
www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 February 2018 | ISSN: 2320-2882

IJCRT1801538 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 831

New Strategies to Resolve Inconsistencies

Between Models of Decoupled Tools

 B.Prashanth Kumar
1
, Dr.PrasanthYalla

2

Abstract-Consistency management, the ability to detect,

diagnose and handle inconsistencies, is crucial during the

development process in Model-driven Engineering (MDE).

As the popularity and application scenarios of MDE

expanded, a variety of different techniques were proposed

to address these tasks in specific contexts. Of the various

stages of consistency management, this work

Focuses on inconsistency handling in MDE, particularly in

model repair techniques. This paper proposes a feature-

based classification system for model repair techniques,

based on a systematic literature review of the area. We

expect this work to assist developers and researchers from

different disciplines in comparing their work under a

unifying framework, and aid MDE practitioners in selecting

suitable model repair approaches.

Key Words: Model-driven Engineering, Consistency

Management, Inconsistency Handling, Model Repair.

I. INTRODUCTION

 Model-driven Engineering (MDE) is a family of

development processes that focus on models as the primary

development artifact. As models are modified by

Different stakeholders, in a possibly distributed and

heterogeneous context, the consistency of the overall MDE

environment must be constantly monitored and managed.

Therefore, consistency management [1], [2] – which

involves various activities concerned with the detection,

diagnosis, handling and tracking of inconsistencies – is

essential to MDE. Such activities are not only fundamental

to manage intra- and inter-model consistency as models

naturally evolve, but also in more specific activities, like

meta-model and constraint evolution [3], model refactoring

[4], variability modeling [5] or version merging [6].

A. Model Repair

 Inconsistencies may arise due to mistakes or

imprudent decisions as the developers apply changes to the

models, but their impact may not be immediately

perceptible, especially considering the complexity of the

MDE development environment. Inconsistencies may also

reflect conflicting or alternative interpretations of the

requirements, or uncertainty and partial knowledge [7].

Thus, development frameworks should not forbid the

introduction of inconsistencies altogether, but instead

tolerate them, while still providing support for their

detection [8]. Notwithstanding, as the development

progresses and conflicting interpretations converge, so are

the models expected to evolve to a consistent version,

And thus inconsistencies must eventually be handled [2].

To be manageable, these tasks must be supported by

automated techniques that help the user decide how to

restore the consistency of the environment. A common

solution, addressed in this study, is to rely on techniques

that propose update actions that repair the models

themselves, in order to ameliorate the consistency level of

the MDE environment. One of the main challenges in

model repair is that for any given set of inconsistencies,

there (possibly) exist an overwhelming number of updates

that resolve them.

 Yet, since the selection of the most suitable repair

update is ultimately a choice of the developer, approaches

to model repair must balance the level of automation of the

process with the need for user guidance in the generation of

the alternative solutions. Some authors [9] advocate the use

of heuristics to tackle the presence of a large search space,

the need for algorithms with a low computational

complexity, and the absence of known optimal solutions.

Others [10] advocate against fully automatic approaches

that replace the role of the human designer in repairing

models. According to the latter, repairing models should be

an activity that goes hand in hand with the creative process

of modeling.

B. Need for a Unifying Taxonomy

 The variety of contexts in which consistency

management is necessary gave rise to an equally disparate

terminology. As a clear example, techniques addressing

seemingly interchangeable problems identify themselves

varyingly as handling [11], resolving [12], fixing [13] or

repairing [14] inconsistencies, among others. Moreover, to

render these tasks more manageable, a variety of techniques

have been developed that assume a more controlled

environment with more concrete goals, including change

propagation [15], model synchronization [16], bidirectional

model transformation

[17], [18], incremental model transformation [19] or model

finding [20], each with particular terminology. Thus, there

is the need for a unifying taxonomy that allows

practitioners to properly compare their work with that

arising from different disciplines. To be rigorous and

exhaustive, such classification scheme must necessarily

emerge from a systematic review of the literature relevant

to the model repair problem [21]. Yet, to the best of our

knowledge, the most rigorous study to date on consistency

management, including inconsistency handling, is still the

survey by Spanoudakis and Zisman [2], which, based on

previous definitions from [1] and [22], surveyed and

analyzed existing approaches at the time. A more recent

classification of model repair techniques is presented in

[23], addressing the flexibility, usability and extensibility of

the approaches. However not every facet of the model

repair problem is addressed, like the behavior of the repair

procedure or the different mechanisms through which the

user can control it. Moreover, its development was not

based on a systematic review of the state-of-the-art.

Classification schemes have been proposed for related areas

like model transformation [24], model synchronization [16]

and bidirectional transformation [25]. While some facets of

model repair overlap with facets from those disciplines,

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 February 2018 | ISSN: 2320-2882

IJCRT1801538 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 832

there are various topics that are specific to the former and

that are not addressed by those studies.

C. Goals and Contributions

 Motivated by the heterogeneity of approaches to model

repair, this paper explores this landscape and proposes a

structured taxonomy for their classification, based on a

systematic literature review of the area. We adopt the term

of model repair as the focus of the study because we feel

that it best defines the topic which we aim to address:

techniques that handle inconsistency by acting upon

software models. Here we assume a broad definition of

model, encompassing any artifact that abstracts certain

portions of a software system. This excludes from the study

the detection of the inconsistencies and their causes,

techniques that avoid the introduction of inconsistencies by

enforcing consistent states and techniques that handle

inconsistencies by updating artifacts other than the models

(e.g., the meta-models and associated constraints).

Following other successful classification schemes of MDE

techniques (e.g., [24] for model transformation), we present

our classification alternatives as feature models [26],

diagrams developed with the goal of modeling alternative

configurations in software product lines. This allows the

presentation of the identified characteristics in a structured

and formal way, rendering their dependencies explicit. This

unifying taxonomy is the main contribution of this paper,

which will allow researchers and tool developers to

properly locate novel approaches in the context of the state-

of-the-art of the area. As a secondary contribution we

provide the exhaustive classification of the studies collected

during the literature review under this taxonomy [27]. We

expect that this will aid researchers in identifying gaps in

the field by detecting under-explored features or feature

combinations representing potentially interesting

approaches.

 Lastly, we present a detailed classification and

comparison of three modern approaches to model repair to

demonstrate the impact of the feature selection. Hopefully

this will provide software engineering practitioners with

some insight when choosing a model repair approach for

their particular application domain. This remainder of paper

is structured as follows. Section 2 starts by presenting and

formalizing the model repair problem, in order to clarify the

artifacts that are to be classified by the taxonomy. Section 3

presents the resulting feature-based taxonomy under which

model repair techniques can be classified, as well as an

overview of the

Fig. 1. Simplified meta-model for class and sequence

diagrams.

Methodology employed to select the primary studies and

extract from them the selected features. This methodology

is further detailed in the Appendix. This taxonomy is used

in Section 4 to classify and compare three modern

techniques. Lastly, Section 5 draws conclusions and final

remarks.

II. MODEL REPAIR

 This section presents and formalizes the problem of

model repair, the target of this study. The scheme allows us

to concretely identify the artifacts that are to be classified

by each facet of the taxonomy.

A. Overview

 To provide an overview of the model repair problem

and illustrate the vastness of features that model repair

techniques may implement, this section introduces a couple

of examples, inspired by state-of-the-art approaches to the

problem [9], [10], [28]. While many approaches to model

repair are designed to focus on particular classes of models

(e.g., UML diagrams [29]), most modern approaches are

meta-model independent: they allow the designers to

restrict the model domain space on which they act,

improving their versatility. This is achieved by defining

well-formedness rules using meta-modeling languages

provided by popular modeling

Frame works like OMG’s Model-driven Architecture

(MDA) or the Eclipse Modeling Framework (EMF). Fig. 1

depicts one such meta-model, for designing very simplified

versions of class and sequence diagrams. Although meta-

models define which model instances are?

Considered well-formed, there are a number of structural

And behavioral properties that cannot be captured by

metamodels alone. Thus, they are usually annotated with

additional intra- and inter-model constraints that restrict the

internal structure of individual model instances and their

relationship with others, respectively. Ideally, the user

should be allowed to define such constraints, typically

using the well-established MDA’s OCL [30] or other

similar constraint language. One such constraint over class

diagrams is that class generalization links must be acyclic.

In OCL, this can be defined as follows for the meta-model

depicted in Fig. 1:

Context Class acyclic generalization:

Not self. Closure (general) ->includes (self)

Fig. 2. Inconsistency in a class diagram.

 Consider, as an example, the class diagram from Fig. 2a

conforming to the meta-model from Fig. 1, depicting a

tentative first version of the structure of a video on demand

(VOD) system (inspired by [9]), consistent under the

acyclic generalization constraint. Then, assume that at some

point one of the developers, maybe oblivious of the whole

inheritance tree or maybe disagreeing with previous design

decisions, updated that model instance to the version

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 February 2018 | ISSN: 2320-2882

IJCRT1801538 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 833

depicted in Fig. 2b, by introducing a new generalization

link (colored red), giving rise to a violation that breaks

acyclic generalization. Since user updates can evidence

conflicting interpretations of the requirements,

inconsistencies should not be forbidden but rather detected,

diagnosed and handled when deemed necessary. There are a

variety of updates that can be applied to the model instances

to handle inconsistencies and ameliorate the consistency

level of the environment. However, the alternatives

generated by the model repair procedures are necessarily

restricted by design choices that render the problem

manageable. Should a single repair alternative be generated,

even if the rational behind the choice is not clear to the

user, or should the enumeration be exhaustive at the risk of

overwhelming the user? Should the procedure attempt to

infer all required information to repair the model instance

or generate abstract plans that must be instantiated by the

user?

 The process is also dependent on the amount of

information available. Should the modeling tools work in

an online setting and record the user actions that lead to

violations, allowing more accurate repair alternatives?

Moreover, the ability of the tool to consider domain-

specific information provides additional complexity. Should

the procedure be able to handle constraints specified by the

stakeholders? Should the supported repair actions be

defined by the stakeholders? Finally, all these design

choices must also take into consideration the ability of the

user to customize the procedure so that the generated

alternatives prove useful. Should this be achieved by asking

the user to provide repair hints or simply assigning

priorities to different constraints or parts of the model?

Should user input be collected at static time or should the

repair procedure be interactive?

The problem becomes more complex when various

constraints interfere with each other, which is the frequently

the case. Consider the coexistence of class and sequence

diagrams, supported by the meta-model depicted in Fig. 1.

Besides internal consistency of the diagrams, consistency

between them must also be maintained because some data

contained in the two diagrams overlaps: messages refer to

operations that must be available in the target lifeline’s

class.

Fig. 3. Inconsistency between the diagrams.

 Since we have assumed that both kinds of diagrams

share the same meta-model (much like UML diagrams),

this kind of properties can still be defined as regular OCL

constraints. This one in particular would take the shape:

Context Message operation:

self.target.class.operations->

Exists (o | o.name = self.name)

 These constraints must coexist with those over the

individual diagrams. For instance, another constraint that

must hold in class diagrams is that the operations defined

within a class must have unique names:

Context Class unique operations:

self. Operations->

forall(x,y | x.name = y.name => x = y)

 The class and sequence diagrams from Fig. 3a are

consistent under the constraints that have been defined.

