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Abstract-Consistency management, the ability to detect, 

diagnose and handle inconsistencies, is crucial during the 

development process in Model-driven Engineering (MDE). 

As the popularity and application scenarios of MDE 

expanded, a variety of different techniques were proposed 

to address these tasks in specific contexts. Of the various 

stages of consistency management, this work 

Focuses on inconsistency handling in MDE, particularly in 

model repair techniques. This paper proposes a feature-

based classification system for model repair techniques, 

based on a systematic literature review of the area. We 

expect this work to assist developers and researchers from 

different disciplines in comparing their work under a 

unifying framework, and aid MDE practitioners in selecting 

suitable model repair approaches. 
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I. INTRODUCTION 

      Model-driven Engineering (MDE) is a family of 

development processes that focus on models as the primary 

development artifact. As models are modified by 

Different stakeholders, in a possibly distributed and 

heterogeneous context, the consistency of the overall MDE 

environment must be constantly monitored and managed. 

Therefore, consistency management [1], [2] – which 

involves various activities concerned with the detection, 

diagnosis, handling and tracking of inconsistencies – is 

essential to MDE. Such activities are not only fundamental 

to manage intra- and inter-model consistency as models 

naturally evolve, but also in more specific activities, like 

meta-model and constraint evolution [3], model refactoring 

[4], variability modeling [5] or version merging [6]. 

A. Model Repair 

        Inconsistencies may arise due to mistakes or 

imprudent decisions as the developers apply changes to the 

models, but their impact may not be immediately 

perceptible, especially considering the complexity of the 

MDE development environment. Inconsistencies may also 

reflect conflicting or alternative interpretations of the 

requirements, or uncertainty and partial knowledge [7]. 

Thus, development frameworks should not forbid the 

introduction of inconsistencies altogether, but instead 

tolerate them, while still providing support for their 

detection [8]. Notwithstanding, as the development 

progresses and conflicting interpretations converge, so are 

the models expected to evolve to a consistent version, 

And thus inconsistencies must eventually be handled [2]. 

To be manageable, these tasks must be supported by 

automated techniques that help the user decide how to 

restore the consistency of the environment. A common 

solution, addressed in this study, is to rely on techniques 

that propose update actions that repair the models 

themselves, in order to ameliorate the consistency level of 

the MDE environment. One of the main challenges in 

model repair is that for any given set of inconsistencies, 

there (possibly) exist an overwhelming number of updates 

that resolve them.  

        Yet, since the selection of the most suitable repair 

update is ultimately a choice of the developer, approaches 

to model repair must balance the level of automation of the 

process with the need for user guidance in the generation of 

the alternative solutions. Some authors [9] advocate the use 

of heuristics to tackle the presence of a large search space, 

the need for algorithms with a low computational 

complexity, and the absence of known optimal solutions. 

Others [10] advocate against fully automatic approaches 

that replace the role of the human designer in repairing 

models. According to the latter, repairing models should be 

an activity that goes hand in hand with the creative process 

of modeling. 

B. Need for a Unifying Taxonomy 

      The variety of contexts in which consistency 

management is necessary gave rise to an equally disparate 

terminology. As a clear example, techniques addressing 

seemingly interchangeable problems identify themselves 

varyingly as handling [11], resolving [12], fixing [13] or 

repairing [14] inconsistencies, among others. Moreover, to 

render these tasks more manageable, a variety of techniques 

have been developed that assume a more controlled 

environment with more concrete goals, including change 

propagation [15], model synchronization [16], bidirectional 

model transformation 

[17], [18], incremental model transformation [19] or model 

finding [20], each with particular terminology. Thus, there 

is the need for a unifying taxonomy that allows 

practitioners to properly compare their work with that 

arising from different disciplines. To be rigorous and 

exhaustive, such classification scheme must necessarily 

emerge from a systematic review of the literature relevant 

to the model repair problem [21]. Yet, to the best of our 

knowledge, the most rigorous study to date on consistency 

management, including inconsistency handling, is still the 

survey by Spanoudakis and Zisman [2], which, based on 

previous definitions from [1] and [22], surveyed and 

analyzed existing approaches at the time. A more recent 

classification of model repair techniques is presented in 

[23], addressing the flexibility, usability and extensibility of 

the approaches. However not every facet of the model 

repair problem is addressed, like the behavior of the repair 

procedure or the different mechanisms through which the 

user can control it. Moreover, its development was not 

based on a systematic review of the state-of-the-art. 

Classification schemes have been proposed for related areas 

like model transformation [24], model synchronization [16] 

and bidirectional transformation [25]. While some facets of 

model repair overlap with facets from those disciplines, 
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there are various topics that are specific to the former and 

that are not addressed by those studies. 

C. Goals and Contributions 

      Motivated by the heterogeneity of approaches to model 

repair, this paper explores this landscape and proposes a 

structured taxonomy for their classification, based on a 

systematic literature review of the area. We adopt the term 

of model repair as the focus of the study because we feel 

that it best defines the topic which we aim to address: 

techniques that handle inconsistency by acting upon 

software models. Here we assume a broad definition of 

model, encompassing any artifact that abstracts certain 

portions of a software system. This excludes from the study 

the detection of the inconsistencies and their causes, 

techniques that avoid the introduction of inconsistencies by 

enforcing consistent states and techniques that handle 

inconsistencies by updating artifacts other than the models 

(e.g., the meta-models and associated constraints). 

Following other successful classification schemes of MDE 

techniques (e.g., [24] for model transformation), we present 

our classification alternatives as feature models [26], 

diagrams developed with the goal of modeling alternative 

configurations in software product lines. This allows the 

presentation of the identified characteristics in a structured 

and formal way, rendering their dependencies explicit. This 

unifying taxonomy is the main contribution of this paper, 

which will allow researchers and tool developers to 

properly locate novel approaches in the context of the state-

of-the-art of the area. As a secondary contribution we 

provide the exhaustive classification of the studies collected 

during the literature review under this taxonomy [27]. We 

expect that this will aid researchers in identifying gaps in 

the field by detecting under-explored features or feature 

combinations representing potentially interesting 

approaches. 

       Lastly, we present a detailed classification and 

comparison of three modern approaches to model repair to 

demonstrate the impact of the feature selection. Hopefully 

this will provide software engineering practitioners with 

some insight when choosing a model repair approach for 

their particular application domain. This remainder of paper 

is structured as follows. Section 2 starts by presenting and 

formalizing the model repair problem, in order to clarify the 

artifacts that are to be classified by the taxonomy. Section 3 

presents the resulting feature-based taxonomy under which 

model repair techniques can be classified, as well as an 

overview of the  

 
Fig. 1. Simplified meta-model for class and sequence 

diagrams. 

Methodology employed to select the primary studies and 

extract from them the selected features. This methodology 

is further detailed in the Appendix. This taxonomy is used 

in Section 4 to classify and compare three modern 

techniques. Lastly, Section 5 draws conclusions and final 

remarks. 

II. MODEL REPAIR 

      This section presents and formalizes the problem of 

model repair, the target of this study. The scheme allows us 

to concretely identify the artifacts that are to be classified 

by each facet of the taxonomy. 

A. Overview 

       To provide an overview of the model repair problem 

and illustrate the vastness of features that model repair 

techniques may implement, this section introduces a couple 

of examples, inspired by state-of-the-art approaches to the 

problem [9], [10], [28]. While many approaches to model 

repair are designed to focus on particular classes of models 

(e.g., UML diagrams [29]), most modern approaches are 

meta-model independent: they allow the designers to 

restrict the model domain space on which they act, 

improving their versatility. This is achieved by defining 

well-formedness rules using meta-modeling languages 

provided by popular modeling 

Frame works like OMG’s Model-driven Architecture 

(MDA) or the Eclipse Modeling Framework (EMF). Fig. 1 

depicts one such meta-model, for designing very simplified 

versions of class and sequence diagrams. Although meta-

models define which model instances are? 

Considered well-formed, there are a number of structural 

And behavioral properties that cannot be captured by 

metamodels alone. Thus, they are usually annotated with 

additional intra- and inter-model constraints that restrict the 

internal structure of individual model instances and their 

relationship with others, respectively. Ideally, the user 

should be allowed to define such constraints, typically 

using the well-established MDA’s OCL [30] or other 

similar constraint language. One such constraint over class 

diagrams is that class generalization links must be acyclic. 

In OCL, this can be defined as follows for the meta-model 

depicted in Fig. 1: 

Context Class acyclic generalization: 

Not self. Closure (general) ->includes (self) 

 

 
Fig. 2. Inconsistency in a class diagram. 

      Consider, as an example, the class diagram from Fig. 2a 

conforming to the meta-model from Fig. 1, depicting a 

tentative first version of the structure of a video on demand 

(VOD) system (inspired by [9]), consistent under the 

acyclic generalization constraint. Then, assume that at some 

point one of the developers, maybe oblivious of the whole 

inheritance tree or maybe disagreeing with previous design 

decisions, updated that model instance to the version 
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depicted in Fig. 2b, by introducing a new generalization 

link (colored red), giving rise to a violation that breaks 

acyclic generalization. Since user updates can evidence 

conflicting interpretations of the requirements, 

inconsistencies should not be forbidden but rather detected, 

diagnosed and handled when deemed necessary. There are a 

variety of updates that can be applied to the model instances 

to handle inconsistencies and ameliorate the consistency 

level of the environment. However, the alternatives 

generated by the model repair procedures are necessarily 

restricted by design choices that render the problem 

manageable. Should a single repair alternative be generated, 

even if the rational behind the choice is not clear to the 

user, or should the enumeration be exhaustive at the risk of 

overwhelming the user? Should the procedure attempt to 

infer all required information to repair the model instance 

or generate abstract plans that must be instantiated by the 

user?  

       The process is also dependent on the amount of 

information available. Should the modeling tools work in 

an online setting and record the user actions that lead to 

violations, allowing more accurate repair alternatives? 

Moreover, the ability of the tool to consider domain-

specific information provides additional complexity. Should 

the procedure be able to handle constraints specified by the 

stakeholders? Should the supported repair actions be 

defined by the stakeholders? Finally, all these design 

choices must also take into consideration the ability of the 

user to customize the procedure so that the generated 

alternatives prove useful. Should this be achieved by asking 

the user to provide repair hints or simply assigning 

priorities to different constraints or parts of the model? 

Should user input be collected at static time or should the 

repair procedure be interactive? 

The problem becomes more complex when various 

constraints interfere with each other, which is the frequently 

the case. Consider the coexistence of class and sequence 

diagrams, supported by the meta-model depicted in Fig. 1. 

Besides internal consistency of the diagrams, consistency 

between them must also be maintained because some data 

contained in the two diagrams overlaps: messages refer to 

operations that must be available in the target lifeline’s 

class. 

 

 
Fig. 3. Inconsistency between the diagrams. 

       Since we have assumed that both kinds of diagrams 

share the same meta-model (much like UML diagrams), 

this kind of properties can still be defined as regular OCL 

constraints. This one in particular would take the shape: 

Context Message operation: 

self.target.class.operations-> 

Exists (o | o.name = self.name) 

      These constraints must coexist with those over the 

individual diagrams. For instance, another constraint that 

must hold in class diagrams is that the operations defined 

within a class must have unique names: 

Context Class unique operations: 

self. Operations-> 

forall(x,y | x.name = y.name => x = y) 

        The class and sequence diagrams from Fig. 3a are 

consistent under the constraints that have been defined. 

However, if the two user updates depicted in Fig. 3b were 

simultaneously applied to these model instances – the 

introduction of a new operation and a new message (both 

colored red) – violations would be introduced for both 

message_operation and unique_operations. When 

attempting to remove the violation of the 

message_operation constraint, the developer should be 

aware of the impact that each of the acceptable repair 

updates has on the other constraints. Fig. 4 depicts several 

possible repair updates that can be applied to the 

class diagram or to the sequence diagram that remove the 

message_operation violation. However, some of these 

repair updates have (possibly undesirable) side effects: the 

update applied in Fig. 4a also solves the violation caused by 

the unique_operations – a positive side effect – while the 

one applied in Fig. 4c introduces a new violation by 

breaking acyclic_generalization – a negative side effect. 

