{t} e_{1}^{\int_{1}^{s} p(\tau) d \tau}[q(s, y(s))- \\
& \quad \varphi(s)] d s-[q(t, y(t))-\varphi(t)]+z^{\prime \prime}(t) \tag{12}
\end{align*}
$$

It follows from (12) that

$$
\begin{aligned}
x^{\prime \prime} & (t)+p(t) x^{\prime}(t)+q(t, y(t)) \\
= & -h_{1}^{\prime}(t) \int_{0}^{t} e^{\int_{1}^{s} p(\tau) d \tau}[q(s, y(s)) \\
& -\varphi(s)] d s-[q(t, y(t))-\varphi(t)]+z^{\prime \prime}(t) \\
& -p(t) h_{1}(t) \int_{0}^{t} e^{\int_{1}^{s} p(\tau) d \tau}[q(s, y(s))-
\end{aligned}
$$

$$
\begin{equation*}
\varphi(s)] d s+p(t) z^{\prime}(t)+q(t, y(t)) \tag{13}
\end{equation*}
$$

$$
\begin{aligned}
& =z^{\prime \prime}(t)+p(t) z^{\prime}(t)+\varphi(t) \\
& =0 .
\end{aligned}
$$

That is, the problem (2) is equivalent to (4). We define the recurrence relations

$$
\begin{equation*}
y_{0}(t)=z(t), \tag{14}
\end{equation*}
$$

In general,

$$
\begin{align*}
& y_{n}(t)=\int_{0}^{t}\left(E(s) e^{\int_{1}^{s} p(\tau) d \tau}-E(t) e^{\int_{1}^{s} p(\tau) d \tau}\right) \\
& \times\left[q\left(s, x_{n-1}(t)\right)-\varphi(s)\right] d s+z(t), \tag{15}
\end{align*}
$$

where $z(t)$ is a solution of the problem (4). It follows from (9), (10), and (14) that $\alpha<y_{n}(t)<\beta$ for $\alpha<$ $y_{n-1}(t)<\beta$ and for small enough $t \in\left[0, t_{0}\right)$.

For $t_{1}, t_{2} \in\left[0, t_{0}\right)$, from equation (9) and (10), we have

$$
\begin{align*}
& \left|y_{n}\left(t_{2}\right)-y_{n}\left(t_{1}\right)\right|= \\
& \quad \mid \int_{t_{1}}^{t_{2}}\left(E(s) e^{\int_{1}^{s} p(\tau) d \tau}-E(t) e^{\int_{1}^{s} p(\tau) d \tau}\right) \\
& \left.\quad \leq 2 K\left(s, y_{n-1}(s)\right)-\varphi(s)\right] d s \mid \\
& \left.\leq 2 K\left(t_{2}-\frac{t_{2}^{2}}{2}\right)-\left(t_{1}-\frac{t_{1}^{2}}{2}\right)\right] \\
& \leq K\left(t_{2}-t_{1}\right)\left(1+\frac{t_{1}}{2}+\frac{t_{2}}{2}\right) \\
& \leq K\left(t_{2}-t_{1}\right) . \tag{16}
\end{align*}
$$

for some constant K_{1}. Thus, the sequence $y_{n}(t)$ is uniformly bounded and uniformly continuous. By using Ascoli - Arzela lemma, there exists a continuous $y(t)$ such that $y_{n_{k}}(t) \rightarrow y(t)$ uniformly on $[0, T]$, for any fixed $\mathrm{T} \in\left[0, t_{0}\right)$. Without loss of generality, say $y_{n}(t) \rightarrow$ $y(t)$. Then

$$
\begin{aligned}
& y(t)= \lim _{n \rightarrow \infty} \int_{0}^{t}\left(E(s) e^{\int_{1}^{s} p(\tau) d \tau}-E(t) e^{\int_{1}^{s} p(\tau) d \tau}\right) \\
& \times\left[q\left(s, y_{n}(s)\right)-\varphi(s)\right] d s+z(t) \\
& \int_{0}^{t}\left(E(s) e^{\int_{1}^{s} p(\tau) d \tau}-E(t) e^{\int_{1}^{s} p(\tau) d \tau}\right) \\
& \times[q(s, y(s))-\varphi(s)] d s+z(t),
\end{aligned}
$$