However, if the two user updates depicted in Fig. 3b were

simultaneously applied to these model instances – the

introduction of a new operation and a new message (both

colored red) – violations would be introduced for both

message_operation and unique_operations. When

attempting to remove the violation of the

message_operation constraint, the developer should be

aware of the impact that each of the acceptable repair

updates has on the other constraints. Fig. 4 depicts several

possible repair updates that can be applied to the

class diagram or to the sequence diagram that remove the

message_operation violation. However, some of these

repair updates have (possibly undesirable) side effects: the

update applied in Fig. 4a also solves the violation caused by

the unique_operations – a positive side effect – while the

one applied in Fig. 4c introduces a new violation by

breaking acyclic_generalization – a negative side effect.

Either way, it is important that the user is aware of these

side effects when choosing the fix to be applied, and thus

model repair procedures should somehow consider all

constraints when generating the repair updates. In this

example it is also manifest that the number of valid repair

updates can quickly become too large for the user to handle.

Thus, a variety of techniques have been proposed that try to

balance the automation provided by the repair procedures

and the user input required to reduce the number of

generated repair updates.

 This input includes, for instance, requiring the

definition of repair hints for each specified constraint,

assigning different priorities to those constraints or parts of

the model, or even disabling some edit operations. As

techniques were developed to handle more complex

application domains, more specialized mechanisms to

manage their consistency emerged. Such is the case of

techniques designed to manage the consistency of models

spread across heterogeneous modeling frameworks. A

classical example of such scenario is the object-relational

mapping, concerned with keeping class diagrams consistent

with relational database schemas, so that data conforming

to the former can be persisted in databases conforming to

the latter. In such cases, unlike the UML sequence and class

diagrams of the previous example, overlapping information

cannot be directly detected, and thus dedicated mechanisms

to define inter-model consistency are required, like defining

traceability links or consistency relations, as advocated in

MDA’s QVT Relations [31]. Dedicated to manage

intermodal consistency, such techniques often disregard

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 February 2018 | ISSN: 2320-2882

IJCRT1801538 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 834

intermodal constraints altogether. It is easy to envision the

complexity of model repair procedures over a considerable

number of model instances and inter-related constraints,

giving rise to multiple violations and an overwhelming

number of acceptable repair updates. The goal of this paper

is to interpret the myriad of solutions that have been

proposed to address this kind of problems

under a unifying framework.

B. Formalization

 In order to properly classify model repair techniques,

one must first formally define the artifacts from the MDE

environment that are relevant in that context. In particular,

the shape and characteristics of these artifacts has a direct

impact on which functionalities a model repair framework

may possess, as well as the functional properties of the

comprising procedures. This section presents such scheme.

We assume that a meta-model M defines a set of well-

formed model instances m 2 M, which the model repair

technique may allow the user to define through a met

modeling language. The domain space of a model repair

approach is defined by k meta-models M1; :::;Mk. In that

sense, each state of the MDE environment is comprised by

k model instances m1; : : : ;mk that conform to M1; :::;Mk,

a fact denoted by (m1; : : : ;mk) 2 M1 _ _ _ _ _ Mk. In

practice, this product of meta-models can be seen as a

single composed meta-modelM, to which the tuple (m1; : : :

;mk) (usually abbreviated asm) conforms. The shape and

properties ofM in a model repair approach essentially

determine the design space on which both the user and the

repair procedures may act. AlthoughM defines the

structural consistency of model instances, semantic

properties must be enforced by additional constraints

defined over the meta-models. Depending on the technique,

these may take different shapes and varied expressiveness

(e.g., intra- vs. inter-model constraints). We denote the

universe of constraints supported by a model repair

technique by C. Only a subset of model instances from M is

considered consistent under a constraint c 2 C; for the other

model instances there is at least a violation to c. There is

usually a set of constraints fc1; : : : ; clg _ C specified in the

MDE environment, which may or not have been defined by

the user, which are abbreviated as c.

 The notion of inconsistency considered in this study is

imposed by these constraints (as opposed to inconsistency

rising due to uncertainty or partial knowledge, for

example). This is not necessarily a limitation since

formalization imposes no restriction over the

expressiveness of these constraints. The shape of

constraints C determines the kind of properties that the

framework will be able to handle, while the support to

specify them affects the user’s ability to customize it. Prior

to being handled, inconsistencies must be detected and

diagnosed. Since inconsistencies are introduced by the

different stakeholders as the models evolve, information

regarding the performed user updates may help the

checking and repair procedures execute quicker and

produce more accurate results. In the simplest case they

amount to the model instances resulting from the user

update, but they may also contain additional information,

like the edit actions applied by the user. We denote the

universe of user updates supported by each approach by U.

In general, each user update u 2 U contains at least

information about the updated post-state model instances

m0 2 M, which can be retrieved by post(u). For instance, in

frameworks that record the user’s edit actions, user updates

may be represented by a pair (m; s), where m is the state of

the environment prior to the update and s denotes the

applied edit actions. In such cases, the post-state model

instances are retrieved by applying s to m, i.e., post(m; s) =

s(m). If available, we denote the operation that retrieves the

state of the environment prior to a user update u by pre(u)

2M.

 The information contained in U directly affects the

accuracy and predictability of the repair procedures. Given

a user update, a consistency checking procedure will test

whether the resulting model instances are consistent for a

provided set of constraints. The information reported by

these procedures may be as simple as a boolean value, or

more structured information, like a set of detected

violations. We denote the universe of these reports by I,

which is instantiated by each approach. Such checking

reports can be compared for their ―inconsistency level‖,

e.g., when some violations are handled, the environment

becomes ―more consistent‖ but may still not be ―fully

consistent‖. Following the approach proposed by Stevens

[32], we assume these inconsistency levels to form a

partially ordered set (I;v). In general, but not necessarily,

this partially ordered set has a least element denoting the

highest level of consistency for the environment, which will

be denoted by ?I.

Definition 1 (Consistency Checking): A consistency

checking procedure CHECK : PC ! U ! I calculates the

inconsistency level i 2 I for an update u 2 U under

constraints c _ C, which is denoted by i = CHECKc u. The

features of the CHECK procedure and the information

contained in the detected I levels, not only affect the user’s

ability to understand and control the behavior of the

framework, but also define the information available to

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 February 2018 | ISSN: 2320-2882

IJCRT1801538 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 835

Fig. 4. Possible repair updates for the inconsistency

between the diagrams.

the subsequent repair procedure when generating possible

repair updates. Model repair procedures are deployed when

the stakeholders wish to decrease the level of inconsistency

of the environment. Again, the generated repair updates

may contain varied information, from simple model

instances to a set of edit operations. The universe of repair

updates of each model repair approach is denoted by R. The

information contained in the repair updates R is not

necessarily the same as the user updates U, e.g., approaches

may consider only the post-state of user updates but still

propose edit sequences as repair updates. It is however

assumed that from a repair update r 2 R and a user update u

2 U that led to the current model instances, an update u0 2

U can be derived that applies r to u (otherwise, the

consistency checking procedure could not be executed after

the application of repair updates). For instance, if u is

simply represented by the post-state of the environment

after a user update, and r is a set of edit operations, the

updated u0 can be retrieved by applying the r operations to

the u update. We denote this operation by r(u) 2 U. As

expected, if U contains the pre-state of the environment,

then pre(r(u)) = post(u).

 The repair procedure may return a set of alternative

repair updates. Moreover, it may access the checking

procedure, and retrieve the inconsistency levels I of the

model instances. This allows the repair procedure, for

instance, to access the set of detected violations, if the

CHECK procedure supports such reports.

Definition 2 (Model Repair): A model repair procedure

REPAIR : PC ! U ! PR calculates repair updates r 2 R for a

user update u 2 U under constraints c _ C, which is denoted

by r 2 REPAIRc u. The behavior of the REPAIR procedure

is fundamental to define the overall characteristics of the

repair framework, while the shape of the produced repair

updates R affects its flexibility and effectiveness. The

generated repair updates do not necessarily recover full

consistency, although they are expected to ameliorate the

inconsistency level of the environment. The relation

Fig. 5. Generic scheme for model repair.

between the checking and repair procedures, as well as the

properties and enumeration of the generated repair updates,

are dependent on the concrete model repair approach, and

are key feature to define the functionalities of the

framework. Fig. 5 presents an overview of our generic

scheme for model repair. User updates u are applied to an

existing model instancem0, consisting of a tuple of model

instances, from which the modified model instancemis

obtained, and to which the checking procedure assigns an

inconsistency level i. Given a user update u, and with

access to the checking procedure, the repair procedure

generates a set of possible repair updates r, which, when

applied to u, result in an update u0 from which the repaired

model instances m0 can be obtained, and whose

inconsistency level i0 is expected to be at least the same as

the one of u. (The pre operations are grayed out because the

updates may not store that information.)

III. FEATURE-BASED TAXONOMY

 This section presents the identified classification

features for model repair approaches, that instantiate the

abstract

Fig.6. Protocol development process (adapted from

[34]).

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 February 2018 | ISSN: 2320-2882

IJCRT1801538 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 836

artifacts defined in Section 2.2, the mechanisms available to

the user to customize them, and the behavior of the

checking and repair procedures, as well as an overview of

the of the methodology employed to collect the primary

studies and extract the structured taxonomy.

A. Methodology

 Our research methodology is inspired by guidelines

proposed for systematic literature reviews in software

engineering, which aim to identify, evaluate and interpret

all available research relevant to a particular topic area, or

phenomenon of interest [21]. One of the objectives of such

review is to provide a classification framework that allows

researchers to appropriately position new research activities

[21], which is the goal of our study. Nonetheless, since we

do not exactly aim to to establish the state of evidence of

the area, but rather to identify the features of existing

approaches, our methodology shares characteristics with

systematic mapping studies [33] as well. Systematic

reviews rely on a predefined review protocol for the

selection of the primary studies (the review itself being a

secondary study), that should ensure rigor and completeness

of the process, as well as enable repeatability. Our protocol,

depicted in Fig. 6, was inspired by previous systematic

reviews on other topics of software engineering [34], [35]

and is detailed in the Appendix. Briefly, we started the

process by defining the research questions that guide this

study. Then we defined the search strategy employed to

select the primary studies, backed by pivot searches that

helped identify relevant search keywords and venues. We

then specified the selection criteria used to obtain the

definitive list of primary studies considered in our study

and defined how the relevant data would be extracted from

these studies, also backed up by pilot data extractions.

 Finally, we defined the procedure through which this

data would be effectively synthesized into the structured

taxonomy and presented in the shape of feature models, the

main contribution of this work. The last two steps followed

guidelines for thematic synthesis in software engineering

[36]. The classification of the primary studies under the

resulting features is publicly available [27]. The

formalization of the model repair problem in Section 2

identified several artifacts whose features characterize each

particular approach. The research questions aim precisely to

explore alternative instantiations to these artifacts in the

existing literature.

RQ1 What are the domain spaces on which approaches act,

and how is the user able to customize them?

RQ2 What kind of constraints are supported by the

approaches, and how are they specified?

RQ3 What kind of information regarding the user updates is

expected from the approaches?

RQ4 What is the role of the checking procedure in the

overall process, and what kind of information is reported?

RQ5 What is the overall behavior of the repair procedure,

and what is the shape of the generated repair updates?

RQ5.1 How can the user affect the behavior of the

approaches and how are the alternative repair updates

reported?

RQ5.2 What kind of semantic properties are guaranteed by

the approaches?