Either way, it is important that the user is aware of these 

side effects when choosing the fix to be applied, and thus 

model repair procedures should somehow consider all 

constraints when generating the repair updates. In this 

example it is also manifest that the number of valid repair 

updates can quickly become too large for the user to handle. 

Thus, a variety of techniques have been proposed that try to 

balance the automation provided by the repair procedures 

and the user input required to reduce the number of 

generated repair updates. 

       This input includes, for instance, requiring the 

definition of repair hints for each specified constraint, 

assigning different priorities to those constraints or parts of 

the model, or even disabling some edit operations. As 

techniques were developed to handle more complex 

application domains, more specialized mechanisms to 

manage their consistency emerged. Such is the case of 

techniques designed to manage the consistency of models 

spread across heterogeneous modeling frameworks. A 

classical example of such scenario is the object-relational 

mapping, concerned with keeping class diagrams consistent 

with relational database schemas, so that data conforming 

to the former can be persisted in databases conforming to 

the latter. In such cases, unlike the UML sequence and class 

diagrams of the previous example, overlapping information 

cannot be directly detected, and thus dedicated mechanisms 

to define inter-model consistency are required, like defining 

traceability links or consistency relations, as advocated in 

MDA’s QVT Relations [31]. Dedicated to manage 

intermodal consistency, such techniques often disregard 
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intermodal constraints altogether. It is easy to envision the 

complexity of model repair procedures over a considerable 

number of model instances and inter-related constraints, 

giving rise to multiple violations and an overwhelming 

number of acceptable repair updates. The goal of this paper 

is to interpret the myriad of solutions that have been 

proposed to address this kind of problems 

under a unifying framework. 

B. Formalization 

      In order to properly classify model repair techniques, 

one must first formally define the artifacts from the MDE 

environment that are relevant in that context. In particular, 

the shape and characteristics of these artifacts has a direct 

impact on which functionalities a model repair framework 

may possess, as well as the functional properties of the 

comprising procedures. This section presents such scheme. 

We assume that a meta-model M defines a set of well-

formed model instances m 2 M, which the model repair 

technique may allow the user to define through a met 

modeling language. The domain space of a model repair 

approach is defined by k meta-models M1; :::;Mk. In that 

sense, each state of the MDE environment is comprised by 

k model instances m1; : : : ;mk that conform to M1; :::;Mk, 

a fact denoted by (m1; : : : ;mk) 2 M1 _ _ _ _ _ Mk. In 

practice, this product of meta-models can be seen as a 

single composed meta-modelM, to which the tuple (m1; : : : 

;mk) (usually abbreviated asm) conforms. The shape and 

properties ofM in a model repair approach essentially 

determine the design space on which both the user and the 

repair procedures may act. AlthoughM defines the 

structural consistency of model instances, semantic 

properties must be enforced by additional constraints 

defined over the meta-models. Depending on the technique, 

these may take different shapes and varied expressiveness 

(e.g., intra- vs. inter-model constraints). We denote the 

universe of constraints supported by a model repair 

technique by C. Only a subset of model instances from M is 

considered consistent under a constraint c 2 C; for the other 

model instances there is at least a violation to c. There is 

usually a set of constraints fc1; : : : ; clg _ C specified in the 

MDE environment, which may or not have been defined by 

the user, which are abbreviated as c.  

       The notion of inconsistency considered in this study is 

imposed by these constraints (as opposed to inconsistency 

rising due to uncertainty or partial knowledge, for 

example). This is not necessarily a limitation since 

formalization imposes no restriction over the 

expressiveness of these constraints. The shape of 

constraints C determines the kind of properties that the 

framework will be able to handle, while the support to 

specify them affects the user’s ability to customize it. Prior 

to being handled, inconsistencies must be detected and 

diagnosed. Since inconsistencies are introduced by the 

different stakeholders as the models evolve, information 

regarding the performed user updates may help the 

checking and repair procedures execute quicker and 

produce more accurate results. In the simplest case they 

amount to the model instances resulting from the user 

update, but they may also contain additional information, 

like the edit actions applied by the user. We denote the 

universe of user updates supported by each approach by U. 

In general, each user update u 2 U contains at least 

information about the updated post-state model instances 

m0 2 M, which can be retrieved by post(u). For instance, in 

frameworks that record the user’s edit actions, user updates 

may be represented by a pair (m; s), where m is the state of 

the environment prior to the update and s denotes the 

applied edit actions. In such cases, the post-state model 

instances are retrieved by applying s to m, i.e., post(m; s) = 

s(m). If available, we denote the operation that retrieves the 

state of the environment prior to a user update u by pre(u) 

2M. 

     The information contained in U directly affects the 

accuracy and predictability of the repair procedures. Given 

a user update, a consistency checking procedure will test 

whether the resulting model instances are consistent for a 

provided set of constraints. The information reported by 

these procedures may be as simple as a boolean value, or 

more structured information, like a set of detected 

violations. We denote the universe of these reports by I, 

which is instantiated by each approach. Such checking 

reports can be compared for their ―inconsistency level‖, 

e.g., when some violations are handled, the environment 

becomes ―more consistent‖ but may still not be ―fully 

consistent‖. Following the approach proposed by Stevens 

[32], we assume these inconsistency levels to form a 

partially ordered set (I;v). In general, but not necessarily, 

this partially ordered set has a least element denoting the 

highest level of consistency for the environment, which will 

be denoted by ?I. 

Definition 1 (Consistency Checking): A consistency 

checking procedure CHECK : PC ! U ! I calculates the 

inconsistency level i 2 I for an update u 2 U under 

constraints c _ C, which is denoted by i = CHECKc u. The 

features of the CHECK procedure and the information 

contained in the detected I levels, not only affect the user’s 

ability to understand and control the behavior of the 

framework, but also define the information available to  
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Fig. 4. Possible repair updates for the inconsistency 

between the diagrams. 

the subsequent repair procedure when generating possible 

repair updates. Model repair procedures are deployed when 

the stakeholders wish to decrease the level of inconsistency 

of the environment. Again, the generated repair updates 

may contain varied information, from simple model 

instances to a set of edit operations. The universe of repair 

updates of each model repair approach is denoted by R. The 

information contained in the repair updates R is not 

necessarily the same as the user updates U, e.g., approaches 

may consider only the post-state of user updates but still 

propose edit sequences as repair updates. It is however 

assumed that from a repair update r 2 R and a user update u 

2 U that led to the current model instances, an update u0 2 

U can be derived that applies r to u (otherwise, the 

consistency checking procedure could not be executed after 

the application of repair updates). For instance, if u is 

simply represented by the post-state of the environment 

after a user update, and r is a set of edit operations, the 

updated u0 can be retrieved by applying the r operations to 

the u update. We denote this operation by r(u) 2 U. As 

expected, if U contains the pre-state of the environment, 

then pre(r(u)) = post(u). 

      The repair procedure may return a set of alternative 

repair updates. Moreover, it may access the checking 

procedure, and retrieve the inconsistency levels I of the 

model instances. This allows the repair procedure, for 

instance, to access the set of detected violations, if the 

CHECK procedure supports such reports. 

Definition 2 (Model Repair): A model repair procedure 

REPAIR : PC ! U ! PR calculates repair updates r 2 R for a 

user update u 2 U under constraints c _ C, which is denoted 

by r 2 REPAIRc u. The behavior of the REPAIR procedure 

is fundamental to define the overall characteristics of the 

repair framework, while the shape of the produced repair 

updates R affects its flexibility and effectiveness. The 

generated repair updates do not necessarily recover full 

consistency, although they are expected to ameliorate the 

inconsistency level of the environment. The relation  

 
Fig. 5. Generic scheme for model repair. 

between the checking and repair procedures, as well as the 

properties and enumeration of the generated repair updates, 

are dependent on the concrete model repair approach, and 

are key feature to define the functionalities of the 

framework. Fig. 5 presents an overview of our generic 

scheme for model repair. User updates u are applied to an 

existing model instancem0, consisting of a tuple of model 

instances, from which the modified model instancemis 

obtained, and to which the checking procedure assigns an 

inconsistency level i. Given a user update u, and with 

access to the checking procedure, the repair procedure 

generates a set of possible repair updates r, which, when 

applied to u, result in an update u0 from which the repaired 

model instances m0 can be obtained, and whose 

inconsistency level i0 is expected to be at least the same as 

the one of u. (The pre operations are grayed out because the 

updates may not store that information.) 

III. FEATURE-BASED TAXONOMY 

      This section presents the identified classification 

features for model repair approaches, that instantiate the 

abstract 

 
Fig.6. Protocol development process (adapted from 

[34]). 
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artifacts defined in Section 2.2, the mechanisms available to 

the user to customize them, and the behavior of the 

checking and repair procedures, as well as an overview of 

the of the methodology employed to collect the primary 

studies and extract the structured taxonomy. 

A. Methodology 

      Our research methodology is inspired by guidelines 

proposed for systematic literature reviews in software 

engineering, which aim to identify, evaluate and interpret 

all available research relevant to a particular topic area, or 

phenomenon of interest [21]. One of the objectives of such 

review is to provide a classification framework that allows 

researchers to appropriately position new research activities 

[21], which is the goal of our study. Nonetheless, since we 

do not exactly aim to to establish the state of evidence of 

the area, but rather to identify the features of existing 

approaches, our methodology shares characteristics with 

systematic mapping studies [33] as well. Systematic 

reviews rely on a predefined review protocol for the 

selection of the primary studies (the review itself being a 

secondary study), that should ensure rigor and completeness 

of the process, as well as enable repeatability. Our protocol, 

depicted in Fig. 6, was inspired by previous systematic 

reviews on other topics of software engineering [34], [35] 

and is detailed in the Appendix. Briefly, we started the 

process by defining the research questions that guide this 

study. Then we defined the search strategy employed to 

select the primary studies, backed by pivot searches that 

helped identify relevant search keywords and venues. We 

then specified the selection criteria used to obtain the 

definitive list of primary studies considered in our study 

and defined how the relevant data would be extracted from 

these studies, also backed up by pilot data extractions.  

       Finally, we defined the procedure through which this 

data would be effectively synthesized into the structured 

taxonomy and presented in the shape of feature models, the 

main contribution of this work. The last two steps followed 

guidelines for thematic synthesis in software engineering 

[36]. The classification of the primary studies under the 

resulting features is publicly available [27]. The 

formalization of the model repair problem in Section 2 

identified several artifacts whose features characterize each 

particular approach. The research questions aim precisely to 

explore alternative instantiations to these artifacts in the 

existing literature.  

 

RQ1 What are the domain spaces on which approaches act, 

and how is the user able to customize them?  

RQ2 What kind of constraints are supported by the 

approaches, and how are they specified?  

RQ3 What kind of information regarding the user updates is 

expected from the approaches?  

RQ4 What is the role of the checking procedure in the 

overall process, and what kind of information is reported?  

RQ5 What is the overall behavior of the repair procedure, 

and what is the shape of the generated repair updates? 

RQ5.1 How can the user affect the behavior of the 

approaches and how are the alternative repair updates 

reported?  

RQ5.2 What kind of semantic properties are guaranteed by 

the approaches?  