using the lebesgue dominated convergence theorem.
Note that the positivity condition of the function $p(t)$ can be weakened. the positivity of $p(t)$ has been used in the proof of Theorem 2 to show the (removable) continuity of the function $h(t)$ at 0 . Assuming that the following condition holds
(i) $\quad|p|$ is integrable on $[c, d]$
for any fixed $c, d \in(0,1], c<d$ and

$$
\begin{equation*}
M \leq \int_{c}^{d} p(s) d s<+\infty \tag{18}
\end{equation*}
$$

for some fixed M
we can prove a similar theorem
Theorem 3. The conclusion of the Theorem 2 remains valid if condition (2) is replaced by (i).

Proof: We need to make some modifications to the proof of Theorem 2; for example, instead of the inequality

$$
\begin{equation*}
e^{-\int_{1}^{u} p(v) d v} e^{\int_{1}^{s} p(\tau) d \tau} \leq 1 \tag{19}
\end{equation*}
$$

for $u \geq s$, we have

$$
\begin{equation*}
e^{-\int_{1}^{u} p(v) d v} e^{\int_{1}^{s} p(\tau) d \tau}=e^{-\int_{s}^{u} p(v) d v} \leq e^{-L} \tag{20}
\end{equation*}
$$

for small enough u and s. Note that the existence of the solution of the problems like

$$
\begin{align*}
& y^{\prime \prime}+\left(\frac{a_{m}}{t^{m}}+\frac{a_{m-1}}{t^{m-1}}+\ldots+\frac{a_{1}}{t}+A(t) y^{\prime}+q(t, y(t))=0,\right. \\
& x(0)=a, x^{\prime}(0)=b, t>0, \tag{21}
\end{align*}
$$

follows from theorem 2 , where $A(t)$ is differentiable function, $\quad q(t, x)$ satisfies the conditions (3), a_{1}, a_{2}, \ldots, a_{m} are real constants, and $a_{m}>0$. Indeed for small enough t we have $p(t)>0$ and therefore the hypotheses of theorem 2 and 3 are true for small enough $t \in[0, T] ;$ for $b=0$ the problem (4) has a solution $z(t)=a$, and so (21) has a solution for all bounded $q(t, y(t))$ with carathedory conditions, but for $b \neq 0$ the problem (21) has a solution for $q(t, y(t))$ with
$\left|q(t, y(t))+b\left(\frac{a_{m}}{t^{m}}+\frac{a_{m-1}}{t^{m \dashv 1}}+\ldots+\quad \frac{a_{1}}{t}\right)\right|<K$
some small enough neighbourhood of 0 , since the corresponding problem (4) can be taken (e.g.) as
$z^{\prime \prime}+\left(\frac{a_{m}}{t^{m}}+\frac{a_{m-1}}{t^{m-1}}+\ldots+\frac{a_{1}}{t}+A(t)\right) z^{\prime} \quad-b\left(\frac{a_{m}}{t^{m}}+\frac{a_{m-1}}{t^{m-1}}+\ldots\right.$
$\left.+\frac{a_{1}}{t}+A(t)\right)=0$,

$$
\begin{equation*}
z(0)=a, z^{\prime}(0)=b, t>0 \tag{22}
\end{equation*}
$$

has a solution $z(t)=a+b t$. For $b \neq 0$ the condition $q(t, y(t))$ can be changed by using different functions for $\varphi(t)$ can be taken as

$$
\begin{aligned}
& \varphi(t)=\frac{b_{m}}{t^{m}}+\frac{b_{m-1}}{t^{m-1}}+\ldots \\
& =-\frac{b a_{m}}{t^{m}}+\frac{1}{t^{m-2}}\left(\frac{b a_{m-1}}{a_{m}}-b a_{m-2}\right) \\
& +\frac{1}{t^{m-3}}\left(\frac{b a_{m-1} a_{m-2}}{a_{m}}-b a_{m-3}\right) \\
& +\frac{1}{t}\left(\frac{b a_{m-1} a_{2}}{a_{m}}-b a_{1}\right)+\frac{b a_{m-1} a_{1}}{a_{m}}-b A(t)-\frac{b a_{m-1}}{a_{m}} \\
& z^{\prime \prime}+\left(\frac{a_{m}}{t^{m}}+\frac{a_{m-1}}{t^{m-1}}+\ldots+\frac{a_{1}}{t}+A(t)\right) z^{\prime}+\varphi(t)=0,
\end{aligned}
$$

$$
z(0)=a, z^{\prime}(0)=b, t>0
$$

with solution $\quad z(t)=a+b t-\left(\frac{b a_{m-1}}{2 a_{m}}\right) t^{2}$.
continuing this process, the condition $q(t, y(t))$ can be reduced to $\left|q(t, y(t))+\frac{b a_{m}}{t^{m}}\right|<K$.