 Concretely, RQ1 refers to the specification of domain

space M, RQ2 to the universe of constraints C and RQ3 to

the universe of user updates U. RQ4 addresses how the

checking procedure CHECK relates with the repair

procedure and the shape of the reports I. RQ5 refers to

behavior of the repair procedure REPAIR and the universe

of repair updates R. Due to the importance of this

procedure, we detail two further questions, regarding the

interaction of the user with the repair procedure (RQ5.1)

and the semantic properties guaranteed by the procedures

(RQ5.2). The resulting taxonomy for model repair

approaches is organized under these 5 main branches,

arising from the research questions and addressing different

artifacts. We opted to present the resulting taxonomy as

feature models. These are typically represented

diagrammatically, following the notation from Table 1. A

child feature may only be selected by an approach if its

parent is also selected. Children features may either be

mandatory (if the parent feature is selected, so must be the

child), optional (if the parent feature is selected, the child

may or not be selected) or arranged in or groups (if the

parent is selected, at least one feature of the group must be

selected) or xor groups (if the parent feature is selected,

exactly one feature of the group must be selected). Every

feature model has a root feature that is always present in

every configuration, and may contain reference features

which simply point to other feature models. Finally, feature

models may also be annotated with requires and excludes

constraints that allow the enforcement of cross-tree

dependencies.

 The top-level feature model is depicted in Fig. 7, with

Repair Technique as its root, and a mandatory child feature

for every main classification facet, referencing a separate

and detailed feature model, which are explored in the

succeeding sections. This division is purely for aesthetic

purposes, and the various trees could be composed into a

single one by connecting the reference features with the

roots of the matching diagrams.

TABLE I: Feature Model Definition

Fig. 7. Model repair features.

B. Domain

 These features address the model domain space M of the

technique, i.e., which model instances the technique is able

to handle, as well as whether the user is able to customize

such space (RQ1). The alternatives are explored below and

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 February 2018 | ISSN: 2320-2882

IJCRT1801538 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 837

depicted in the diagram from Fig. 8, referenced from the

main diagram from Fig. 7.

Formalism: Apart from early human-centered approaches,

that do not propose automated systems to manage

consistency and consider informally defined artifacts,

procedures CHECK and REPAIR are designed to handle

model instancesm from M represented using particular

formalisms. The detected formalisms include logical

representations in some abstract formal specification

language [7], [9], [11], [37], [38], [39], [40], [41], [42],

[43], tree-like data structures [44], [45], [46], [47], [48],

object-oriented specifications [10], [13], [14], [15], [49],

[50], [51], [52], [53], [54], [55], [56], [57], [58], [59],

support for relational data structures [20], [28], [60], [61] or

graphs [12], [62], [63], [64], [65], [66], [67], [68], [69],

[70], [71], [72], [73], [74], [75], [76], [77], [78], [79]. These

features are organized in a xor-group since our study

showed that the selection of the formalism is exclusive.

 The chosen formalism is tightly connected with the kind

of properties that the technique is able to check. For

instance, reachability properties are more easily handled in

relational or graph data structures. However, the reason

behind the choice of formalism tends to be ability to use

previously developed techniques in the model repair

approach. This is patent in the fact that most techniques

based on graph formalism are built over Triple Graph

Grammars (TGG) [80] techniques, or that those based on

logical formalisms rely on well-defined search procedures

to deploy the repair procedure. Note that, although related,

this feature is not directly restricted by the technical space

on which model instances are designed (Section 3.2.3),

which can be internally converted to the underlying

formalism by the modeling framework. For instance,

techniques acting upon the MDA technical space embed

UML models into relational or graph structures.

Nonetheless, formalisms not closely related to the technical

space may be loose relevant information regarding the

application domain, which may be preserved by those over

an object-oriented formalism, for instance.

Meta-model Independent: Model repair approaches may

aim to be independent of the application domain. Such

meta-model independent techniques may optionally provide

the users with mechanisms to define the well-formedness

rules of the model instances i.e., the domain space M. This

task may be delegated to different agents of the MDE

process. For instance, in the View Points framework [81]

there are two well-defined roles: the designer of the

viewpoint, that defines the meta model, the constraints and

the repair plans, and the owner of the viewpoint, that

manages the view according to the designer’s rules. Meta-

model independent techniques are more customizable and

have wider applicability than those whose metamodel is

fixed. Techniques with fixed meta-models are designed to

act on specific domains, like those proposed to manage the

consistency of specific UML diagrams. While with more

limited applicability, knowing the shape of the model

instances a priori may allow the technique to have

improved effectiveness and efficiency. Moreover, meta-

model independent techniques are necessarily more

laborious to the user, as not only must the meta-model be

defined, but also any constraint that is to be checked over

the models, since there cannot be hard-coded constraints for

undefined meta-models (Section 3.3.1).

Technical Space: This feature defines the technical space

in which the user is expected to specify the various artifacts

of the MDE development environment. These may be built

around standard languages/architectures like XML or EMF

or other specific to the proposed technique. The analyzed

studies show that this is an exclusive group of features. The

selection technical space defines the concrete model syntax

that the technique is able to process, like XML, XMI, UML,

or a technique-specific language. These concrete model

instances are translated by the technique into their

representation in the underlying formalism (Section 3.2.1).

For meta-model independent techniques, this feature also

specifies the meta-modeling language through which the

user should specify the meta-models. Under MDA, these

are expected to follow the MOF [83] standard, and those

under EMF, Ecore1. Again, techniques may not support

standard

Fig. 8. Domain features.

meta-modeling languages, and require the user to define

them through technique-specific mechanisms. If the user is

allowed to define or customize constraints (Section 3.3.1),

this feature defines the language in which he is able to do

so. Typically this amounts to some version of MDA’s OCL,

that is also used in EMF, or it can be designed specifically

for the technique. In techniques with support for inter-

model constraints (Section 3.3.2), standard languages

include MDA’s QVT [31]. The use of standardized

technical spaces is essential if the model repair technique is

to be integrated into the regular MDE development process.

Techniques using specific languages are usually prototype

tools that rely on a manual translation of the model

instances.

Bounded: Techniques may assume a bounded universe of

model elements, so that the repair procedure can be more

manageable [13], [20], [28], [39], [42], [60], [61]2. Such is

the case of techniques that do not allow the creation of new

elements, and thus are inherently bounded by the elements

present in the current inconsistent state. Some techniques

impose a bounded universe in order to avoid handling

possible negative side effects that may arise when of new

elements are created. As an alternative, many repair

techniques opt to create instead abstract elements, that are

to be instantiated by the user a posteriori (Section 3.6.2). In

others, the bounded universe is imposed by the underlying

procedure, like those relying on bounded solvers. This

process can however be opaque to the user, by iteratively

introducing new model elements in the universe as the

process executes.

Multi-Model: Model repair techniques may optionally be

designed with particular concerns regarding inter-model

consistency and provide dedicated support for multi-model

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 February 2018 | ISSN: 2320-2882

IJCRT1801538 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 838

scenarios. In such cases, each state m 2 M is comprised by a

tuple of model instances (m1; : : : ;mk). Such is the case of

techniques that were developed to manage consistency in

development environments with multiple views, for model

synchronization and bidirectional and multidirectional

transformations. In contrast, techniques may be defined to

manage the internal consistency of a single model, in which

case a statem consists of a single model instance m. Multi-

model approaches focus on handling inter-model

constraints (Section 3.3.2), which usually take different

shapes than those used for intra-model consistency

(Section3.3.3). As a consequence, such approaches often

disregard the internal consistency of the individual model

instances, possibly leading to overall inconsistent states.

Multi-model techniques may impose restrictions on the

supported user updates (controlled update, below).

Moreover, the model instances affected by the generated

repair updates may also be restricted or customizable by the

user (Section 3.7.2). Bidirectional transformations are a

typical example of such techniques, where user updates are

restricted to a source model instance, and the generated

repair updates restricted to a target model instance.

 Techniques without dedicated multi-model support may

still handle coexisting models by merging the various

model instances (and associated meta-models) into a

―dummy‖ model conforming to a single meta-model, and

expressing their seemingly inter-model constraints as that

metamodel’s intra-model constraints (Section 3.3.2).

Specifying inter-model consistency as an internal constraint

may however prove to be more cumbersome. This is

common in techniques that manage the consistency

between different UML diagrams, since they share the same

meta-model, as in the example from Section 2.1. In our

taxonomy, such domain spaces are not considered multi-

model (nor their constraints inter-model). Techniques

without native support for multi-model domain spaces may

simulate the controlled repair updates provided by multi-

model techniques through distinguished constraints

(Section 3.3.1) – by temporarily introducing a constraint

that restricts the state of one of the model instances – or by

assigning higher weights to certain model instances

(Section 3.7.2) – promoting updates over the other model

instances – if these features are supported. Since multi-

model techniques are quite common, we identified two

additional optional features that such techniques may

employ.

Controlled Update: Approaches with support for multiple

models may optionally force the user to update the model

instances in a controlled manner, typically only allowing

updates over a single model instance so that the update

propagation to the others is more easily managed. This is

common in bidirectional transformation or incremental

transformation techniques, where the repair updates are

themselves focused on a single model: allowing concurrent

updates could lead to conflicts that could not be resolved.

Such techniques are less suitable for distributed and

heterogeneous MDE development environments, since the

different stakeholders are expected to update the various

model instances concurrently.

Pairwise: Multi-model techniques may optionally focus on

pairwise consistency management, since managing the

consistency between only two model instances is more

manageable. Such is the case of bidirectional

transformation techniques or those built over TGGs.

Pairwise consistency management is sometimes employed

in environments with multiple models by only addressing

the consistency between pairs of model instances at a time,

in order to simplify the problem. Although this renders the

problem more manageable, not every constraint between

multiple models can be decomposed into a set of binary

constraints [60].

C. Constraint

 These features address the expressiveness imposed by

the constraint universe C and how the constraints c are

drawn from C in the modeling framework (RQ2), the

former entailing the class of problems that may be

addressed by the technique and the latter its general

applicability. These design choices are explored below and

depicted in Fig. 9, which is referenced from the main

diagram from Fig. 7. For techniques with decoupled

checking procedures (Section 3.5.1), these features are

assumed to regard those of the associated checker, if

identified by the authors.

Specification: Similar to the meta-model (Section 3.2.2),

techniques may either have the set of constraints c hard-

coded or provide the user with mechanisms to define or

customize them. Techniques may even provide a set of

predefined constraints but allow the user to extend them or

restrict them. As a consequence, we identify these two

features as an or-group, since their selection is not

exclusive. Likewise the meta-model, many modeling

frameworks delegate such tasks to a repair administrator,

rendering the process opaque to the software designer.

Techniques that do not allow the user to define the

constraints have limited applicability since they cannot be

easily adapted to different application domains. There are

typically paired with fixed meta-model techniques, where

both the meta-model and the constraints are fixed a priori

(techniques for managing consistency of UML diagrams

being the classical example). Nonetheless, techniques with

fixed meta-model may still allow the user to define the

constraints. Meta-model independent techniques, however,

may not have hard-coded constraints (as imposed by the

excludes clause in the diagram).

 Our study also identified two additional optional

features that may be enforced by the model repair

techniques in order to ease the generation of repair updates,

as presented below.