 

        Concretely, RQ1 refers to the specification of domain 

space M, RQ2 to the universe of constraints C and RQ3 to 

the universe of user updates U. RQ4 addresses how the 

checking procedure CHECK relates with the repair 

procedure and the shape of the reports I.      RQ5 refers to 

behavior of the repair procedure REPAIR and the universe 

of repair updates R. Due to the importance of this 

procedure, we detail two further questions, regarding the 

interaction of the user with the repair procedure (RQ5.1) 

and the semantic properties guaranteed by the procedures 

(RQ5.2). The resulting taxonomy for model repair 

approaches is organized under these 5 main branches, 

arising from the research questions and addressing different 

artifacts. We opted to present the resulting taxonomy as 

feature models. These are typically represented 

diagrammatically, following the notation from Table 1. A 

child feature may only be selected by an approach if its 

parent is also selected. Children features may either be 

mandatory (if the parent feature is selected, so must be the 

child), optional (if the parent feature is selected, the child 

may or not be selected) or arranged in or groups (if the 

parent is selected, at least one feature of the group must be 

selected) or xor groups (if the parent feature is selected, 

exactly one feature of the group must be selected). Every 

feature model has a root feature that is always present in 

every configuration, and may contain reference features 

which simply point to other feature models. Finally, feature 

models may also be annotated with requires and excludes 

constraints that allow the enforcement of cross-tree 

dependencies. 

        The top-level feature model is depicted in Fig. 7, with 

Repair Technique as its root, and a mandatory child feature 

for every main classification facet, referencing a separate 

and detailed feature model, which are explored in the 

succeeding sections. This division is purely for aesthetic 

purposes, and the various trees could be composed into a 

single one by connecting the reference features with the 

roots of the matching diagrams. 

TABLE I: Feature Model Definition 

 
 

 
Fig. 7. Model repair features. 

B. Domain 

     These features address the model domain space M of the 

technique, i.e., which model instances the technique is able 

to handle, as well as whether the user is able to customize 

such space (RQ1). The alternatives are explored below and 
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depicted in the diagram from Fig. 8, referenced from the 

main diagram from Fig. 7. 

Formalism: Apart from early human-centered approaches, 

that do not propose automated systems to manage 

consistency and consider informally defined artifacts, 

procedures CHECK and REPAIR are designed to handle 

model instancesm from M represented using particular 

formalisms. The detected formalisms include logical 

representations in some abstract formal specification 

language [7], [9], [11], [37], [38], [39], [40], [41], [42], 

[43], tree-like data structures [44], [45], [46], [47], [48], 

object-oriented specifications [10], [13], [14], [15], [49], 

[50], [51], [52], [53], [54], [55], [56], [57], [58], [59], 

support for relational data structures [20], [28], [60], [61] or 

graphs [12], [62], [63], [64], [65], [66], [67], [68], [69], 

[70], [71], [72], [73], [74], [75], [76], [77], [78], [79]. These 

features are organized in a xor-group since our study 

showed that the selection of the formalism is exclusive. 

     The chosen formalism is tightly connected with the kind 

of properties that the technique is able to check. For 

instance, reachability properties are more easily handled in 

relational or graph data structures. However, the reason 

behind the choice of formalism tends to be ability to use 

previously developed techniques in the model repair 

approach. This is patent in the fact that most techniques 

based on graph formalism are built over Triple Graph 

Grammars (TGG) [80] techniques, or that those based on 

logical formalisms rely on well-defined search procedures 

to deploy the repair procedure. Note that, although related, 

this feature is not directly restricted by the technical space 

on which model instances are designed (Section 3.2.3), 

which can be internally converted to the underlying 

formalism by the modeling framework. For instance, 

techniques acting upon the MDA technical space embed 

UML models into relational or graph structures. 

Nonetheless, formalisms not closely related to the technical 

space may be loose relevant information regarding the 

application domain, which may be preserved by those over 

an object-oriented formalism, for instance. 

Meta-model Independent: Model repair approaches may 

aim to be independent of the application domain. Such 

meta-model independent techniques may optionally provide 

the users with mechanisms to define the well-formedness 

rules of the model instances i.e., the domain space M. This 

task may be delegated to different agents of the MDE 

process. For instance, in the View Points framework [81] 

there are two well-defined roles: the designer of the 

viewpoint, that defines the meta model, the constraints and 

the repair plans, and the owner of the viewpoint, that 

manages the view according to the designer’s rules. Meta-

model independent techniques are more customizable and 

have wider applicability than those whose metamodel is 

fixed. Techniques with fixed meta-models are designed to 

act on specific domains, like those proposed to manage the 

consistency of specific UML diagrams. While with more 

limited applicability, knowing the shape of the model 

instances a priori may allow the technique to have 

improved effectiveness and efficiency. Moreover, meta-

model independent techniques are necessarily more 

laborious to the user, as not only must the meta-model be 

defined, but also any constraint that is to be checked over 

the models, since there cannot be hard-coded constraints for 

undefined meta-models (Section 3.3.1). 

Technical Space: This feature defines the technical space 

in which the user is expected to specify the various artifacts 

of the MDE development environment. These may be built 

around standard languages/architectures like XML or EMF 

or other specific to the proposed technique. The analyzed 

studies show that this is an exclusive group of features. The 

selection technical space defines the concrete model syntax 

that the technique is able to process, like XML, XMI, UML, 

or a technique-specific language. These concrete model 

instances are translated by the technique into their 

representation in the underlying formalism (Section 3.2.1). 

For meta-model independent techniques, this feature also 

specifies the meta-modeling language through which the 

user should specify the meta-models. Under MDA, these 

are expected to follow the MOF [83] standard, and those 

under EMF, Ecore1. Again, techniques may not support 

standard  

 
Fig. 8. Domain features. 

meta-modeling languages, and require the user to define 

them through technique-specific mechanisms. If the user is 

allowed to define or customize constraints (Section 3.3.1), 

this feature defines the language in which he is able to do 

so. Typically this amounts to some version of MDA’s OCL, 

that is also used in EMF, or it can be designed specifically 

for the technique. In techniques with support for inter-

model constraints (Section 3.3.2), standard languages 

include MDA’s QVT [31]. The use of standardized 

technical spaces is essential if the model repair technique is 

to be integrated into the regular MDE development process. 

Techniques using specific languages are usually prototype 

tools that rely on a manual translation of the model 

instances. 

Bounded: Techniques may assume a bounded universe of 

model elements, so that the repair procedure can be more 

manageable [13], [20], [28], [39], [42], [60], [61]2. Such is 

the case of techniques that do not allow the creation of new 

elements, and thus are inherently bounded by the elements 

present in the current inconsistent state. Some techniques 

impose a bounded universe in order to avoid handling 

possible negative side effects that may arise when of new 

elements are created. As an alternative, many repair 

techniques opt to create instead abstract elements, that are 

to be instantiated by the user a posteriori (Section 3.6.2). In 

others, the bounded universe is imposed by the underlying 

procedure, like those relying on bounded solvers. This 

process can however be opaque to the user, by iteratively 

introducing new model elements in the universe as the 

process executes. 

Multi-Model: Model repair techniques may optionally be 

designed with particular concerns regarding inter-model 

consistency and provide dedicated support for multi-model 
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scenarios. In such cases, each state m 2 M is comprised by a 

tuple of model instances (m1; : : : ;mk). Such is the case of 

techniques that were developed to manage consistency in 

development environments with multiple views, for model 

synchronization and bidirectional and multidirectional 

transformations. In contrast, techniques may be defined to 

manage the internal consistency of a single model, in which 

case a statem consists of a single model instance m. Multi-

model approaches focus on handling inter-model 

constraints (Section 3.3.2), which usually take different 

shapes than those used for intra-model consistency 

(Section3.3.3). As a consequence, such approaches often 

disregard the internal consistency of the individual model 

instances, possibly leading to overall inconsistent states. 

Multi-model techniques may impose restrictions on the 

supported user updates (controlled update, below). 

Moreover, the model instances affected by the generated 

repair updates may also be restricted or customizable by the 

user (Section 3.7.2). Bidirectional transformations are a 

typical example of such techniques, where user updates are 

restricted to a source model instance, and the generated 

repair updates restricted to a target model instance. 

      Techniques without dedicated multi-model support may 

still handle coexisting models by merging the various 

model instances (and associated meta-models) into a 

―dummy‖ model conforming to a single meta-model, and 

expressing their seemingly inter-model constraints as that 

metamodel’s intra-model constraints (Section 3.3.2). 

Specifying inter-model consistency as an internal constraint 

may however prove to be more cumbersome. This is 

common in techniques that manage the consistency 

between different UML diagrams, since they share the same 

meta-model, as in the example from Section 2.1. In our 

taxonomy, such domain spaces are not considered multi-

model (nor their constraints inter-model). Techniques 

without native support for multi-model domain spaces may 

simulate the controlled repair updates provided by multi-

model techniques through distinguished constraints 

(Section 3.3.1) – by temporarily introducing a constraint 

that restricts the state of one of the model instances – or by 

assigning higher weights to certain model instances 

(Section 3.7.2) – promoting updates over the other model 

instances – if these features are supported. Since multi-

model techniques are quite common, we identified two 

additional optional features that such techniques may 

employ. 

Controlled Update: Approaches with support for multiple 

models may optionally force the user to update the model 

instances in a controlled manner, typically only allowing 

updates over a single model instance so that the update 

propagation to the others is more easily managed. This is 

common in bidirectional transformation or incremental 

transformation techniques, where the repair updates are 

themselves focused on a single model: allowing concurrent 

updates could lead to conflicts that could not be resolved. 

Such techniques are less suitable for distributed and 

heterogeneous MDE development environments, since the 

different stakeholders are expected to update the various 

model instances concurrently. 

Pairwise: Multi-model techniques may optionally focus on 

pairwise consistency management, since managing the 

consistency between only two model instances is more 

manageable. Such is the case of bidirectional 

transformation techniques or those built over TGGs. 

Pairwise consistency management is sometimes employed 

in environments with multiple models by only addressing 

the consistency between pairs of model instances at a time, 

in order to simplify the problem. Although this renders the 

problem more manageable, not every constraint between 

multiple models can be decomposed into a set of binary 

constraints [60]. 

C. Constraint 

      These features address the expressiveness imposed by 

the constraint universe C and how the constraints c are 

drawn from C in the modeling framework (RQ2), the 

former entailing the class of problems that may be 

addressed by the technique and the latter its general 

applicability. These design choices are explored below and 

depicted in Fig. 9, which is referenced from the main 

diagram from Fig. 7. For techniques with decoupled 

checking procedures (Section 3.5.1), these features are 

assumed to regard those of the associated checker, if 

identified by the authors. 

Specification: Similar to the meta-model (Section 3.2.2), 

techniques may either have the set of constraints c hard-

coded or provide the user with mechanisms to define or 

customize them. Techniques may even provide a set of 

predefined constraints but allow the user to extend them or 

restrict them. As a consequence, we identify these two 

features as an or-group, since their selection is not 

exclusive. Likewise the meta-model, many modeling 

frameworks delegate such tasks to a repair administrator, 

rendering the process opaque to the software designer. 

Techniques that do not allow the user to define the 

constraints have limited applicability since they cannot be 

easily adapted to different application domains. There are 

typically paired with fixed meta-model techniques, where 

both the meta-model and the constraints are fixed a priori 

(techniques for managing consistency of UML diagrams 

being the classical example). Nonetheless, techniques with 

fixed meta-model may still allow the user to define the 

constraints. Meta-model independent techniques, however, 

may not have hard-coded constraints (as imposed by the 

excludes clause in the diagram). 

       Our study also identified two additional optional 

features that may be enforced by the model repair 

techniques in order to ease the generation of repair updates, 

as presented below. 

Repair Hints: The model repair procedure may optionally 

expect each constraint to be accompanied with repair hints 

on how to generate the repair updates when violations to 

that constraint are detected. This contrasts with techniques 

where the repair procedures automatically derive the repair 

updates from the constraints. The extreme case occurs in 

rule-based approaches (Section 3.6.1) where the repair 

procedure expects effective resolution rules for the 

violations. The definition of repair hints is often a laborious 

and error-prone activity that does not provide totality or 

correctness guarantees, since the user may not be aware of 

the possible side effects of the defined hints. Nonetheless, it 

is also the most direct mechanism through which the user 

may control the behavior of the repair procedure, one that is 

tightly coupled with the definition of the constraint. Repair 

hints do not necessarily reduce the enumeration of repair 
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updates to a single alternative (Section 3.7.1), since the 

technique may allow multiple repair hints to be defined for 

each constraint. 