The inequalities (7),(8),(9) and (10) can be easily established for the function $q(t, y)$ with

$$
\begin{equation*}
|q(t, y(t))-\varphi(t)| \leq m(t) \tag{25}
\end{equation*}
$$

where $m(t)$ is absolutely integrable function.

Applications

By using existence and uniqueness criteria, we can find the wide classes of the initial- value problems. Adding a function $\varphi(t)$ to $q(t, y)$ in the class of solvable problem, it can be extended, where $\varphi(t)$ is taken from equation (4) with a solution.

$$
\begin{aligned}
& y^{\prime \prime}+p(t) y^{\prime}+\varphi(t, y(t))=0 \\
& y(0)=a, y^{\prime}(0)=b, t>0
\end{aligned}
$$

has a solution, then

$$
y^{\prime \prime}+p(t) y^{\prime}+\varphi(t, y(t))+q(t, y(t))=0
$$

$$
y(0)=a, y^{\prime}(0)=b, t>0
$$

where $q(t, y)$ is a bounded function with caratheodary conditions, has also a solution.

Example. The problem

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t, y(t))-b p(t)=0
$$

$$
\begin{equation*}
y(0)=a, y^{\prime}(0)=b, t \geq 0 \tag{28}
\end{equation*}
$$

has a solution for all bounded $q(t, y(t))$. Indeed the problem

$$
\begin{gather*}
z^{\prime \prime}(t)+p(t) z^{\prime}(t)-b p(t)=0 \\
z(0)=a, z^{\prime}(0)=b, \tag{29}
\end{gather*}
$$

has a solution $z(t)=b t+a$ Then the existence of solution of (28) follows from Theorem 2.

Conclusion

We extended the class of second order- singular IVPs and established difficulties related to the singularity overcome for the problem (2) with $p \geq 0$ or

$$
\begin{equation*}
M \leq \int_{c}^{d} p(s) d s<+\infty \tag{30}
\end{equation*}
$$

for some fixed M.

The existence of a solution reduced to finding a solution some problems like (4). The conditions are weaker than the previously known is obtained and can be easily reduced to several special cases.

References

[1] W.Mydlarczyk, " A singular initial value problem for second and third order differential equation," colloquium Mathematicum, vol. 68, no.2,pp.249-257,1995.
[2] D. C. Biles, M. P. Robinson, and J. S. Spraker, " A generalization problems of Lane-Emden type,"Journal of Mathematical Analysis and Applications, vol. 273, no.2,pp.654-666,2002.
[3] R.P.Agarwal and D.O'Regan, "Second order initial value problems of Lane-Emdentype," Applied Mathematics Letters, vol.20, no.12, pp.1198-1205,2007.
[4] S. Liao, "A new analytic algorithm of Lane-Emden type equations," Applied Mathematics and Computation, vol.142, no.1, pp.1-16,2003.
[5] P.Rosenau, "A note on integration of the Emden-Fowler equation," International Journal of non-Linear Mechanics, vol.19, no.4, pp.303-308,1984.
[6] M. Beech, "An approximate solution for the polytrope n $=3$," Astrophysics and space science, vol.132, no.2, pp.393-396,1987.
[7] A. M. Wazwaz, "A new algorithm for solving differential equations of Lane-Emden type," Applied Mathematics and Computation, vol.118, no.2-3, pp.287-310,2001.
[8] S. Chandrasekhar, Introduction To the Study of Stellar Structure, Dover, New York, NY, USA, 1967.
[9] G. P. Horedt, "Exact solutions of the Lane-Emden equation in N -dimensional space," Astronomy and Astrophysics, vol.172, no.1, pp.359-367,1987.
[10] E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, Tata McGraw-Hill, Bombay, India, 1995.