Repair Hints: The model repair procedure may optionally

expect each constraint to be accompanied with repair hints

on how to generate the repair updates when violations to

that constraint are detected. This contrasts with techniques

where the repair procedures automatically derive the repair

updates from the constraints. The extreme case occurs in

rule-based approaches (Section 3.6.1) where the repair

procedure expects effective resolution rules for the

violations. The definition of repair hints is often a laborious

and error-prone activity that does not provide totality or

correctness guarantees, since the user may not be aware of

the possible side effects of the defined hints. Nonetheless, it

is also the most direct mechanism through which the user

may control the behavior of the repair procedure, one that is

tightly coupled with the definition of the constraint. Repair

hints do not necessarily reduce the enumeration of repair

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 February 2018 | ISSN: 2320-2882

IJCRT1801538 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 839

updates to a single alternative (Section 3.7.1), since the

technique may allow multiple repair hints to be defined for

each constraint.

Distinguished: Techniques may optionally support the

definition of distinguished constraints that instruct the

repair procedure to focus them in detriment of the

remainder constraints of the environment. As an example,

some techniques allow the user to focus on intra-model

constraints and instruct the repair procedure to temporarily

disregard the inter-model constraints. Distinguished

constraints usually give rise to composite inconsistency

reports (Section 3.5.3), independently checking the

distinguished constraint holds and the remainder constraints

of the environment. We purposely identify this feature as

distinct from the prioritization of constraints (Section

3.7.2). Granted, the two features are somehow related, and

constraint prioritization could, to a degree, simulate the

behavior of distinguished constraints. However, even with

different priorities the repair procedure could still consider

every constraint and

their interaction. In contrast, distinguished constraints are

effectively treated differently, and the procedure may, for

instance, focus on certain constraints while discarding the

others, or consider them for side effects only. This is

particularly patent in the violation selection feature

presented below. Incremental techniques (Section 3.6.1),

which rely on information from the previous executions,

may not be able to support this kind of constraints.

 The most common occurrence of distinguished

constraints arises in techniques that allow the user to select

a specific violation to be handled. Violation selection is

only available in techniques whose checking procedure

reports at least the set of detected violations (Section 3.5.3),

as made explicit in the diagram. In such cases, the

composite report typically assesses whether the selected

violation was effectively removed, and the impact of that

repair update on the other constraints of the environment.

Since typical

Fig. 9. Constraint features.

constraint languages like OCL do not allow the

specification of constraints at the model level, violation

selection is performed through mechanisms internal to the

technique. This kind of approaches may be more scalable

than those attempting to handle all inconsistencies at once

by following a spirit of toleration. Rule-based approaches

typically handle a single violation at a time, since the

resolution rules are usually defined per constraint. They

also provide a direct mechanism through which the user

may affect the behavior of the repair procedure. However,

they may also be oblivious of possible negative side effects,

which may undermine the correctness of the procedure.

Kind: General-purpose model repair techniques act on

intra-model constraints, interpreting the environment as a

single model restricted by internal constraints. Nonetheless,

techniques that support multimodel domain spaces (Section

3.2.5) typically support the definition of inter-model

constraints that define the relationship between two or more

models. While some of these focus on inter-model

consistency and disregard the intramodel constraints, some

approaches do consider both kinds of constraints. For that

reason this feature is presented as an or-group. The shape of

the constraints (Section 3.3.3) is related but not exactly

defined by this feature. In fact, both logical constraints and

pattern matching can be used to define both intra- and inter-

model constraints. Other shapes (traceability links,

consistency relations and transformations) are however

restricted to inter-model constraints. This dependency is

made explicit in the diagram. For approaches supporting

both kinds of constraints, their shape may not be identical.

 The impact of supporting inter-model constraints is

similar to the one of supporting multi-model domain spaces

natively (Section 3.2.5). Although the definition of this kind

of constraints is simplified, techniques with support for

them will often disregard intra-consistency constraints,

undermining the overall consistency of the environment.

Inter-model constraints can usually be simulated through

inter-model constrains, assuming a ―dummy‖ meta-model

composed of the individual meta-models. In this way the

techniques would handle both intra- and inter-model

constraints, but the definition of the latter would be more

laborious to the user.

Shape: This feature determines the shape of the constraints

supported by the model repair approach. The feature is

encoded as an or-group since approaches may support more

than one shape of constraints, particularly when they

support both intra- and inter-model constraints (Section

3.3.2). For hard-coded constraints (Section 3.3.1) it may not

be possible to determine the shape of the constraints from

the primary studies alone. Note that approaches

implementing the same features may still be able to address

different classes of problems, since they may support

constraints of varied expressiveness. Constraints are most

commonly defined as logical predicates. The

expressiveness of such constraints is typically that of

firstorder logic, although they may be extended with other

operators like transitive closure to allow the specification of

reachability properties. These may also be used to define

inter-model consistency, assuming they are able to refer to

elements from different models.

 Approaches built over graph data structures are often

based on pattern matching, most of the times enhanced with

negative application conditions (NACs). Pattern matching

is well-suited to specify structural properties but not

behavioral ones. Thus, to improve its expressiveness, some

approaches allow the patterns to be attached with additional

attribute constraints or imperative code snippets.

Techniques with dedicated support for inter-model

consistency may rely on the definition of traceability links

that connect elements from different model instances.

Constraints or patterns may then be defined over the

traceability links that denote the notion of inter-model

consistency (like TGGs), although some techniques assume

fixed constraints over these links. The traceability links

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 February 2018 | ISSN: 2320-2882

IJCRT1801538 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 840

may either be explicitly defined by the user – by manually

indicating which elements correspond to each other – or be

implicitly introduced either by the repair rules or by

calculation. The expressiveness of such techniques depends

on the ability to define properties over traceability links,

like constrains restricting their multiplicity. Inter-model

consistency without traceability links is commonly defined

through consistency relations, declarative predicates that

define which sets of model instances are considered to be

consistent with each other [28], [47], [49], [51], [55], [59],

[60], [73]. Finally, some frameworks assume a notion of

consistency that is implicitly defined by a transformation

[38], [48], [57], [59], [78]. This is typical in multi-view

frameworks with a reference model, from which each view

is calculated through transformation. In such cases the

model repair procedure addresses the view-update problem

[84], and usually relies on the bidirectionalization of the

transformation language.

 The concrete syntax of the constraints is heavily

dependent on the chosen technical space (Section 3.2.3).

Logical constraints are commonly defined using some

variant of OCL [30] standardized in MDA. Since using

OCL to define inter-model constraints may be cumbersome,

extensions that natively support multi-model domain spaces

are also used, like Epsilon3 from the EMF. The QVT

Relations [31] from MDA is a standardized language for

the definition of consistency relations between multiple

model instances. Techniques relying on transformations to

define the notion of consistency may also support standard

transformation languages, like ATL4 from EMF. Often

however, techniques rely on internal formalisms to define

the constraints. In approaches requiring repair hints

(Section 3.3.1) or rule-based approaches (Section 3.6.1), the

constraints may need to be appended with additional

information. In fact, in some rule-based approaches the

notion of constraint is itself embedded in the definition of

the repair rule (as a precondition for its application). In such

cases it may not even be possible to check the consistency

of constraints prior to deploying the repair procedure

(Section 3.5.2).

D. Update

 These feature address the universe of the user updates

U (RQ3), which essentially defines what information is

available to the model repair procedures regarding the

evolution of the models from the previous known state to

the current one. These are summarized in Fig. 10, which is

referenced from the diagram from Fig. 7.

Update Representation: The simplest approach to the user

update facet is to be purely state-based, where the repair

procedure simply considers the post-state of the user update

(i.e., the current state of the model instances), in which case

user updates from U simply amount to model instances m.

Fig.10. Update features.

 The main advantage of state-based techniques is that the

modeling framework may be decoupled from the model

repair techniques. Since the performed user actions must

not be recorded, the model repair procedure needs only be

deployed using the current state of the environment

whenever the stakeholders wish to ameliorate the

consistency level. The trade-off is reduced accuracy when

compared with delta-based operations (Section 3.4.2

below). Moreover, they may prove to be less useful to the

user because, by being oblivious to the user’s action, repair

procedures may simply propose the undoing of those

actions. We assume that an approach is delta-based if it

considers any information regarding the user’s actions. As

such, deltabased approaches with information regarding the

current state of the environment are not considered state-

based (ergo the exclusive selection of these two features).

Delta-based: In contrast to state-based approaches, delta-

based approaches require information regarding the

user actions that led to the current state of the environment.

These techniques are able to more easily identify

problematic portions of the model, but require the online

tracking of the user’s actions. This requires a dedicated

modeling framework, which may not be possible in

heterogeneous and distributed development environments.

They may also improve the overall efficiency of the

technique, as they allow the identification of which

constraints need be reassessed after the user update.

Nonetheless, delta-based approaches major benefit lies in

their ability to produce more predictable repair updates. By

having extra knowledge regarding the user actions,

techniques may are more accurate in the generation of

repair updates (being able, for instance, to distinguish

between modifications and removal/insertion of elements,

which

may be impossible in the state-based setting). We identified

two main alternative techniques to record delta-based user

updates. Some techniques consider a frame condition

associated with the current state of the environment that

indicates the portion of the model instances that was

effectively modified by the user, allowing the procedure to

diagnose inconsistencies more effectively. Alternatively,

techniques may require the exact sequence of edit

operations that led to the current state of the environment.

Within these, the granularity of the individual actions may

range from atomic to complex operations.

 Techniques with edit sequences as user updates may

not even have access to the current state of the

environment, mapping the user actions into repair actions

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 February 2018 | ISSN: 2320-2882

IJCRT1801538 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 841

directly. However, this is not necessarily the case, and

approaches with delta-based user updates may generate

state-based repair updates (Section 3.6.2), and vice-versa.

Extra Information: Both state- or delta-based may be

optionally provided with extra information regarding the

evolution of the environment. Some are provided with the

pre-state of the environment as additional information (i.e.,

the state m0 prior to the user update) in order to more

effectively determine the impact of user updates. State-

based techniques may attempt to derive deltabased

artifacts by comparing the pre- and post-state of the

environment, in order to deploy delta-based procedures.

However, there is no guarantee that the result will mirror

the effectively applied user actions. Delta-based approaches

with frame conditions may rely on the pre-state to

determine elements that may have been deleted in the

current state. Other approaches consider the complete

history of the evolution of the model instances, in which

case the repair procedure can access not only the most

recent user update, but also the complete historic. In state-

based approaches this amounts to a sequence of states,

while in delta-based approaches this historic logs the user’s

actions. The selection of this feature is independent from

the selection of the pre-state because delta-based

approaches may record a history of edit operations without

storing any state. Techniques may allow the user to control

the repair procedure by rely on meta-data recorded in these

logs (Section 3.7.2), like authoring and versioning

information.

E. Check

 Check features regard the model repair technique’s

reliance on the checking procedure CHECK and the

information contained in the inconsistency reports I (RQ4).

These design options are depicted in the diagram from Fig.

11, referenced from the one in Fig. 7. Since consistency

checking is not the focus of this study, these features focus

mainly on classifying relationship between the checking

and repair procedures.