Distinguished: Techniques may optionally support the 

definition of distinguished constraints that instruct the 

repair procedure to focus them in detriment of the 

remainder constraints of the environment. As an example, 

some techniques allow the user to focus on intra-model 

constraints and instruct the repair procedure to temporarily 

disregard the inter-model constraints. Distinguished 

constraints usually give rise to composite inconsistency 

reports (Section 3.5.3), independently checking the 

distinguished constraint holds and the remainder constraints 

of the environment. We purposely identify this feature as 

distinct from the prioritization of constraints (Section 

3.7.2). Granted, the two features are somehow related, and 

constraint prioritization could, to a degree, simulate the 

behavior of distinguished constraints. However, even with 

different priorities the repair procedure could still consider 

every constraint and 

their interaction. In contrast, distinguished constraints are 

effectively treated differently, and the procedure may, for 

instance, focus on certain constraints while discarding the 

others, or consider them for side effects only. This is 

particularly patent in the violation selection feature 

presented below. Incremental techniques (Section 3.6.1), 

which rely on information from the previous executions, 

may not be able to support this kind of constraints. 

      The most common occurrence of distinguished 

constraints arises in techniques that allow the user to select 

a specific violation to be handled. Violation selection is 

only available in techniques whose checking procedure 

reports at least the set of detected violations (Section 3.5.3), 

as made explicit in the diagram. In such cases, the 

composite report typically assesses whether the selected 

violation was effectively removed, and the impact of that 

repair update on the other constraints of the environment. 

Since typical  

 
Fig. 9. Constraint features. 

constraint languages like OCL do not allow the 

specification of constraints at the model level, violation 

selection is performed through mechanisms internal to the 

technique. This kind of approaches may be more scalable 

than those attempting to handle all inconsistencies at once 

by following a spirit of toleration. Rule-based approaches 

typically handle a single violation at a time, since the 

resolution rules are usually defined per constraint. They 

also provide a direct mechanism through which the user 

may affect the behavior of the repair procedure. However, 

they may also be oblivious of possible negative side effects, 

which may undermine the correctness of the procedure. 

Kind: General-purpose model repair techniques act on 

intra-model constraints, interpreting the environment as a 

single model restricted by internal constraints. Nonetheless, 

techniques that support multimodel domain spaces (Section 

3.2.5) typically support the definition of inter-model 

constraints that define the relationship between two or more 

models. While some of these focus on inter-model 

consistency and disregard the intramodel constraints, some 

approaches do consider both kinds of constraints. For that 

reason this feature is presented as an or-group. The shape of 

the constraints (Section 3.3.3) is related but not exactly 

defined by this feature. In fact, both logical constraints and 

pattern matching can be used to define both intra- and inter-

model constraints. Other shapes (traceability links, 

consistency relations and transformations) are however 

restricted to inter-model constraints. This dependency is 

made explicit in the diagram. For approaches supporting 

both kinds of constraints, their shape may not be identical. 

       The impact of supporting inter-model constraints is 

similar to the one of supporting multi-model domain spaces 

natively (Section 3.2.5). Although the definition of this kind 

of constraints is simplified, techniques with support for 

them will often disregard intra-consistency constraints, 

undermining the overall consistency of the environment. 

Inter-model constraints can usually be simulated through 

inter-model constrains, assuming a ―dummy‖ meta-model 

composed of the individual meta-models. In this way the 

techniques would handle both intra- and inter-model 

constraints, but the definition of the latter would be more 

laborious to the user. 

Shape: This feature determines the shape of the constraints 

supported by the model repair approach. The feature is 

encoded as an or-group since approaches may support more 

than one shape of constraints, particularly when they 

support both intra- and inter-model constraints (Section 

3.3.2). For hard-coded constraints (Section 3.3.1) it may not 

be possible to determine the shape of the constraints from 

the primary studies alone. Note that approaches 

implementing the same features may still be able to address 

different classes of problems, since they may support 

constraints of varied expressiveness. Constraints are most 

commonly defined as logical predicates. The 

expressiveness of such constraints is typically that of 

firstorder logic, although they may be extended with other 

operators like transitive closure to allow the specification of 

reachability properties. These may also be used to define 

inter-model consistency, assuming they are able to refer to 

elements from different models. 

       Approaches built over graph data structures are often 

based on pattern matching, most of the times enhanced with 

negative application conditions (NACs). Pattern matching 

is well-suited to specify structural properties but not 

behavioral ones. Thus, to improve its expressiveness, some 

approaches allow the patterns to be attached with additional 

attribute constraints or imperative code snippets. 

Techniques with dedicated support for inter-model 

consistency may rely on the definition of traceability links 

that connect elements from different model instances. 

Constraints or patterns may then be defined over the 

traceability links that denote the notion of inter-model 

consistency (like TGGs), although some techniques assume 

fixed constraints over these links. The traceability links 



www.ijcrt.org                            © 2018 IJCRT | Volume 6, Issue 1 February 2018 | ISSN: 2320-2882 
 

IJCRT1801538 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 840 

 

may either be explicitly defined by the user – by manually 

indicating which elements correspond to each other – or be 

implicitly introduced either by the repair rules or by 

calculation. The expressiveness of such techniques depends 

on the ability to define properties over traceability links, 

like constrains restricting their multiplicity. Inter-model 

consistency without traceability links is commonly defined 

through consistency relations, declarative predicates that 

define which sets of model instances are considered to be 

consistent with each other [28], [47], [49], [51], [55], [59], 

[60], [73]. Finally, some frameworks assume a notion of 

consistency that is implicitly defined by a transformation 

[38], [48], [57], [59], [78]. This is typical in multi-view 

frameworks with a reference model, from which each view 

is calculated through transformation. In such cases the 

model repair procedure addresses the view-update problem 

[84], and usually relies on the bidirectionalization of the 

transformation language. 

       The concrete syntax of the constraints is heavily 

dependent on the chosen technical space (Section 3.2.3). 

Logical constraints are commonly defined using some 

variant of OCL [30] standardized in MDA. Since using 

OCL to define inter-model constraints may be cumbersome, 

extensions that natively support multi-model domain spaces 

are also used, like Epsilon3 from the EMF. The QVT 

Relations [31] from MDA is a standardized language for 

the definition of consistency relations between multiple 

model instances. Techniques relying on transformations to 

define the notion of consistency may also support standard 

transformation languages, like ATL4 from EMF. Often 

however, techniques rely on internal formalisms to define 

the constraints. In approaches requiring repair hints 

(Section 3.3.1) or rule-based approaches (Section 3.6.1), the 

constraints may need to be appended with additional 

information. In fact, in some rule-based approaches the 

notion of constraint is itself embedded in the definition of 

the repair rule (as a precondition for its application). In such 

cases it may not even be possible to check the consistency 

of constraints prior to deploying the repair procedure 

(Section 3.5.2). 

D. Update 

       These feature address the universe of the user updates 

U (RQ3), which essentially defines what information is 

available to the model repair procedures regarding the 

evolution of the models from the previous known state to 

the current one. These are summarized in Fig. 10, which is 

referenced from the diagram from Fig. 7. 

Update Representation: The simplest approach to the user 

update facet is to be purely state-based, where the repair 

procedure simply considers the post-state of the user update 

(i.e., the current state of the model instances), in which case 

user updates from U simply amount to model instances m. 

 
Fig.10. Update features. 

     The main advantage of state-based techniques is that the 

modeling framework may be decoupled from the model 

repair techniques. Since the performed user actions must 

not be recorded, the model repair procedure needs only be 

deployed using the current state of the environment 

whenever the stakeholders wish to ameliorate the 

consistency level. The trade-off is reduced accuracy when 

compared with delta-based operations (Section 3.4.2 

below). Moreover, they may prove to be less useful to the 

user because, by being oblivious to the user’s action, repair 

procedures may simply propose the undoing of those 

actions. We assume that an approach is delta-based if it 

considers any information regarding the user’s actions. As 

such, deltabased approaches with information regarding the 

current state of the environment are not considered state-

based (ergo the exclusive selection of these two features). 

Delta-based: In contrast to state-based approaches, delta-

based approaches require information regarding the 

user actions that led to the current state of the environment. 

These techniques are able to more easily identify 

problematic portions of the model, but require the online 

tracking of the user’s actions. This requires a dedicated 

modeling framework, which may not be possible in 

heterogeneous and distributed development environments. 

They may also improve the overall efficiency of the 

technique, as they allow the identification of which 

constraints need be reassessed after the user update. 

Nonetheless, delta-based approaches major benefit lies in 

their ability to produce more predictable repair updates. By 

having extra knowledge regarding the user actions, 

techniques may are more accurate in the generation of 

repair updates (being able, for instance, to distinguish 

between modifications and removal/insertion of elements, 

which 

may be impossible in the state-based setting). We identified 

two main alternative techniques to record delta-based user 

updates. Some techniques consider a frame condition 

associated with the current state of the environment that 

indicates the portion of the model instances that was 

effectively modified by the user, allowing the procedure to 

diagnose inconsistencies more effectively. Alternatively, 

techniques may require the exact sequence of edit 

operations that led to the current state of the environment. 

Within these, the granularity of the individual actions may 

range from atomic to complex operations. 

       Techniques with edit sequences as user updates may 

not even have access to the current state of the 

environment, mapping the user actions into repair actions 
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directly. However, this is not necessarily the case, and 

approaches with delta-based user updates may generate 

state-based repair updates (Section 3.6.2), and vice-versa. 

Extra Information: Both state- or delta-based may be 

optionally provided with extra information regarding the 

evolution of the environment. Some are provided with the 

pre-state of the environment as additional information (i.e., 

the state m0 prior to the user update) in order to more 

effectively determine the impact of user updates. State-

based techniques may attempt to derive deltabased 

artifacts by comparing the pre- and post-state of the 

environment, in order to deploy delta-based procedures. 

However, there is no guarantee that the result will mirror 

the effectively applied user actions. Delta-based approaches 

with frame conditions may rely on the pre-state to 

determine elements that may have been deleted in the 

current state. Other approaches consider the complete 

history of the evolution of the model instances, in which 

case the repair procedure can access not only the most 

recent user update, but also the complete historic. In state-

based approaches this amounts to a sequence of states, 

while in delta-based approaches this historic logs the user’s 

actions. The selection of this feature is independent from 

the selection of the pre-state because delta-based 

approaches may record a history of edit operations without 

storing any state. Techniques may allow the user to control 

the repair procedure by rely on meta-data recorded in these 

logs (Section 3.7.2), like authoring and versioning 

information. 

E. Check 

      Check features regard the model repair technique’s 

reliance on the checking procedure CHECK and the 

information contained in the inconsistency reports I (RQ4). 

These design options are depicted in the diagram from Fig. 

11, referenced from the one in Fig. 7. Since consistency 

checking is not the focus of this study, these features focus 

mainly on classifying relationship between the checking 

and repair procedures. 

Decoupled: Model repair techniques may optionally be 

decoupled from the consistency checking procedure. Such 

techniques may rely on external tools to detect violations to 

the constraints. Coupled procedures in contrast use the 

checking procedure as a fundamental piece in the repair 

procedure – sometimes in ways opaque to the user. Earlier 

techniques rely on the manual identification of the 

violations by the users of the techniques, 

 
Fig. 11. Check features. 

which we interpret as a special kind of decoupled checking 

procedures [44], [56]. Although this feature allows the 

repair procedure to be extensible by deploying state-of-the-

art checking procedures, coupled checking procedures 

typically result in more efficient techniques, since the repair 

procedure can exploit the potential of the checking 

procedure. Decoupled checking procedures usually report 

structured information, like goals or violations (Section 

3.5.3), that can then be processed by the repair procedure. A 

typical example occurs in some rule-based approaches 

(Section 3.6.1) that employ two classes of rules: check 

rules, that detect the violations and introduce some token 

identifying the violation, and repair rules, that detect such 

tokens and act upon the violation. Another instance of a 

decoupled procedure occurs in search-based approaches 

(Section 3.6.1), where the checking procedure detects a set 

of elements suspected to cause the inconsistency, which the 

repair procedure tries to remove from the model instances. 

      In decoupled approaches the checking procedure must 

somehow pass the detected information to the model repair 

procedure. In our scheme, this is performed through 

distinguished constraints (Section 3.3.1), as made explicit in 

the diagram. Although this feature is related to the ability to 

perform checkonly executions (Section 3.5.2 below), we 

shall see that there is not an explicit dependency between 

the two. 

Check Only: Although not directly related to the problem 

of model repair, it is important for the modeling framework 

to provide the user with information regarding the 

inconsistency level of the environment prior to the 

deployment of model repair procedures. Thus, standards 

like QVT enforce both repair and checkonly modes. In 

techniques that allow the selection of the violation to be 

handled (Section 3.3.1) such functionality is fundamental to 

allow the user to inspect the detected violations. This 

feature is optional as some approaches do not have a proper 

checkonly mode. For instance, in some rule-based 

approaches (Section 3.6.1) the constraint may be simply 

defined as the pre-condition of the resolution rule. The 

notion of coupled checking procedure (Section 3.5.1) is 

distinct from this feature, although the two are related. The 

best way to envision their relationship is through the 3 

classes of rule-based approaches (Section 3.6.1) detected 

during our study. In the simplest class techniques employ 

repair rules only – the checking procedure is coupled to 

these rules as a pre-condition and cannot be run in 

checkonly mode. In the second class, techniques employ 

both check and repair rules, but these act independently of 

each other – thus the checking procedure is still coupled to 

the repair rules as a pre-condition, but the approach 

supports checkonly mode. 

     In the last class techniques emply both check and repair 

rules, but the latter only act on tokens introduced by the 

former when violations are detected – thus they are 

decoupled and also support checkonly mode. It seems 

however improbable that decoupled approaches do not 

provide a checkonly mode, thus we enforce that 

dependency in the diagram. 

Reporting: This group feature classifies the information 

reported by the checking procedure about the detected 

inconsistencies, i.e., the universe of inconsistency reports I. 

Techniques may just expect a basic Boolean [20], [28], 



www.ijcrt.org                            © 2018 IJCRT | Volume 6, Issue 1 February 2018 | ISSN: 2320-2882 
 

IJCRT1801538 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 842 

 

[37], [48], [55], [58], [59], [60], [78] procedure that simply 

reports whether inconsistencies were found. This is typical 

for solver-based approaches (Section 3.6.1). Techniques 

may instead expect to know the number of violations 

occurring in the current state [70]. Most commonly, the 

checking procedure returns a set of violations detected in 

the model instances. The information contained in each 

violations varies, commonly containing information 

regarding which constraint is being broken and the model 

elements involved. Techniques may also report a goal that 

must be achieved by the repair procedure [9], [42]. These 

may be comprised by a formula that is suspected to have 

rendered a constraint false – which the repair procedure 

must make true – or simply contain information regarding 

elements suspect of causing the inconsistency – that must 

be removed – or missing model elements – that must be 

created. For some techniques with coupled checking 

procedures (Section 3.5.1) it may not be clear what the 

checking procedure reports. Such is the case of approaches 

where user updates are simply mapped into repair updates. 

Having information about individual violations allows the 

user to selectively apply repair updates (Section 3.3.1), 

unlike with less expressive reports. This is an explicit 

dependency between the features. 

      Since the behavior of the partial order v over 

inconsistency levels I is dependent on the information 

contained in these reports, this feature is tightly connected 

with the correctness criteria that the repair technique may 

be expected to follow (Section 3.8.2). In most cases, there is 

a single sensible partial order. In boolean reports, this is 

simply defined as  

 

just enforcing that a consistent state does not regress into an 

inconsistent one, with the least element ?I = True. With 

numerical reports, the partial order takes the shape 

 

where _ is the standard order over naturals, stating that the 

number of inconsistencies at least does not increase, with ?I 

= 0. For the list of violations, it simply takes the shape i v i0 

_ i _ i0 meaning that no new violations are introduced, with 

?I =fg, the empty set of violations. Goal reports may vary in 

shape and content, thus the partial order will vary from 

approach to approach. Generally, model repair techniques 

expect a single kind of inconsistency reports from the 

checking procedure. However, this group feature is encoded 

as an or-group due to the possibility of composite reports 

with heterogeneous information, as explained below. 

Composite: The checking procedure may optionally report 

a composite inconsistency level. These emerge from 

distinguished constraints (Section 3.3.1), which are 

independently checked by the procedure. Typical this 

occurs when the approach supports violation selection, 

where inconsistency levels I take the shape I1 _ I2, a pair 

whose first element states whether the selected violation 

was removed, and the second element provides information 

regarding the remainder environment constraints, allowing 

the user to be aware of possible side effects. Approaches 

with distinguished classes of constraints (like intra- and 

inter-model constraints) also result in composite reports. In 

these composite reports there is more than a single sensible 

partial order over each shape of I. Our study identified three 

kinds of expected behavior in these cases. If both 

components are deemed equally important, the partial order 

takes the shape of the product order: 

 
meaning that the inconsistency level is improved if either of 

the components is. The least element of this partial ordered 

set is simply (?I1 ;?I2 ). Under violation selection this 

partial order is not very useful since it would allow the 

removal of the selected violation or any of the others. A 

partial order that prioritizes the amelioration of the first 

component is the lexicographic order, under which 

improvements to the firstcomponent allow arbitrary updates 

on the second one: 

 
        In such case, the least element is still (?I1 ;?I2 ). Under 

violation selection this order allows the remainder 

violations to deteriorate, allowing negative side effects, 

when removing the selected one. Alternatively, techniques 

may prioritize the improvement of the first component but 

disallow damage to the second one. Under violation 

selection, such partial orders represent techniques that 

forbid negative side effects: the selected violation should be 

removed but avoiding the introduction of new ones in the 

process. The information reported for the distinguished 

constraint and the remainder constraints needs not be equal. 

For instance, some approaches are only concerned with not 

increasing the number of violations caused by the 

remainder constraints (even if they are not exactly the same 

occurring in the initial state). This is the reason why the 

reporting feature above is set as an or-group, and not as an 

exclusive selection. 

F. Repair 

      These features, depicted in Fig. 12 which is referenced 

from Fig. 7, classify the overall behavior of the model 

repair procedure REPAIR, as well as the universe of repair 

updates R (RQ5), which are at the core of the model repair 

approach. Due to their relevancy, the enumeration of the 

repair updates to the user (RQ5.1) and the functional 

semantics guaranteed by the approach (RQ5.2) are explored 

separately in Sections 3.7 and 3.8, respectively. 

Core: This feature classifies the engine underlying the 

repair generation procedure. Rule-based techniques rely on 

a set of previously defined rules that are applied whenever 

an inconsistency is detected. While providing full control 

over the resolution of inconsistencies, it puts the weight on 

the designer that must specify how constraints are fixed. 

Moreover, having a fixed set of resolution rules greatly 

reduces the flexibility of the technique. Generative 

approaches derive their transformation rules from 

production rules that define what is a well-formed model. 

The classical example of such approaches are those based 

on graph grammars, where the repair rules are derived from 

the grammar productions. In contrast, syntactic techniques 

automatically derive repair plans by syntactic analysis of 

the constraints [10], [15], [45], [47], [48], [51], [55], [57], 

[58], [78]. Typically, these repair plans are calculated at 

static-time and then instantiated to concrete model instances 

at run-time when an inconsistency is found. While these 

techniques may be able to generate repair updates without 

user input, the number of generated plans may become 
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overwhelming for the user to choose from. Syntactic 

techniques are also not well suited to deal with multiple 

inconsistencies, nor inconsistencies that affect a large 

portion of the model. 

       Search-based approaches interpret model repair as a 

model search problem [9], [20], [28], [37], [38], [39], [40], 

[41], [42], [60], [61], [70]. These are able to automatically 

find fully consistent models (Section 3.8.2), but suffer from 

scalability issues. Moreover, they are well-suited to fix 

inconsistencies that affect a large portion of the model, like 

reachability properties. Some approaches rely on off-the-

shelf solvers to search for consistent states [20], [28], [37], 

[41], [60], [61]. These solvers are oblivious of the 

application domain, and may produce unpredictable 

solutions. In contrast, other techniques rely on domain-

specific search procedures that rely on domain-specific 

knowledge, like heuristics and the available edit operations, 

that allow a finer control on the generation of repair updates 

[9], [38], [39], [40], [42], [70]. Some hybrid techniques are 

are built over more than one of these features. Such is the 

case of rule-based approaches that rely on search-based 

techniques to calculate repair plans from those rules. Thus, 

the selection of features from this group is not exclusive. 

Some earlier approaches are humancentric, relying on the 

user to manually flag inconsistencies and propose repair 

updates, focusing on the negotiation and education between 

different stakeholders [11], [44], [46], 

[49], [50], [56], [67], [82]. As expected, such approaches 

provide little semantic guarantees (Section 3.8). 

       The selection of this feature directly or indirectly 

affects most of the remainder features of the model repair 

approach. That impact is explored in the presentation of the 

features throughout Section 3. Incremental: Approaches 

may optionally be incremental and reuse data from previous 

checking or repair executions, improving efficiency and 

localization of inconsistencies [10], [13], [37], [38], [42], 

[49], [54], [55], [63], [64], [65], [66], [68], [69], [71], [72], 

[73], [74], [75], [76], [77]. Such techniques are typically 

deployed in an online setting so that the required 

information is preserved between executions. Thus, they are 

also typically delta-based (Section 3.4.2) so that this 

information is more easily managed. Incrementality can be 

essential to preserve the consistency of the environment – 

as in the case of approaches that rely on implicit inter-

model traceability links calculated in previous executions – 

or simply a mechanism to improve efficiency – by storing 

the instantiations of the constraints so that inconsistencies 

can be more efficiently checked and repaired. Frameworks 

that record the whole evolution history of the model 

instances (Section 3.4.2) may also be seen as incremental 

since this history may be used to guide the generation of 

repair updates. 

Repair Representation: This feature regards the actual 

information contained in the repair updates R returned by 

the repair procedure. We identified two exclusive features 

in this group. Those with state-based repair updates simply 

return the newly generated model instances. In such cases, a 

repair update r 2 R simply amounts to new model 

instancesm 2M. Other procedures 

are operation-based, returning instead information 

regarding how the model instances should be changed in 

order to ameliorate the consistency level. The shape of 

repair update r 2 R in such cases varies, as presented below. 

Note that the information contained of repair updates r 2 R 

is not necessarily the same as the one of user updates u 2 U 

(Section 3.4). For instance, it is common for model repair 

approaches to consider state-based user updates but 

generate operation-based repair updates. 

Operation-based: In operation-based approaches, a repair 

update proposed to the user may take the shape of a repair 

action, consisting of an atomic edit operation or of a repair 

plan, built from the sequential composition of valid edit 

operations [9], [10], [15], [38], [39], [40], [42], [45], [47], 

[55], [63], [65], [66], [68], [70], [71], [72], [74], [76], [77]. 

The set 

 
Fig. 12. Repair features. 

of valid edit operations that comprise these repair updates 

is defined elsewhere (Section 3.6.3). This notion is different 

from that of multiple repair update alternatives (Section 

3.7.1): in a repair plan the multiple actions aim to solve the 

same inconsistency, while the multiple enumeration of 

repair updates may represent alternative solutions to the 

same inconsistency (which may themselves be repair 

plans). 

Content: The repair updates are also classified by their 

content. In this context, they may either be concrete, in 

which case they can be directly applied to the environment 

or abstract, requiring input from the user to be instantiated. 

Most model repair procedure generate concrete repair 

updates when possible, and only occasionally abstract ones. 