Decoupled: Model repair techniques may optionally be

decoupled from the consistency checking procedure. Such

techniques may rely on external tools to detect violations to

the constraints. Coupled procedures in contrast use the

checking procedure as a fundamental piece in the repair

procedure – sometimes in ways opaque to the user. Earlier

techniques rely on the manual identification of the

violations by the users of the techniques,

Fig. 11. Check features.

which we interpret as a special kind of decoupled checking

procedures [44], [56]. Although this feature allows the

repair procedure to be extensible by deploying state-of-the-

art checking procedures, coupled checking procedures

typically result in more efficient techniques, since the repair

procedure can exploit the potential of the checking

procedure. Decoupled checking procedures usually report

structured information, like goals or violations (Section

3.5.3), that can then be processed by the repair procedure. A

typical example occurs in some rule-based approaches

(Section 3.6.1) that employ two classes of rules: check

rules, that detect the violations and introduce some token

identifying the violation, and repair rules, that detect such

tokens and act upon the violation. Another instance of a

decoupled procedure occurs in search-based approaches

(Section 3.6.1), where the checking procedure detects a set

of elements suspected to cause the inconsistency, which the

repair procedure tries to remove from the model instances.

 In decoupled approaches the checking procedure must

somehow pass the detected information to the model repair

procedure. In our scheme, this is performed through

distinguished constraints (Section 3.3.1), as made explicit in

the diagram. Although this feature is related to the ability to

perform checkonly executions (Section 3.5.2 below), we

shall see that there is not an explicit dependency between

the two.

Check Only: Although not directly related to the problem

of model repair, it is important for the modeling framework

to provide the user with information regarding the

inconsistency level of the environment prior to the

deployment of model repair procedures. Thus, standards

like QVT enforce both repair and checkonly modes. In

techniques that allow the selection of the violation to be

handled (Section 3.3.1) such functionality is fundamental to

allow the user to inspect the detected violations. This

feature is optional as some approaches do not have a proper

checkonly mode. For instance, in some rule-based

approaches (Section 3.6.1) the constraint may be simply

defined as the pre-condition of the resolution rule. The

notion of coupled checking procedure (Section 3.5.1) is

distinct from this feature, although the two are related. The

best way to envision their relationship is through the 3

classes of rule-based approaches (Section 3.6.1) detected

during our study. In the simplest class techniques employ

repair rules only – the checking procedure is coupled to

these rules as a pre-condition and cannot be run in

checkonly mode. In the second class, techniques employ

both check and repair rules, but these act independently of

each other – thus the checking procedure is still coupled to

the repair rules as a pre-condition, but the approach

supports checkonly mode.

 In the last class techniques emply both check and repair

rules, but the latter only act on tokens introduced by the

former when violations are detected – thus they are

decoupled and also support checkonly mode. It seems

however improbable that decoupled approaches do not

provide a checkonly mode, thus we enforce that

dependency in the diagram.

Reporting: This group feature classifies the information

reported by the checking procedure about the detected

inconsistencies, i.e., the universe of inconsistency reports I.

Techniques may just expect a basic Boolean [20], [28],

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 February 2018 | ISSN: 2320-2882

IJCRT1801538 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 842

[37], [48], [55], [58], [59], [60], [78] procedure that simply

reports whether inconsistencies were found. This is typical

for solver-based approaches (Section 3.6.1). Techniques

may instead expect to know the number of violations

occurring in the current state [70]. Most commonly, the

checking procedure returns a set of violations detected in

the model instances. The information contained in each

violations varies, commonly containing information

regarding which constraint is being broken and the model

elements involved. Techniques may also report a goal that

must be achieved by the repair procedure [9], [42]. These

may be comprised by a formula that is suspected to have

rendered a constraint false – which the repair procedure

must make true – or simply contain information regarding

elements suspect of causing the inconsistency – that must

be removed – or missing model elements – that must be

created. For some techniques with coupled checking

procedures (Section 3.5.1) it may not be clear what the

checking procedure reports. Such is the case of approaches

where user updates are simply mapped into repair updates.

Having information about individual violations allows the

user to selectively apply repair updates (Section 3.3.1),

unlike with less expressive reports. This is an explicit

dependency between the features.

 Since the behavior of the partial order v over

inconsistency levels I is dependent on the information

contained in these reports, this feature is tightly connected

with the correctness criteria that the repair technique may

be expected to follow (Section 3.8.2). In most cases, there is

a single sensible partial order. In boolean reports, this is

simply defined as

just enforcing that a consistent state does not regress into an

inconsistent one, with the least element ?I = True. With

numerical reports, the partial order takes the shape

where _ is the standard order over naturals, stating that the

number of inconsistencies at least does not increase, with ?I

= 0. For the list of violations, it simply takes the shape i v i0

_ i _ i0 meaning that no new violations are introduced, with

?I =fg, the empty set of violations. Goal reports may vary in

shape and content, thus the partial order will vary from

approach to approach. Generally, model repair techniques

expect a single kind of inconsistency reports from the

checking procedure. However, this group feature is encoded

as an or-group due to the possibility of composite reports

with heterogeneous information, as explained below.

Composite: The checking procedure may optionally report

a composite inconsistency level. These emerge from

distinguished constraints (Section 3.3.1), which are

independently checked by the procedure. Typical this

occurs when the approach supports violation selection,

where inconsistency levels I take the shape I1 _ I2, a pair

whose first element states whether the selected violation

was removed, and the second element provides information

regarding the remainder environment constraints, allowing

the user to be aware of possible side effects. Approaches

with distinguished classes of constraints (like intra- and

inter-model constraints) also result in composite reports. In

these composite reports there is more than a single sensible

partial order over each shape of I. Our study identified three

kinds of expected behavior in these cases. If both

components are deemed equally important, the partial order

takes the shape of the product order:

meaning that the inconsistency level is improved if either of

the components is. The least element of this partial ordered

set is simply (?I1 ;?I2). Under violation selection this

partial order is not very useful since it would allow the

removal of the selected violation or any of the others. A

partial order that prioritizes the amelioration of the first

component is the lexicographic order, under which

improvements to the firstcomponent allow arbitrary updates

on the second one:

 In such case, the least element is still (?I1 ;?I2). Under

violation selection this order allows the remainder

violations to deteriorate, allowing negative side effects,

when removing the selected one. Alternatively, techniques

may prioritize the improvement of the first component but

disallow damage to the second one. Under violation

selection, such partial orders represent techniques that

forbid negative side effects: the selected violation should be

removed but avoiding the introduction of new ones in the

process. The information reported for the distinguished

constraint and the remainder constraints needs not be equal.

For instance, some approaches are only concerned with not

increasing the number of violations caused by the

remainder constraints (even if they are not exactly the same

occurring in the initial state). This is the reason why the

reporting feature above is set as an or-group, and not as an

exclusive selection.

F. Repair

 These features, depicted in Fig. 12 which is referenced

from Fig. 7, classify the overall behavior of the model

repair procedure REPAIR, as well as the universe of repair

updates R (RQ5), which are at the core of the model repair

approach. Due to their relevancy, the enumeration of the

repair updates to the user (RQ5.1) and the functional

semantics guaranteed by the approach (RQ5.2) are explored

separately in Sections 3.7 and 3.8, respectively.

Core: This feature classifies the engine underlying the

repair generation procedure. Rule-based techniques rely on

a set of previously defined rules that are applied whenever

an inconsistency is detected. While providing full control

over the resolution of inconsistencies, it puts the weight on

the designer that must specify how constraints are fixed.

Moreover, having a fixed set of resolution rules greatly

reduces the flexibility of the technique. Generative

approaches derive their transformation rules from

production rules that define what is a well-formed model.

The classical example of such approaches are those based

on graph grammars, where the repair rules are derived from

the grammar productions. In contrast, syntactic techniques

automatically derive repair plans by syntactic analysis of

the constraints [10], [15], [45], [47], [48], [51], [55], [57],

[58], [78]. Typically, these repair plans are calculated at

static-time and then instantiated to concrete model instances

at run-time when an inconsistency is found. While these

techniques may be able to generate repair updates without

user input, the number of generated plans may become

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 February 2018 | ISSN: 2320-2882

IJCRT1801538 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 843

overwhelming for the user to choose from. Syntactic

techniques are also not well suited to deal with multiple

inconsistencies, nor inconsistencies that affect a large

portion of the model.

 Search-based approaches interpret model repair as a

model search problem [9], [20], [28], [37], [38], [39], [40],

[41], [42], [60], [61], [70]. These are able to automatically

find fully consistent models (Section 3.8.2), but suffer from

scalability issues. Moreover, they are well-suited to fix

inconsistencies that affect a large portion of the model, like

reachability properties. Some approaches rely on off-the-

shelf solvers to search for consistent states [20], [28], [37],

[41], [60], [61]. These solvers are oblivious of the

application domain, and may produce unpredictable

solutions. In contrast, other techniques rely on domain-

specific search procedures that rely on domain-specific

knowledge, like heuristics and the available edit operations,

that allow a finer control on the generation of repair updates

[9], [38], [39], [40], [42], [70]. Some hybrid techniques are

are built over more than one of these features. Such is the

case of rule-based approaches that rely on search-based

techniques to calculate repair plans from those rules. Thus,

the selection of features from this group is not exclusive.

Some earlier approaches are humancentric, relying on the

user to manually flag inconsistencies and propose repair

updates, focusing on the negotiation and education between

different stakeholders [11], [44], [46],

[49], [50], [56], [67], [82]. As expected, such approaches

provide little semantic guarantees (Section 3.8).

 The selection of this feature directly or indirectly

affects most of the remainder features of the model repair

approach. That impact is explored in the presentation of the

features throughout Section 3. Incremental: Approaches

may optionally be incremental and reuse data from previous

checking or repair executions, improving efficiency and

localization of inconsistencies [10], [13], [37], [38], [42],

[49], [54], [55], [63], [64], [65], [66], [68], [69], [71], [72],

[73], [74], [75], [76], [77]. Such techniques are typically

deployed in an online setting so that the required

information is preserved between executions. Thus, they are

also typically delta-based (Section 3.4.2) so that this

information is more easily managed. Incrementality can be

essential to preserve the consistency of the environment –

as in the case of approaches that rely on implicit inter-

model traceability links calculated in previous executions –

or simply a mechanism to improve efficiency – by storing

the instantiations of the constraints so that inconsistencies

can be more efficiently checked and repaired. Frameworks

that record the whole evolution history of the model

instances (Section 3.4.2) may also be seen as incremental

since this history may be used to guide the generation of

repair updates.

Repair Representation: This feature regards the actual

information contained in the repair updates R returned by

the repair procedure. We identified two exclusive features

in this group. Those with state-based repair updates simply

return the newly generated model instances. In such cases, a

repair update r 2 R simply amounts to new model

instancesm 2M. Other procedures

are operation-based, returning instead information

regarding how the model instances should be changed in

order to ameliorate the consistency level. The shape of

repair update r 2 R in such cases varies, as presented below.

Note that the information contained of repair updates r 2 R

is not necessarily the same as the one of user updates u 2 U

(Section 3.4). For instance, it is common for model repair

approaches to consider state-based user updates but

generate operation-based repair updates.

Operation-based: In operation-based approaches, a repair

update proposed to the user may take the shape of a repair

action, consisting of an atomic edit operation or of a repair

plan, built from the sequential composition of valid edit

operations [9], [10], [15], [38], [39], [40], [42], [45], [47],

[55], [63], [65], [66], [68], [70], [71], [72], [74], [76], [77].

The set

Fig. 12. Repair features.

of valid edit operations that comprise these repair updates

is defined elsewhere (Section 3.6.3). This notion is different

from that of multiple repair update alternatives (Section

3.7.1): in a repair plan the multiple actions aim to solve the

same inconsistency, while the multiple enumeration of

repair updates may represent alternative solutions to the

same inconsistency (which may themselves be repair

plans).

Content: The repair updates are also classified by their

content. In this context, they may either be concrete, in

which case they can be directly applied to the environment

or abstract, requiring input from the user to be instantiated.