Thus, the selection of these features is not exclusive. 

Abstract repair updates may occur when the update requires 

a parameter that the model repair procedure is not able (or 

was not designed) to provide, relying instead on the user to 

define it. A typical example occurs when the technique 

identifies that the value of a property must be changed, but 

does not commit to a concrete new value. This kind of 

procedure may undermine the correctness of the procedure 

(Section 3.8.2) since the user may fail to handle the 

inconsistency or introduce new ones (which may be 

common as the complexity of the modeling environment 

increases).     Our study show that both abstract and 

concrete repair updates may be used in both state-based and 

operations based repair updates. 

Edit Operations: This feature regards the set of edit 

operations available to the repair procedure to calculate the 

repair update alternatives. For state-based repair updates 

(Section 3.6.2), and typically in those solver-based (Section 

3.6.1), this set may be undefined, since the repair procedure 

simply searches for consistent model instances [37], [44], 

[59], [61], [78]. In rule-based approaches, this set amounts 

to the repair rules defined in the framework. In contrast, in 

syntactic and other search-based approaches, this amounts 

to the set of operations available to the procedure when 
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traversing the constraints or searching for solutions. These 

usually amount simply to creation, modification and 

deletion operations, although our study shows that some do 

not allow the creation of elements. Although in many 

techniques this set of valid edit operations is fixed  the user 

may also be allowed to customize it, either by being able to 

define the set of valid edit operations or by disabling some 

of those predefined . This is typical in rule-based 

approaches and some syntactic approaches that generate the 

repair updates for each constraint at static-time. Techniques 

with a well-defined set of edit operations may also allow 

the user to assign them different costs, controlling the repair 

update generation in the process (Section 3.7.2), and even 

disable certain operations by assigning them high enough 

costs. While techniques may use this set of edit operations 

to return operation-based repair updates (Section 3.6.2) to 

the user, this is not necessarily the case. For instance, 

techniques may internally rely on a fixed set of edit 

operations but still present state-based repair updates. In 

operation-based repair updates these can be returned as 

atomic repair actions or composed into repair plans.  

G. Enumeration 

        This feature group defines the mechanism through 

which repair updates R are selected and presented to the 

user by the repair procedure REPAIR, as well how this 

mechanism can be controlled (RQ5.1). These features are 

presented in Fig. 13, which is referenced by the general 

repair diagram in Fig. 12. 

Output: Since the number of possible repair updates may 

be overwhelming, to be manageable techniques usually 

restrict themselves to a subset of the acceptable updates. 

This may still amount to multiple repair alternatives 

although some are able to select single repair updates. This 

feature selection is exclusive. Our studies show that single 

repair updates can be returned by repair procedures 

following any of the core mechanisms (Section 3.6.1) and 

repair update representation (Section 3.6.2). The means 

through which these repair updates are selected may or not 

have been influenced by the user, as will be shown below. 

 
Fig. 13. Repair update enumeration features. 

Complete: Techniques that return multiple repair updates 

are said to be complete if they return every possible repair 

update within the parameters of the execution (i.e., the 

bounds of the search space, the allowed edit operations and 

any restriction imposed by the enforced semantic 

properties) [9], [10], [15], [20], [28], [37], [41], [45], [70]. 

Techniques that are not complete may discard interesting 

repair update alternatives or fail to handle certain 

inconsistencies. Again, this feature does not seem to be 

directly dependent on the selected core mechanism (Section 

3.6.1): search-based approaches can search the whole 

search space, rule-based approaches may attempt to match 

ever every acceptable rule, and syntactic approaches may 

generate every possible alternative as the constraints are 

traversed. 

Order: The set of the returned repair updates (Section 

3.7.1), as well as the order in which they are enumerated, 

must be somehow selected by the repair procedures from 

the set of acceptable ones. This order is always defined, and 

can be embodied by a distance metric _ : U _U ! N over 

updates which the procedure tries to minimize. In 

procedures that return a single repair update, this order 

determines which repair will be selected; in procedures that 

return multiple repair update alternatives, it determines the 

set of selected repair updates as well as the order in which 

they are enumerated. While related to least-change (Section 

3.8.4), techniques with ordered repair enumeration that are 

not complete (Section 3.7.1) are not necessarily 

leastchange, as the minimal repair update among the 

selected ones may not be the minimal repair update overall. 

Such order may be internally defined and opaque to the 

user, which may render the procedure unpredictable. This 

kind of approaches include search-based procedures 

returning an arbitrary repair update, e.g., the first found, or 

rule based approaches that provide no control on how the 

rule application is selected, e.g., using some internal priory 

order over rules that is hidden from the user (Section 3.6.1). 

Some frameworks try to circumvent the unpredictability 

problem arising from opaque orders by providing the 

complete enumeration of repair alternatives (Section 3.7.1). 

Other approaches have this order on repair updates 

predefined, rendering the technique more predictable. 

Typically fixed metrics include the graph-edit distance, that 

counts insertions and removals of model elements, and 

operation-based distances, that count the number of edit 

steps between two models, given a set of valid edit 

operations (Section 3.6.3). 

Parameterizable: Approaches with the enumeration order 

either opaque or predefined may allow users to 

parameterize the distance function _, thus enabling them to 

control the behavior of the repair procedure. For instance, 

under graph-edit distance, this can be achieved by assigning 

different weights to different parts of the meta-model [9], 

[41]. This allows the user to prioritize repair updates over 

certain types of model elements over others. Alternatively, 

the weights may be assigned directly to the model elements, 

prioritizing changes over concrete parts of the model 

instances. An extreme form of this feature is in area 

selection, in techniques that allow the user to freeze 

portions of the model instances (as in bidirectional 

transformation where one of the model instances remains 

unchanged). Instead of focusing on the models, the user 

may instead be allowed to control the application of the edit 

operations that comprise the repair updates (if these are 

well-defined (Section 3.6.3), as imposed by the excludes 

expression in the diagram) by attaching them with costs [9], 

[15], [41], [70]. Users may also be able to assign different 

priorities to the defined constraints, instructing the repair 



www.ijcrt.org                            © 2018 IJCRT | Volume 6, Issue 1 February 2018 | ISSN: 2320-2882 
 

IJCRT1801538 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 845 

 

procedure to focus on different classes of violations 

[52],[74].  

     Finally, our study also found an approach where the user 

is able to control the procedure by relying on some 

additional meta-data from the environment, like authoring 

and versioning information [9]. Although in general this 

parametrization effectively affects the behavior of the repair 

procedure, some approaches use such features to simply 

provide the user with additional information regarding the 

impact of each possible repair update. Such weights can 

also be used by the checking procedure to return more 

informative reports. Interactive: Techniques may rely on an 

interactive dialog with the user to refine the set of possible 

repair updates [51], [53], [62], [64], [71], [73], [77]. Most 

of the times the goal of the process is to select a single 

repair updates from the set of those available. This feature 

contrasts with the generation of abstract repair updates 

(Section 3.6.2), where instead of an interactive dialog, the 

procedure generates repair updates that must be instantiated 

by the user posteriorly. 

 
Fig. 14. Repair semantics features. 

H. Semantics 

        This feature group explores the semantic properties 

that the repair procedure REPAIR is guaranteed to follow 

(RQ5.2), which are depicted in Fig. 14, referenced by the 

general repair diagram in Fig. 12. These properties may be 

difficult to assess, especially if dependent on user input, 

like in interactive approaches. Thus, in our study we 

followed a conservative approach and only assumed 

properties explicitly referred to by the authors of the 

primary studies. Although our formalization of the semantic 

properties of the model repair procedure is novel, they are 

inspired by those proposed for constraint maintainers in the 

context of bidirectional transformation [85]. 

Totality: A technique is said to be total if for every user 

update that results in an inconsistent state, it is able to 

produce a repair update (if there is one such repair update 

available for the current model instances). This property 

can be formalized, for a set of constraints c and an update u, 

as follows: 

 

 
meaning that, if there is an update u0 from the current state 

that reduces the level of inconsistency, then the repair 

procedure will always return a repair update alternative. We 

assume that if the updates do not preserve the information 

regarding the pre-state, then pre(u0) = post(u) always holds. 

The most simple instantiation of this rule occurs in purely 

state-based approaches for both user (Section 3.4.1) and 

repair updates (Section 3.6.2) with a boolean checking 

procedure (Section 3.5.3). For a model m, it takes the 

shape: 

 

 
meaning that, if there exists a model that is consistent under 

c, the repair procedure will return a model. Search-based 

techniques (Section 3.6.1) are usually total, as they simply 

search for consistent model instances (although some do 

interrupt the procedure after certain thresholds). Rule-based 

techniques with only repair rules are naturally total, as they 

act on the inconsistencies as they are detected; rule-based 

techniques with both check and repair rules are total is there 

is at least a repair rule for each check rule. Syntactic 

techniques that focus on single violations at a time are 

typically total, while those that consider every 

inconsistency at once may encounter conflicts and fail to 

produce a repair update. Approaches 

with need for repair hints (Section 3.3.1) or user interaction 

(Section 3.7.2) may fail if the user-defined resolutions do 

not restore consistency. 

Correctness: Since the goal of repair procedures is to 

remove inconsistencies from the environment’s state, they 

must provide some correctness guarantees. In fact, we have 

already defined model repair (Def. 2) under the assumption 

this notion can be formalized by a partial order v over 

inconsistency levels I. Thus, the correctness of the model 

repair procedure is always measured in relation to that v. 

However, as seen in Section 3.5.3, although for simple 

reports the shape of I entails the partial order, for composite 

reports that is not the case. Thus, there is the need to infer 

which is the expected behavior of the technique from the 

description of the technique. 

Well-behaved: A model repair procedure is said to be well-

behaved if the inconsistency level at least does not increase 

whenever one of these repair updates is applied i.e., 

 
      This is the minimal correctness behavior expected from 

a repair procedure. For instance, in boolean procedures, this 

means not turning completely consistent environments into 

inconsistent ones; in those reporting the detected violations 

this forces procedures to not introduce new violations 

unless some those already detected were removed. In 

procedures with violation selection, this usually amounts to 

not introducing new violations if the selected one fails to be 

repaired. Consistency Improving: Procedures that guarantee 

consistency improving effectively ameliorate the state of 

the environment, reducing its inconsistency level (unless it 

is already at a minimum inconsistency level). For a set of 

constraints c and update u, this property can be specified as: 

 
        Consistency improving procedures are always well 

behaved. If there is a single minimal inconsistency level ?I, 

then it can be simplified as: 

 
      Under boolean checking procedures this property 

degenerates into fully consistent procedures, defined below. 

Under more expressive checking procedures, like those 

reporting a set of violations, this behavior may occur in 
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techniques that attempt to fix violations until a certain 

threshold is reached. Under distinguished constraints 

(Section 3.3.1) this is common in techniques that are only 

concerned with a certain class of constraints (e.g., 

techniques dedicated to handle inter-model constraints may 

disregard intra-model constraints), or those supporting 

violation selection that effectively remove that violation 

(and may or not avoid side effects on the remainder 

violations). 

Fully Consistent: Procedures are said to be fully consistent 

if they guarantee that the inconsistency level is always 

reduced to a minimum i.e., for every update u and set of 

constraints c: 

 
      Fully consistent procedures are always consistency 

improving. In case there is a least element ?I in the 

inconsistency level, the law degenerates into 

 
      The impact of this property depends on the minimal 

elements of the partially ordered set I. For instance, under 

boolean checking procedures, this amounts to setting the 

result to true, while under procedures that return a set of 

violations, this amount to fixing every violation (including 

possible negative side effects). This is the typical behavior 

of search-based approaches, that resolve all consistencies at 

the same time. In techniques with violation selection, this 

would entail fixing not only the selected violation, but also 

every other one identified, which would be against their 

essence. Note that the definition of correctness is 

orthogonal to totality: procedures that fail to produce repair 

updates do not break correctness. In fact, some techniques 

enforce correctness by simply failing if generated repair 

update fails to ameliorate the consistency level. Fully 

consistent procedures are not necessarily desirable, as the 

model may need to undergo inconsistent states before fully 

recovering consistency [7]. 

Stability: A repair procedure is said to be stable if for every 

update that does not result in an inconsistent state, it returns 

null repair updates. For a user update u and constraints c, 

this property can be formulated as: 

 
      In purely state-based approaches with boolean checking 

procedures, this degenerates into the following property, for 

a model m: 

 
      Rule-based techniques are naturally stable, as the repair 

rules are not applied unless inconsistencies are detected. 

Techniques are not stable if they apply update procedures 

regardless of the models being consistent. This is the case 

of approaches that simply map edit operations from the user 

updates into operations in the repair update. 

Least-change: The principle of least-change requires 

repaired models to be as close as possible to the original, 

according to the defined order on updates _ : U _ U ! N ( 

Section 3.7.2) [9], [15], [20], [28], [41], [47], [60]. Thus, 

this order order may not be opaque, as is made explicit by 

the excludes expression in the diagram, and is possibly 

customized by the user (Section 3.7.2). This renders the 

approach more predictable to the designer since the set of 

selected repair updates is well-defined. However, while 

most approaches informally and loosely approximate this 

intuition using ad hoc or heuristic mechanisms, providing 

least-change guarantees is a complex task. In general, this 

technique is formalized as follows, for an update u and 

constraints c: 

 
      Meaning that, compared with the repair updates that are 

equally consistent, the returned repair updates are closer to 

the current state of the environment. In purely state-based 

approaches, this degenerates into the following property, 

for a model m and constraints c: 

 
      If the identity of indiscernibles holds for the distance 

function (_(m;m0) = 0 _ m = m0), then least-change entails 

stability. Otherwise there are minimal updates other than 

the null update. 

I. Threats to Validity 

       The scope of the search was restricted to general-

purpose software engineering venues. As a consequence, 

certain studies that were developed under specific 

application domains, but with possible general application, 

could have been disregarded. Our pilot searches did not 

identify any such study, since for every technique that was 

disregarded we found an extended or adapted to general 

purpose techniques that were published in the venues within 

our scope. Some features not explicitly covered by the 

authors of the primary studies may have been missed during 

data extraction and synthesis. The iterative nature of the 

coding process somehow tames this issue, since features 

detected in succeeding primary studies trigger a new 

revision of the previous studies focused on those newly 

identified features. The major facet disregarded in the study 

regards the deployment of the identified approaches. While 

these are undoubtedly relevant, our pilot searches suggested 

that most studies do not address the deployment of the 

techniques, and those that do usually do not provide 

sufficient information in the paper. Thus, rather than having 

an underexplored facet, we chose to disregard deployment 

altogether (other than the technical space of the techniques, 

which is usually evident in the presentation). 

IV. CLASSIFYING TECHNIQUES 

      In the previous section we presented the taxonomy 

developed from the systematic literature review. In this 

section we classify a set of distinct model repair approaches 

under this taxonomy as a proof of concept [9], [10], [28]. 

We selected these approaches because i) they are recent 

approaches, based on modern, state-of-the-art techniques; 

ii) the primary studies presenting them were detailed 

enough to allow us classify with confidence most of the 

facets; and iii) they follow different core approaches, 

resulting in a varied selection of features. The goal is to 
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demonstrate that classifying techniques through our 

taxonomy helps in obtaining structured and thorough 

descriptions which allow a better understanding and clear 

comparison of different approaches. Since some features 

may be difficult to assess for the primary studies (due to 

lack of information or ambiguity) our classification is 

conservative. The resulting classification is summarized in 

Tables 2 and 3 and discussed in the remainder of this 

section. Each of the columns represents a second-level 

feature. If that feature is optional, it is identified whether it 

was (Y) or not (N) selected by the approach; if the feature is 

mandatory, its selection is omitted. Every optional children 

feature of those second level features selected by the 

approaches is also identified in that column. 

      To better illustrate the differences between the 

techniques, as well as the impact of the feature selection, 

we design a simple running example on which they are 

applied. Since we could not access the implementations of 

all these approaches, in order to define our profiles and 

infer actual repair updates, we resorted to the explicit 

information available in the literature and to our 

understanding of the techniques after a thorough study. The 

example (borrowed from [9]) represents a more developed 

version of the VOD system and is composed by the class 

and sequence diagrams shown in Figs. 15a and 15b, 

respectively. The class diagram captures the structure of the 

system, while the sequence diagram describes the steps 

required in the process of playing a movie. Recalling 

constraint message_operation from Section 2.1, in order for 

this model to be consistent, for every message in the 

sequence diagram, there must exist an operation in the class 

of the receiver lifeline, whose name equals that of the 

message. Since there is no operation play in class Streamer, 

and display d sends message play to streamer st, this model 

is inconsistent. We only consider this single constraint in 

isolation, the repair space not being subject to any other 

restrictions, for instance related to some state diagram or to 

the associations between classes. 

 

A. The Badger Approach 

     Badger [9] is a regression planner, implemented in 

Prolog, that generates repair plans for handling design 

model inconsistencies by applying the artificial intelligence 

technique of automated planning [86]. This technique aims 

to generate sequences of actions that lead from an initial 

state to a state meeting a specific predefined goal. 

Requiring as input a model and a set of inconsistencies, 

Badger performs a regression planning by starting from the 

negation of these 

 

Fig. 15. Simple VOD system. 

inconsistencies as the goal state, and searching backwards 

to find a sequence of actions that reach the initial state. 

Badger is based on a logical formalism, as model instances 

and meta-models are represented by logic facts, specified in 

a Prolog embedded Domain Specific Language (eDSL). 

The technique provides rules for defining metamodel 

elements, their properties and relationships, thus being 

meta-model independent. However, by having the Prolog 

eDSL as its technical space (other) and not providing any 

automated mechanism for the embedding of model 

instances nor meta-models persisted in standard languages, 

its integration into the MDE development process would 

not be seamless.  

      This contrasts with both Model/Analyzer and Echo, 

which are deployed under standard technical spaces. 

Constraints are also user definable in the eDSL as intra-

model logical constraints expressed in first-order logic with 

transitive closure. Since these constraints are defined in the 

same technical space as the model instances and 

metamodels, rather than being attached to the meta-model, 

they may refer to concrete model elements. In Badger, 

model instances and user updates are indistinguishable 

since they are not represented by the elements they contain, 

but rather by sequences of edit operations. The entire 

history record is kept (and also each pre-state), with 

authorship and versioning information attached to each edit 

step. This provides the repair procedure with rich 

information that is not available to those of Model/Analyzer 

nor Echo. For detecting inconsistencies, Badger relies on a 

decoupled checking procedure proposed in [87], which 

returns modellevel predicates corresponding to existing 

inconsistencies. These predicates are then negated and set 

as the goal of repair procedure. Prolog’s built-in 

backtracking mechanism allows Badger to generate 

multiple repair plans, each one consisting of a set of repair 

actions that render the goal true.  

       The core of the procedure is a domain-specific planner 

based on a recursive best-first search (RBFS) algorithm. 

Although this is an improvement of the well-known A* 

algorithm, which is known to be complete, it is not clear in 

the paper whether Badger provides a complete enumeration 

of plans or not. Badger has a fixed set of edit operations for 

creating and 

TABLE II: Classification Of The Selected Techniques 

For The Domain, Constraint And Update Facets 

 
 

TABLE III: Classification Of The Selected Techniques 

For The Check And Repair Facets 
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deleting objects, as well as for creating, modifying and 

deleting properties or references on those objects. A benefit 

of using a search-based core is that the repair procedure 

enumerates the repair plans under a parameterizable order, 

which the user can control by tweaking the cost function 

used by the planner algorithm. For instance, the metric can 

be parameterized by assigning costs to edit operations, or 

weights to meta-model and model elements. Area selection 

and operation disabling can be achieved by assigning 

infinite costs. Since the whole history is recorded, costs 

over metadata 

such as authors and versions can also be assigned. This 

contrasts with Model/Analyzer, that does not allow such 

customization, and with Echo, that allows the user to 

customize the edit operations (which are fixed in Badger).  

        In order to avoid the multiplication of repair plans, for 

modifying references only (other operations are concrete), 

Badger resorts to temporary (abstract) elements which the 

user must replace by concrete ones when effectively 

applying the repair plan. As a consequence, repair updates 

cannot be automatically applied to the model instances, in 

contrast to fully concrete repair updates like those of Echo. 

Concerning semantics, Badger applies a consistency 

improving procedure as it generates plans transforming the 

erroneous model instance into one which does not have the 

detected violation (negated in the desired goal). However, 

by focusing in a single violation, it is not fully consistent, 

since other violations may be introduced by the repair plans 

(i.e., it is prone to negative side effects). Finally, the 

solution function used by Badger, which verifies whether 

there are no more unsatisfied literals in the desired goal, 

should ensure the stability of the procedure. 

        By default, the repair plans generated by Badger are 

ordered in terms of the number of actions they contain. For 

the defined example, the following eight plans to remove 

the violation are generated [9]: 

 modify reference target of message play 

 set property name of message play to stream 

 set property name of operation stream to play 

 set property name of message play to wait 

 set property name of operation wait to play 

 set property name of message play to connect 

 set property name of operation connect to play 

 delete message play and its references source and 

target 

     The parametrizable order results in alternative cost 

functions, which change the order in which repair plans are 

generated (disabling some if infinite costs are assigned). 

For instance, if one were to set a higher priority to the 

sequence diagram by assigning smaller costs to actions that 

create, modify or delete an element belonging to it – 

allowed by the operation costs feature – the order in which 

these plans would be generated becomes 1, 2, 4, 6, 8, 3, 5 

and 7. Although most generated repair plans are concrete, 

the first one, which suggests modifying reference target of 

message play, is an example of an abstract repair update. It 

avoids enumerating every lifeline, requiring the user to 

choose one when applying the repair plan. This renders the 

procedure more manageable by the user, at the cost of full 

automation. Despite removing previously detected 

inconsistencies, Badger is not free from negative side 

effects. This is depicted in plan 7, which removes the 

violation for message play but introduces another violation 

of the same type for message connect. This is characteristic 

of consistency improving approaches with a loose order 

over the inconsistency levels, that guarantee the repair of 

the selected violation but disregard possible side effects. 

Considering the abstract syntax presented in its paper for 

the class and sequence diagrams, as well as all the types of 

repair actions supported by Badger, the enumeration of the 

repair plans does not seem to be complete. For instance, 

adding the missing operation to class Streamer or 

modifying reference class of st, would 

also be valid repair plans but are not generated.  

B. The Model/Analyzer Approach 

      Model/Analyzer [10], [88] is a tool which follows an 

incremental approach to model repair, mainly focusing on 

efficiency. Using the syntactic structure of constraints, it 

determines which specific parts of a model must be checked 

and repaired. To achieve this, a form of profiling is used to 

dynamically observe constraint instances5 during 

evaluation in order to identify what model elements they 

must assess [89]. Building upon this tracking mechanism, 

once a constraint instance is evaluated, the tool is able to 

generate a corresponding tree of repair actions. 

Model/Analyzer is built over an object-oriented formalism 

and, even though the underlying repair technique is in 

theory applicable to any kind of models, the tool is 

implemented for UML (MDA) diagrams only, not 

providing any meta-modeling functionalities. This contrasts 

with Echo, which allows users to define meta-models 

through a standard language. Badger also allows the user to 

define the meta-models, but using an internal language. In 

the shape of intra-model logical rules, constraints are user 

definable by means of a generic language, called abstract 

rule language (ARL), to which it is possible to map 

arbitrary constraint languages, such as OCL. Once 

evaluated, the user is expected to select a specific violation 

to be fixed, instead of handling all inconsistencies at once. 