Most model repair procedure generate concrete repair

updates when possible, and only occasionally abstract ones.

Thus, the selection of these features is not exclusive.

Abstract repair updates may occur when the update requires

a parameter that the model repair procedure is not able (or

was not designed) to provide, relying instead on the user to

define it. A typical example occurs when the technique

identifies that the value of a property must be changed, but

does not commit to a concrete new value. This kind of

procedure may undermine the correctness of the procedure

(Section 3.8.2) since the user may fail to handle the

inconsistency or introduce new ones (which may be

common as the complexity of the modeling environment

increases). Our study show that both abstract and

concrete repair updates may be used in both state-based and

operations based repair updates.

Edit Operations: This feature regards the set of edit

operations available to the repair procedure to calculate the

repair update alternatives. For state-based repair updates

(Section 3.6.2), and typically in those solver-based (Section

3.6.1), this set may be undefined, since the repair procedure

simply searches for consistent model instances [37], [44],

[59], [61], [78]. In rule-based approaches, this set amounts

to the repair rules defined in the framework. In contrast, in

syntactic and other search-based approaches, this amounts

to the set of operations available to the procedure when

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 February 2018 | ISSN: 2320-2882

IJCRT1801538 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 844

traversing the constraints or searching for solutions. These

usually amount simply to creation, modification and

deletion operations, although our study shows that some do

not allow the creation of elements. Although in many

techniques this set of valid edit operations is fixed the user

may also be allowed to customize it, either by being able to

define the set of valid edit operations or by disabling some

of those predefined . This is typical in rule-based

approaches and some syntactic approaches that generate the

repair updates for each constraint at static-time. Techniques

with a well-defined set of edit operations may also allow

the user to assign them different costs, controlling the repair

update generation in the process (Section 3.7.2), and even

disable certain operations by assigning them high enough

costs. While techniques may use this set of edit operations

to return operation-based repair updates (Section 3.6.2) to

the user, this is not necessarily the case. For instance,

techniques may internally rely on a fixed set of edit

operations but still present state-based repair updates. In

operation-based repair updates these can be returned as

atomic repair actions or composed into repair plans.

G. Enumeration

 This feature group defines the mechanism through

which repair updates R are selected and presented to the

user by the repair procedure REPAIR, as well how this

mechanism can be controlled (RQ5.1). These features are

presented in Fig. 13, which is referenced by the general

repair diagram in Fig. 12.

Output: Since the number of possible repair updates may

be overwhelming, to be manageable techniques usually

restrict themselves to a subset of the acceptable updates.

This may still amount to multiple repair alternatives

although some are able to select single repair updates. This

feature selection is exclusive. Our studies show that single

repair updates can be returned by repair procedures

following any of the core mechanisms (Section 3.6.1) and

repair update representation (Section 3.6.2). The means

through which these repair updates are selected may or not

have been influenced by the user, as will be shown below.

Fig. 13. Repair update enumeration features.

Complete: Techniques that return multiple repair updates

are said to be complete if they return every possible repair

update within the parameters of the execution (i.e., the

bounds of the search space, the allowed edit operations and

any restriction imposed by the enforced semantic

properties) [9], [10], [15], [20], [28], [37], [41], [45], [70].

Techniques that are not complete may discard interesting

repair update alternatives or fail to handle certain

inconsistencies. Again, this feature does not seem to be

directly dependent on the selected core mechanism (Section

3.6.1): search-based approaches can search the whole

search space, rule-based approaches may attempt to match

ever every acceptable rule, and syntactic approaches may

generate every possible alternative as the constraints are

traversed.

Order: The set of the returned repair updates (Section

3.7.1), as well as the order in which they are enumerated,

must be somehow selected by the repair procedures from

the set of acceptable ones. This order is always defined, and

can be embodied by a distance metric _ : U _U ! N over

updates which the procedure tries to minimize. In

procedures that return a single repair update, this order

determines which repair will be selected; in procedures that

return multiple repair update alternatives, it determines the

set of selected repair updates as well as the order in which

they are enumerated. While related to least-change (Section

3.8.4), techniques with ordered repair enumeration that are

not complete (Section 3.7.1) are not necessarily

leastchange, as the minimal repair update among the

selected ones may not be the minimal repair update overall.

Such order may be internally defined and opaque to the

user, which may render the procedure unpredictable. This

kind of approaches include search-based procedures

returning an arbitrary repair update, e.g., the first found, or

rule based approaches that provide no control on how the

rule application is selected, e.g., using some internal priory

order over rules that is hidden from the user (Section 3.6.1).

Some frameworks try to circumvent the unpredictability

problem arising from opaque orders by providing the

complete enumeration of repair alternatives (Section 3.7.1).

Other approaches have this order on repair updates

predefined, rendering the technique more predictable.

Typically fixed metrics include the graph-edit distance, that

counts insertions and removals of model elements, and

operation-based distances, that count the number of edit

steps between two models, given a set of valid edit

operations (Section 3.6.3).

Parameterizable: Approaches with the enumeration order

either opaque or predefined may allow users to

parameterize the distance function _, thus enabling them to

control the behavior of the repair procedure. For instance,

under graph-edit distance, this can be achieved by assigning

different weights to different parts of the meta-model [9],

[41]. This allows the user to prioritize repair updates over

certain types of model elements over others. Alternatively,

the weights may be assigned directly to the model elements,

prioritizing changes over concrete parts of the model

instances. An extreme form of this feature is in area

selection, in techniques that allow the user to freeze

portions of the model instances (as in bidirectional

transformation where one of the model instances remains

unchanged). Instead of focusing on the models, the user

may instead be allowed to control the application of the edit

operations that comprise the repair updates (if these are

well-defined (Section 3.6.3), as imposed by the excludes

expression in the diagram) by attaching them with costs [9],

[15], [41], [70]. Users may also be able to assign different

priorities to the defined constraints, instructing the repair

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 February 2018 | ISSN: 2320-2882

IJCRT1801538 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 845

procedure to focus on different classes of violations

[52],[74].

 Finally, our study also found an approach where the user

is able to control the procedure by relying on some

additional meta-data from the environment, like authoring

and versioning information [9]. Although in general this

parametrization effectively affects the behavior of the repair

procedure, some approaches use such features to simply

provide the user with additional information regarding the

impact of each possible repair update. Such weights can

also be used by the checking procedure to return more

informative reports. Interactive: Techniques may rely on an

interactive dialog with the user to refine the set of possible

repair updates [51], [53], [62], [64], [71], [73], [77]. Most

of the times the goal of the process is to select a single

repair updates from the set of those available. This feature

contrasts with the generation of abstract repair updates

(Section 3.6.2), where instead of an interactive dialog, the

procedure generates repair updates that must be instantiated

by the user posteriorly.

Fig. 14. Repair semantics features.

H. Semantics

 This feature group explores the semantic properties

that the repair procedure REPAIR is guaranteed to follow

(RQ5.2), which are depicted in Fig. 14, referenced by the

general repair diagram in Fig. 12. These properties may be

difficult to assess, especially if dependent on user input,

like in interactive approaches. Thus, in our study we

followed a conservative approach and only assumed

properties explicitly referred to by the authors of the

primary studies. Although our formalization of the semantic

properties of the model repair procedure is novel, they are

inspired by those proposed for constraint maintainers in the

context of bidirectional transformation [85].

Totality: A technique is said to be total if for every user

update that results in an inconsistent state, it is able to

produce a repair update (if there is one such repair update

available for the current model instances). This property

can be formalized, for a set of constraints c and an update u,

as follows:

meaning that, if there is an update u0 from the current state

that reduces the level of inconsistency, then the repair

procedure will always return a repair update alternative. We

assume that if the updates do not preserve the information

regarding the pre-state, then pre(u0) = post(u) always holds.

The most simple instantiation of this rule occurs in purely

state-based approaches for both user (Section 3.4.1) and

repair updates (Section 3.6.2) with a boolean checking

procedure (Section 3.5.3). For a model m, it takes the

shape:

meaning that, if there exists a model that is consistent under

c, the repair procedure will return a model. Search-based

techniques (Section 3.6.1) are usually total, as they simply

search for consistent model instances (although some do

interrupt the procedure after certain thresholds). Rule-based

techniques with only repair rules are naturally total, as they

act on the inconsistencies as they are detected; rule-based

techniques with both check and repair rules are total is there

is at least a repair rule for each check rule. Syntactic

techniques that focus on single violations at a time are

typically total, while those that consider every

inconsistency at once may encounter conflicts and fail to

produce a repair update. Approaches

with need for repair hints (Section 3.3.1) or user interaction

(Section 3.7.2) may fail if the user-defined resolutions do

not restore consistency.

Correctness: Since the goal of repair procedures is to

remove inconsistencies from the environment’s state, they

must provide some correctness guarantees. In fact, we have

already defined model repair (Def. 2) under the assumption

this notion can be formalized by a partial order v over

inconsistency levels I. Thus, the correctness of the model

repair procedure is always measured in relation to that v.

However, as seen in Section 3.5.3, although for simple

reports the shape of I entails the partial order, for composite

reports that is not the case. Thus, there is the need to infer

which is the expected behavior of the technique from the

description of the technique.

Well-behaved: A model repair procedure is said to be well-

behaved if the inconsistency level at least does not increase

whenever one of these repair updates is applied i.e.,

 This is the minimal correctness behavior expected from

a repair procedure. For instance, in boolean procedures, this

means not turning completely consistent environments into

inconsistent ones; in those reporting the detected violations

this forces procedures to not introduce new violations

unless some those already detected were removed. In

procedures with violation selection, this usually amounts to

not introducing new violations if the selected one fails to be

repaired. Consistency Improving: Procedures that guarantee

consistency improving effectively ameliorate the state of

the environment, reducing its inconsistency level (unless it

is already at a minimum inconsistency level). For a set of

constraints c and update u, this property can be specified as:

 Consistency improving procedures are always well

behaved. If there is a single minimal inconsistency level ?I,

then it can be simplified as:

 Under boolean checking procedures this property

degenerates into fully consistent procedures, defined below.

Under more expressive checking procedures, like those

reporting a set of violations, this behavior may occur in

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 February 2018 | ISSN: 2320-2882

IJCRT1801538 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 846

techniques that attempt to fix violations until a certain

threshold is reached. Under distinguished constraints

(Section 3.3.1) this is common in techniques that are only

concerned with a certain class of constraints (e.g.,

techniques dedicated to handle inter-model constraints may

disregard intra-model constraints), or those supporting

violation selection that effectively remove that violation

(and may or not avoid side effects on the remainder

violations).

Fully Consistent: Procedures are said to be fully consistent

if they guarantee that the inconsistency level is always

reduced to a minimum i.e., for every update u and set of

constraints c:

 Fully consistent procedures are always consistency

improving. In case there is a least element ?I in the

inconsistency level, the law degenerates into

 The impact of this property depends on the minimal

elements of the partially ordered set I. For instance, under

boolean checking procedures, this amounts to setting the

result to true, while under procedures that return a set of

violations, this amount to fixing every violation (including

possible negative side effects). This is the typical behavior

of search-based approaches, that resolve all consistencies at

the same time. In techniques with violation selection, this

would entail fixing not only the selected violation, but also

every other one identified, which would be against their

essence. Note that the definition of correctness is

orthogonal to totality: procedures that fail to produce repair

updates do not break correctness. In fact, some techniques

enforce correctness by simply failing if generated repair

update fails to ameliorate the consistency level. Fully

consistent procedures are not necessarily desirable, as the

model may need to undergo inconsistent states before fully

recovering consistency [7].