For each instance of each constraint, a consistency tree 

following its syntactic structure is kept in memory and 

dynamically evaluated in response to identified model 

updates (delta-based). When an element changes due to a 

modification in the model, every constraint instance having 

that element in its evaluation scope is notified.  

       This works as a frame condition indicating the portion 

of the state that was effectively changed. Thus, unlike Echo 

and Badger, this tool is able to effectively detect elements 

that may cause violations. This checking procedure is 

tightly coupled to the repair mechanism. In fact, it is the 

core of the technique, the repair procedure being built over 

it, and thus can be naturally run in checkonly mode. A 

violation is reported for each constraint instance that 

evaluates to false, an evaluated tree being returned. Since 
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the involved model elements are localized through their 

leaves, one is able to understand where and why they failed. 

The repair procedure is based on the comparison of the 

expected truth value of each consistency tree node, derived 

from its parent (ultimately, that of the root being true), with 

its actual observed valuation. Wherever these values differ, 

a corresponding repair node is generated accordingly to the 

type of consistency node (logical operator) and observed 

valuations. Since there may be more than a way to modify 

the valuation of a logical operator, alternative repair plans 

are returned for each violation, consisting of sequences of 

abstract and fixed edit operations (element creation, 

deletion, and modification). This results in repair plans 

which also follow the syntactic structure of the design 

constraint and represent enumerations of multiple repair 

plans. These abstract plans contrast with those generated by 

Badger, which are possibly concrete.  

        The order in which the repair alternatives are 

enumerated is not well-defined and opaque to the user, in 

contrast with Badger and Echo. As a consequence, it is also 

not parameterizable by the user. The approach is 

incremental because once an update is performed, only 

those trees (and tree branches in particular) are evaluated 

which are affected by that particular change. Regarding 

semantics, the repair procedure is consistency improving 

because it is guaranteed to remove the violations/ trees 

selected by the user. Yet, similarly to Badger, it is not fully 

consistent because its goal is to remove only the selected 

violation. However, it still provides stronger guarantees 

than Badger since it checks for possible negative side 

effects (i.e., it considers a stronger partial order on 

inconsistency levels). Besides easily ensuring totality, this 

approach is also stable, as the repair update generation only 

occurs if the truth value of the consistency tree is false. For 

the defined example, Model/Analyzer is expected to 

produce seven alternative repair plans, each consisting of a 

single repair action. Here we present the repair tree 

flattened into a set of alternative repair plans6. Note that, 

unlike the list of repair plans generated by Badger, here the 

alternative plans are not ordered in any way clear to the 

user (i.e., this internal order is opaque):  

 modify reference target of message play 

 modify reference target: class of message play 

 add operation to target: class: operations of 

message play 

 modify property name of message play 

 modify property name of operation stream 

 modify property name of operation wait 

 modify property name of operation connect 

       Repair plans are generated either to fix the ranges of 

the quantifiers, or their predicates. In the former case, a 

repair action is suggested for each property referenced on 

the range’s expression, while in the latter case, a repair 

subtree is calculated for each element contained in that 

range. For message play in particular, the top three plans fix 

the range of the existential quantifier, while the other four 

fix its predicate. Note that modifying the class of the 

receiving lifeline, as well as adding an operation to its 

current class (respectively the second and third plan) are 

two particular repair updates missing in Badger’s repair 

plans. However, compared with that previous technique, 

this approach is instead missing the possibility of deleting 

message play itself. In fact, we did not find any information 

about how Model/Analyzer handles additions and removals 

of context elements, so the repair update enumeration might 

not be complete. Unlike Badger, where a plan may suggest 

a concrete value to be assigned to some property, here all 

repair actions are abstract. For instance, the action 

suggesting to add an operation does not state whether this 

should be created anew or should come from another class, 

nor any suggestion to modify a name reveals what value 

should be used.  

        As a given tree is seen in isolation, one repair plan 

may render (once instantiated) another tree inconsistent 

(negative side effect). For instance, as Badger also suggests, 

modifying property name of operation connect (last plan) 

can only make message play consistent, if it also makes 

message connect inconsistent. Nevertheless, the authors 

stress that such potential side effects are detectable by 

checking whether a repair action of a repair tree references 

a model element belonging to the validation scope of other 

trees. In this sense, although the technique is still 

consistency improving (not every violation is removed), the 

order imposed over inconsistency levels is stronger than 

that of Badger. 

C. The Echo Approach 

       Echo is a tool for consistency management based on 

the relational model finder Alloy [90], developed on top of 

the popular EMF. While initially built as a bidirectional 

model transformation framework [28], it eventually evolved 

to also handle intra-model consistency [91] and 

multidirectional transformation [60]. Thus, Echo is able to 

check and repair both inter- and intra-model consistency. 

Since Echo’s kernel is the Alloy model finder, it is based on 

a relational formalism. Both model instances – following 

the standard structured language XMI – and meta-models – 

defined in EMF’s Ecore meta-modeling language – are 

processed into this formalism, rendering the technique 

metamodel independent. Moreover, Echo has support for 

multimodel 

environments, so multiple Ecore meta-models may 

beprovided. Although its core engine is bounded, the repair 

procedure, presented below, guarantees that this feature is 

hidden from the user. Constraints are user definable, either 

through the embedding of OCL intra-model logical 

constraints as meta-model annotations, or through QVT-R 

specifications, a declarative language designed to specify 

intermodal consistency relations between related models. It 

also has support for the bidirectionalization of ATL 

transformations. 

     All these types of constraints are expressed in first-order 

logic with transitive closure, and are also embedded into the 

Alloy core. Echo is state-based since it simply considers the 

post-state resulting from a user update. While this allows 

the technique to be run offline – since it does not need to 

record the user’s actions – it will render the technique less 

accurate than Model/Analyzer or Badger which take them 

into consideration. This also requires the procedure to 

check the consistency of the whole model instance at every 

execution. The checking procedure is coupled to Echo and 

can be run in checkonly mode: once model instances, meta-

models and the constraints are embedded into Alloy, its 

model checking capabilities are used to check the 

consistency of the environment. Thus, the checking 

procedure is essentially boolean. As a consequence, the user 

is not provided with much information regarding what 
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caused the inconsistencies, unlike for instance 

Model/Analyzer that reports violations. However, intra- and 

inter-model constraints are distinguished, with Echo testing 

them independently, resulting in a composite checking 

report. The core of the repair procedure is similar to that of 

the checking, but relying instead on Alloy’s model finding 

capabilities, that relies on off-the-shelf SAT solvers. Thus it 

is state-based, automatically calculates new model instances 

that satisfy the constraints. Being built over model finding, 

the procedure is naturally complete, enumerating multiple 

model instances.  

       Despite being state-based, the user is able to customize 

the set of allowed edit operations that give rise to the 

generated instances, thus controlling their generation. 

Nonetheless, detecting what was effectively affected by the 

repair update may not be trivial, unlike in Model/Analyzer 

and Badger that calculate repair plans. However, contrary to 

those approaches, Echo’s repair updates are always 

concrete, which the tool converts into well-formed model 

instances. When acting on multiple models, Echo allows the 

user to select which of the model instances are to be 

affected by the repair updates (area selection). The tool 

follows the principle of least-change, which is achieved by 

instructing the model finder to iteratively search for model 

instances at an increasing distance. Two predefined metrics 

are supported by Echo: graph-edit distance, that counts 

insertions and removals of atomic model entities, or an 

operation-based distance that counts the number of user-

defined edit operations applied. The latter is controlled 

through the definition of the valid edit operations by the 

user. This contrasts with Badger, that allows the 

customization of the distance metric by assigning different 

weights to a fixed set of operations or model elements. 

Finally, due to its core based on model finding, this 

technique is naturally total, fully consistent and stable. This 

correctness guarantee is stronger than those of Badger and 

Model/Analyzer, that focus on removing a single violation. 

The trade off is performance, since this procedure does not 

scale for large model instances. 

       Regarding our example, it was encoded in Echo as an 

intra-model consistency problem to be compared with the 

other approaches, although the constraints could have 

defined as inter-model. Since Echo’s repair updates are 

state based, new model instances are returned, rather than 

repair actions or plans. One of the consequences of this 

feature is that the user is not directly aware of the 

performed updates. Fig. 16 shows the repair update 

alternatives for this problem that are closest to the original 

model instance – due to the least-change property – under 

regular graphedit distance, a predefined enumeration order. 

For model instances at the same distance from the 

inconsistent model, the order in which they are returned is 

arbitrary. Note that only fully consistent model instances 

are returned (e.g., no alternative renames operation connect, 

as it is being referred by another message), thus its 

characterization as fully consistent. The creation of a new 

operation and the deletion of the message are not among 

this initial set of alternatives, because they are not at 

minimal distance from the initial model instance.  

          Nevertheless, once the minimal ones are enumerated, 

Echo starts producing the next closest ones, which would 

include those repair update alternatives, resulting in a 

complete procedure. Note that renaming the connect 

operation to play and changing the class of the st lifeline, 

although embodying minimal updates, are not produced by 

Echo, since they create negative side effects and would 

render the environment inconsistent. The order of the 

returned solutions can be parameterizable by defining the 

set valid edit operations (through OCL pre- and post-

conditions) and enforcing the operation based distance. For 

instance, defining only operations to rename or delete 

messages, Echo would only return the model instances from 

Figs. 16a, 16b and 16c, and one where the message is 

deleted. 

V. CONCLUSION 

        Inconsistency handling methods are vital to any 

software development process within the increasingly 

adopted MDE context. In this paper we propose a novel 

feature-based classification system for such techniques, that 

emerged from an exhaustive and systematic review of the 

diverse landscape of model repair, with the goal of allowing 

researchers and practitioners from different disciplines to 

properly locate and compare their work in a unifying 

framework. Supported by an underlying formalization of 

the problem of model repair, this taxonomy comprises five 

major classification facets, organized as hierarchical models 

that entail acceptable feature combinations. These facets 

address the shape of the relevant artifacts we set out to 

explore in this study, as well as the role of the user in 

specifying and customizing them. Despite the heterogeneity 

of the landscape of model repair approaches, the proposed 

classification is exhaustive and sufficiently flexible to 

classify existing approaches regarding these facets. The 

main relevant facet left out of the study regards the 

deployment of the techniques. We chose not to address such 

features due to the lack of information regarding the 

effective implementation of the approaches detected during 

the pilot searches. 

      The exhaustive classification of the primary studies 

selected in the literature review, published online [27], 

provides a snapshot of the current state-of-the-art of model 

repair approaches. Hopefully this can aid researchers and 

tool developers in identifying interesting feature 

combinations hitherto unexplored. For instance, each core 

mechanism of the repair procedures has pros and cons, but 

they are usually selected exclusively. Could hybrid 

approaches draw benefits from the various mechanisms? In 

any case, answering such questions would require the 

collection of additional information, like the approaches’ 

performance and scalability, which is outside the scope of 

this study. A quick glance at the table in [27] also shows 

that most techniques do not provide guarantees regarding 

the functional semantics of the model repair procedures. 

This fact, allied to the lack of information regarding the 

deployment of the techniques, indicates that perhaps the 

area has yet to reach the desirable level of maturity. We 

plan to keep this table up-to-date by rigorously reviewing 

new techniques as they are proposed, refining the taxonomy 

in the process with new methodologies if required, thus 

ensuring that it remains applicable and complete. We 

thoroughly classify and explore three modern approaches 

to model repair under the proposed taxonomy, obtaining 

normative profiles which assist in understanding the 

techniques, and, since drawn from a common view point, 

make similarities and differences more obvious. The 
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techniques are compared and the impact of feature selection 

is demonstrated by applying these techniques to a simple 

example. Although this comparison did not address every 

identified feature, we believe that the selected approaches 

are indicative of their respective classes and provide an 

overview of typical feature combinations. This, allied to the 

presentation and discussion of the various features as they 

are presented throughout the paper, should help MDE 

practitioners perform more informed decisions when 

selecting the model repair approach most suitable for their 

particular needs. 
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