Stability: A repair procedure is said to be stable if for every

update that does not result in an inconsistent state, it returns

null repair updates. For a user update u and constraints c,

this property can be formulated as:

 In purely state-based approaches with boolean checking

procedures, this degenerates into the following property, for

a model m:

 Rule-based techniques are naturally stable, as the repair

rules are not applied unless inconsistencies are detected.

Techniques are not stable if they apply update procedures

regardless of the models being consistent. This is the case

of approaches that simply map edit operations from the user

updates into operations in the repair update.

Least-change: The principle of least-change requires

repaired models to be as close as possible to the original,

according to the defined order on updates _ : U _ U ! N (

Section 3.7.2) [9], [15], [20], [28], [41], [47], [60]. Thus,

this order order may not be opaque, as is made explicit by

the excludes expression in the diagram, and is possibly

customized by the user (Section 3.7.2). This renders the

approach more predictable to the designer since the set of

selected repair updates is well-defined. However, while

most approaches informally and loosely approximate this

intuition using ad hoc or heuristic mechanisms, providing

least-change guarantees is a complex task. In general, this

technique is formalized as follows, for an update u and

constraints c:

 Meaning that, compared with the repair updates that are

equally consistent, the returned repair updates are closer to

the current state of the environment. In purely state-based

approaches, this degenerates into the following property,

for a model m and constraints c:

 If the identity of indiscernibles holds for the distance

function (_(m;m0) = 0 _ m = m0), then least-change entails

stability. Otherwise there are minimal updates other than

the null update.

I. Threats to Validity

 The scope of the search was restricted to general-

purpose software engineering venues. As a consequence,

certain studies that were developed under specific

application domains, but with possible general application,

could have been disregarded. Our pilot searches did not

identify any such study, since for every technique that was

disregarded we found an extended or adapted to general

purpose techniques that were published in the venues within

our scope. Some features not explicitly covered by the

authors of the primary studies may have been missed during

data extraction and synthesis. The iterative nature of the

coding process somehow tames this issue, since features

detected in succeeding primary studies trigger a new

revision of the previous studies focused on those newly

identified features. The major facet disregarded in the study

regards the deployment of the identified approaches. While

these are undoubtedly relevant, our pilot searches suggested

that most studies do not address the deployment of the

techniques, and those that do usually do not provide

sufficient information in the paper. Thus, rather than having

an underexplored facet, we chose to disregard deployment

altogether (other than the technical space of the techniques,

which is usually evident in the presentation).

IV. CLASSIFYING TECHNIQUES

 In the previous section we presented the taxonomy

developed from the systematic literature review. In this

section we classify a set of distinct model repair approaches

under this taxonomy as a proof of concept [9], [10], [28].

We selected these approaches because i) they are recent

approaches, based on modern, state-of-the-art techniques;

ii) the primary studies presenting them were detailed

enough to allow us classify with confidence most of the

facets; and iii) they follow different core approaches,

resulting in a varied selection of features. The goal is to

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 February 2018 | ISSN: 2320-2882

IJCRT1801538 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 847

demonstrate that classifying techniques through our

taxonomy helps in obtaining structured and thorough

descriptions which allow a better understanding and clear

comparison of different approaches. Since some features

may be difficult to assess for the primary studies (due to

lack of information or ambiguity) our classification is

conservative. The resulting classification is summarized in

Tables 2 and 3 and discussed in the remainder of this

section. Each of the columns represents a second-level

feature. If that feature is optional, it is identified whether it

was (Y) or not (N) selected by the approach; if the feature is

mandatory, its selection is omitted. Every optional children

feature of those second level features selected by the

approaches is also identified in that column.

 To better illustrate the differences between the

techniques, as well as the impact of the feature selection,

we design a simple running example on which they are

applied. Since we could not access the implementations of

all these approaches, in order to define our profiles and

infer actual repair updates, we resorted to the explicit

information available in the literature and to our

understanding of the techniques after a thorough study. The

example (borrowed from [9]) represents a more developed

version of the VOD system and is composed by the class

and sequence diagrams shown in Figs. 15a and 15b,

respectively. The class diagram captures the structure of the

system, while the sequence diagram describes the steps

required in the process of playing a movie. Recalling

constraint message_operation from Section 2.1, in order for

this model to be consistent, for every message in the

sequence diagram, there must exist an operation in the class

of the receiver lifeline, whose name equals that of the

message. Since there is no operation play in class Streamer,

and display d sends message play to streamer st, this model

is inconsistent. We only consider this single constraint in

isolation, the repair space not being subject to any other

restrictions, for instance related to some state diagram or to

the associations between classes.

A. The Badger Approach

 Badger [9] is a regression planner, implemented in

Prolog, that generates repair plans for handling design

model inconsistencies by applying the artificial intelligence

technique of automated planning [86]. This technique aims

to generate sequences of actions that lead from an initial

state to a state meeting a specific predefined goal.

Requiring as input a model and a set of inconsistencies,

Badger performs a regression planning by starting from the

negation of these

Fig. 15. Simple VOD system.

inconsistencies as the goal state, and searching backwards

to find a sequence of actions that reach the initial state.

Badger is based on a logical formalism, as model instances

and meta-models are represented by logic facts, specified in

a Prolog embedded Domain Specific Language (eDSL).

The technique provides rules for defining metamodel

elements, their properties and relationships, thus being

meta-model independent. However, by having the Prolog

eDSL as its technical space (other) and not providing any

automated mechanism for the embedding of model

instances nor meta-models persisted in standard languages,

its integration into the MDE development process would

not be seamless.

 This contrasts with both Model/Analyzer and Echo,

which are deployed under standard technical spaces.

Constraints are also user definable in the eDSL as intra-

model logical constraints expressed in first-order logic with

transitive closure. Since these constraints are defined in the

same technical space as the model instances and

metamodels, rather than being attached to the meta-model,

they may refer to concrete model elements. In Badger,

model instances and user updates are indistinguishable

since they are not represented by the elements they contain,

but rather by sequences of edit operations. The entire

history record is kept (and also each pre-state), with

authorship and versioning information attached to each edit

step. This provides the repair procedure with rich

information that is not available to those of Model/Analyzer

nor Echo. For detecting inconsistencies, Badger relies on a

decoupled checking procedure proposed in [87], which

returns modellevel predicates corresponding to existing

inconsistencies. These predicates are then negated and set

as the goal of repair procedure. Prolog’s built-in

backtracking mechanism allows Badger to generate

multiple repair plans, each one consisting of a set of repair

actions that render the goal true.

 The core of the procedure is a domain-specific planner

based on a recursive best-first search (RBFS) algorithm.

Although this is an improvement of the well-known A*

algorithm, which is known to be complete, it is not clear in

the paper whether Badger provides a complete enumeration

of plans or not. Badger has a fixed set of edit operations for

creating and

TABLE II: Classification Of The Selected Techniques

For The Domain, Constraint And Update Facets

TABLE III: Classification Of The Selected Techniques

For The Check And Repair Facets

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 February 2018 | ISSN: 2320-2882

IJCRT1801538 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 848

deleting objects, as well as for creating, modifying and

deleting properties or references on those objects. A benefit

of using a search-based core is that the repair procedure

enumerates the repair plans under a parameterizable order,

which the user can control by tweaking the cost function

used by the planner algorithm. For instance, the metric can

be parameterized by assigning costs to edit operations, or

weights to meta-model and model elements. Area selection

and operation disabling can be achieved by assigning

infinite costs. Since the whole history is recorded, costs

over metadata

such as authors and versions can also be assigned. This

contrasts with Model/Analyzer, that does not allow such

customization, and with Echo, that allows the user to

customize the edit operations (which are fixed in Badger).

 In order to avoid the multiplication of repair plans, for

modifying references only (other operations are concrete),

Badger resorts to temporary (abstract) elements which the

user must replace by concrete ones when effectively

applying the repair plan. As a consequence, repair updates

cannot be automatically applied to the model instances, in

contrast to fully concrete repair updates like those of Echo.

Concerning semantics, Badger applies a consistency

improving procedure as it generates plans transforming the

erroneous model instance into one which does not have the

detected violation (negated in the desired goal). However,

by focusing in a single violation, it is not fully consistent,

since other violations may be introduced by the repair plans

(i.e., it is prone to negative side effects). Finally, the

solution function used by Badger, which verifies whether

there are no more unsatisfied literals in the desired goal,

should ensure the stability of the procedure.

 By default, the repair plans generated by Badger are

ordered in terms of the number of actions they contain. For

the defined example, the following eight plans to remove

the violation are generated [9]:

 modify reference target of message play

 set property name of message play to stream

 set property name of operation stream to play

 set property name of message play to wait

 set property name of operation wait to play

 set property name of message play to connect

 set property name of operation connect to play

 delete message play and its references source and

target

 The parametrizable order results in alternative cost

functions, which change the order in which repair plans are

generated (disabling some if infinite costs are assigned).

For instance, if one were to set a higher priority to the

sequence diagram by assigning smaller costs to actions that

create, modify or delete an element belonging to it –

allowed by the operation costs feature – the order in which

these plans would be generated becomes 1, 2, 4, 6, 8, 3, 5

and 7. Although most generated repair plans are concrete,

the first one, which suggests modifying reference target of

message play, is an example of an abstract repair update. It

avoids enumerating every lifeline, requiring the user to

choose one when applying the repair plan. This renders the

procedure more manageable by the user, at the cost of full

automation. Despite removing previously detected

inconsistencies, Badger is not free from negative side

effects. This is depicted in plan 7, which removes the

violation for message play but introduces another violation

of the same type for message connect. This is characteristic

of consistency improving approaches with a loose order

over the inconsistency levels, that guarantee the repair of

the selected violation but disregard possible side effects.

Considering the abstract syntax presented in its paper for

the class and sequence diagrams, as well as all the types of

repair actions supported by Badger, the enumeration of the

repair plans does not seem to be complete. For instance,

adding the missing operation to class Streamer or

modifying reference class of st, would

also be valid repair plans but are not generated.

B. The Model/Analyzer Approach

 Model/Analyzer [10], [88] is a tool which follows an

incremental approach to model repair, mainly focusing on

efficiency. Using the syntactic structure of constraints, it

determines which specific parts of a model must be checked

and repaired. To achieve this, a form of profiling is used to

dynamically observe constraint instances5 during

evaluation in order to identify what model elements they

must assess [89]. Building upon this tracking mechanism,

once a constraint instance is evaluated, the tool is able to

generate a corresponding tree of repair actions.

Model/Analyzer is built over an object-oriented formalism

and, even though the underlying repair technique is in

theory applicable to any kind of models, the tool is

implemented for UML (MDA) diagrams only, not

providing any meta-modeling functionalities. This contrasts

with Echo, which allows users to define meta-models

through a standard language. Badger also allows the user to

define the meta-models, but using an internal language. In

the shape of intra-model logical rules, constraints are user

definable by means of a generic language, called abstract

rule language (ARL), to which it is possible to map

arbitrary constraint languages, such as OCL. Once

evaluated, the user is expected to select a specific violation

to be fixed, instead of handling all inconsistencies at once.

For each instance of each constraint, a consistency tree

following its syntactic structure is kept in memory and

dynamically evaluated in response to identified model

updates (delta-based). When an element changes due to a

modification in the model, every constraint instance having

that element in its evaluation scope is notified.

 This works as a frame condition indicating the portion

of the state that was effectively changed. Thus, unlike Echo

and Badger, this tool is able to effectively detect elements

that may cause violations. This checking procedure is

tightly coupled to the repair mechanism. In fact, it is the

core of the technique, the repair procedure being built over

it, and thus can be naturally run in checkonly mode. A

violation is reported for each constraint instance that

evaluates to false, an evaluated tree being returned. Since

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 February 2018 | ISSN: 2320-2882

IJCRT1801538 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 849

the involved model elements are localized through their

leaves, one is able to understand where and why they failed.

The repair procedure is based on the comparison of the

expected truth value of each consistency tree node, derived

from its parent (ultimately, that of the root being true), with

its actual observed valuation. Wherever these values differ,

a corresponding repair node is generated accordingly to the

type of consistency node (logical operator) and observed

valuations. Since there may be more than a way to modify

the valuation of a logical operator, alternative repair plans

are returned for each violation, consisting of sequences of

abstract and fixed edit operations (element creation,

deletion, and modification). This results in repair plans

which also follow the syntactic structure of the design

constraint and represent enumerations of multiple repair

plans. These abstract plans contrast with those generated by

Badger, which are possibly concrete.

 The order in which the repair alternatives are

enumerated is not well-defined and opaque to the user, in

contrast with Badger and Echo. As a consequence, it is also

not parameterizable by the user. The approach is

incremental because once an update is performed, only

those trees (and tree branches in particular) are evaluated

which are affected by that particular change. Regarding

semantics, the repair procedure is consistency improving

because it is guaranteed to remove the violations/ trees

selected by the user. Yet, similarly to Badger, it is not fully

consistent because its goal is to remove only the selected

violation. However, it still provides stronger guarantees

than Badger since it checks for possible negative side

effects (i.e., it considers a stronger partial order on

inconsistency levels). Besides easily ensuring totality, this

approach is also stable, as the repair update generation only

occurs if the truth value of the consistency tree is false. For

the defined example, Model/Analyzer is expected to

produce seven alternative repair plans, each consisting of a

single repair action. Here we present the repair tree

flattened into a set of alternative repair plans6. Note that,

unlike the list of repair plans generated by Badger, here the

alternative plans are not ordered in any way clear to the

user (i.e., this internal order is opaque):

 modify reference target of message play

 modify reference target: class of message play

 add operation to target: class: operations of

message play

 modify property name of message play

 modify property name of operation stream

 modify property name of operation wait

 modify property name of operation connect

 Repair plans are generated either to fix the ranges of

the quantifiers, or their predicates. In the former case, a

repair action is suggested for each property referenced on

the range’s expression, while in the latter case, a repair

subtree is calculated for each element contained in that

range. For message play in particular, the top three plans fix

the range of the existential quantifier, while the other four

fix its predicate. Note that modifying the class of the

receiving lifeline, as well as adding an operation to its

current class (respectively the second and third plan) are

two particular repair updates missing in Badger’s repair

plans. However, compared with that previous technique,

this approach is instead missing the possibility of deleting

message play itself. In fact, we did not find any information

about how Model/Analyzer handles additions and removals

of context elements, so the repair update enumeration might

not be complete. Unlike Badger, where a plan may suggest

a concrete value to be assigned to some property, here all

repair actions are abstract. For instance, the action

suggesting to add an operation does not state whether this

should be created anew or should come from another class,

nor any suggestion to modify a name reveals what value

should be used.

 As a given tree is seen in isolation, one repair plan

may render (once instantiated) another tree inconsistent

(negative side effect). For instance, as Badger also suggests,

modifying property name of operation connect (last plan)

can only make message play consistent, if it also makes

message connect inconsistent. Nevertheless, the authors

stress that such potential side effects are detectable by

checking whether a repair action of a repair tree references

a model element belonging to the validation scope of other

trees. In this sense, although the technique is still

consistency improving (not every violation is removed), the

order imposed over inconsistency levels is stronger than

that of Badger.

C. The Echo Approach

 Echo is a tool for consistency management based on

the relational model finder Alloy [90], developed on top of

the popular EMF. While initially built as a bidirectional

model transformation framework [28], it eventually evolved

to also handle intra-model consistency [91] and

multidirectional transformation [60]. Thus, Echo is able to

check and repair both inter- and intra-model consistency.

Since Echo’s kernel is the Alloy model finder, it is based on

a relational formalism. Both model instances – following

the standard structured language XMI – and meta-models –

defined in EMF’s Ecore meta-modeling language – are

processed into this formalism, rendering the technique

metamodel independent. Moreover, Echo has support for

multimodel

environments, so multiple Ecore meta-models may

beprovided. Although its core engine is bounded, the repair

procedure, presented below, guarantees that this feature is

hidden from the user. Constraints are user definable, either

through the embedding of OCL intra-model logical

constraints as meta-model annotations, or through QVT-R

specifications, a declarative language designed to specify

intermodal consistency relations between related models. It

also has support for the bidirectionalization of ATL

transformations.

 All these types of constraints are expressed in first-order

logic with transitive closure, and are also embedded into the

Alloy core. Echo is state-based since it simply considers the

post-state resulting from a user update. While this allows

the technique to be run offline – since it does not need to

record the user’s actions – it will render the technique less

accurate than Model/Analyzer or Badger which take them

into consideration. This also requires the procedure to

check the consistency of the whole model instance at every

execution. The checking procedure is coupled to Echo and

can be run in checkonly mode: once model instances, meta-

models and the constraints are embedded into Alloy, its

model checking capabilities are used to check the

consistency of the environment. Thus, the checking

procedure is essentially boolean. As a consequence, the user

is not provided with much information regarding what

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 February 2018 | ISSN: 2320-2882

IJCRT1801538 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 850

caused the inconsistencies, unlike for instance

Model/Analyzer that reports violations. However, intra- and

inter-model constraints are distinguished, with Echo testing

them independently, resulting in a composite checking

report. The core of the repair procedure is similar to that of

the checking, but relying instead on Alloy’s model finding

capabilities, that relies on off-the-shelf SAT solvers. Thus it

is state-based, automatically calculates new model instances

that satisfy the constraints. Being built over model finding,

the procedure is naturally complete, enumerating multiple

model instances.

 Despite being state-based, the user is able to customize

the set of allowed edit operations that give rise to the

generated instances, thus controlling their generation.

Nonetheless, detecting what was effectively affected by the

repair update may not be trivial, unlike in Model/Analyzer

and Badger that calculate repair plans. However, contrary to

those approaches, Echo’s repair updates are always

concrete, which the tool converts into well-formed model

instances. When acting on multiple models, Echo allows the

user to select which of the model instances are to be

affected by the repair updates (area selection). The tool

follows the principle of least-change, which is achieved by

instructing the model finder to iteratively search for model

instances at an increasing distance. Two predefined metrics

are supported by Echo: graph-edit distance, that counts

insertions and removals of atomic model entities, or an

operation-based distance that counts the number of user-

defined edit operations applied. The latter is controlled

through the definition of the valid edit operations by the

user. This contrasts with Badger, that allows the

customization of the distance metric by assigning different

weights to a fixed set of operations or model elements.

Finally, due to its core based on model finding, this

technique is naturally total, fully consistent and stable. This

correctness guarantee is stronger than those of Badger and

Model/Analyzer, that focus on removing a single violation.

The trade off is performance, since this procedure does not

scale for large model instances.

 Regarding our example, it was encoded in Echo as an

intra-model consistency problem to be compared with the

other approaches, although the constraints could have

defined as inter-model. Since Echo’s repair updates are

state based, new model instances are returned, rather than

repair actions or plans. One of the consequences of this

feature is that the user is not directly aware of the

performed updates. Fig. 16 shows the repair update

alternatives for this problem that are closest to the original

model instance – due to the least-change property – under

regular graphedit distance, a predefined enumeration order.

For model instances at the same distance from the

inconsistent model, the order in which they are returned is

arbitrary. Note that only fully consistent model instances

are returned (e.g., no alternative renames operation connect,

as it is being referred by another message), thus its

characterization as fully consistent. The creation of a new

operation and the deletion of the message are not among

this initial set of alternatives, because they are not at

minimal distance from the initial model instance.

 Nevertheless, once the minimal ones are enumerated,

Echo starts producing the next closest ones, which would

include those repair update alternatives, resulting in a

complete procedure. Note that renaming the connect

operation to play and changing the class of the st lifeline,

although embodying minimal updates, are not produced by

Echo, since they create negative side effects and would

render the environment inconsistent. The order of the

returned solutions can be parameterizable by defining the

set valid edit operations (through OCL pre- and post-

conditions) and enforcing the operation based distance. For

instance, defining only operations to rename or delete

messages, Echo would only return the model instances from

Figs. 16a, 16b and 16c, and one where the message is

deleted.

V. CONCLUSION

 Inconsistency handling methods are vital to any

software development process within the increasingly

adopted MDE context. In this paper we propose a novel

feature-based classification system for such techniques, that

emerged from an exhaustive and systematic review of the

diverse landscape of model repair, with the goal of allowing

researchers and practitioners from different disciplines to

properly locate and compare their work in a unifying

framework. Supported by an underlying formalization of

the problem of model repair, this taxonomy comprises five

major classification facets, organized as hierarchical models

that entail acceptable feature combinations. These facets

address the shape of the relevant artifacts we set out to

explore in this study, as well as the role of the user in

specifying and customizing them. Despite the heterogeneity

of the landscape of model repair approaches, the proposed

classification is exhaustive and sufficiently flexible to

classify existing approaches regarding these facets. The

main relevant facet left out of the study regards the

deployment of the techniques. We chose not to address such

features due to the lack of information regarding the

effective implementation of the approaches detected during

the pilot searches.

 The exhaustive classification of the primary studies

selected in the literature review, published online [27],

provides a snapshot of the current state-of-the-art of model

repair approaches. Hopefully this can aid researchers and

tool developers in identifying interesting feature

combinations hitherto unexplored. For instance, each core

mechanism of the repair procedures has pros and cons, but

they are usually selected exclusively. Could hybrid

approaches draw benefits from the various mechanisms? In

any case, answering such questions would require the

collection of additional information, like the approaches’

performance and scalability, which is outside the scope of

this study. A quick glance at the table in [27] also shows

that most techniques do not provide guarantees regarding

the functional semantics of the model repair procedures.

This fact, allied to the lack of information regarding the

deployment of the techniques, indicates that perhaps the

area has yet to reach the desirable level of maturity. We

plan to keep this table up-to-date by rigorously reviewing

new techniques as they are proposed, refining the taxonomy

in the process with new methodologies if required, thus

ensuring that it remains applicable and complete. We

thoroughly classify and explore three modern approaches

to model repair under the proposed taxonomy, obtaining

normative profiles which assist in understanding the

techniques, and, since drawn from a common view point,

make similarities and differences more obvious. The

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 February 2018 | ISSN: 2320-2882

IJCRT1801538 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 851

techniques are compared and the impact of feature selection

is demonstrated by applying these techniques to a simple

example. Although this comparison did not address every

identified feature, we believe that the selected approaches

are indicative of their respective classes and provide an

overview of typical feature combinations. This, allied to the

presentation and discussion of the various features as they

are presented throughout the paper, should help MDE

practitioners perform more informed decisions when

selecting the model repair approach most suitable for their

particular needs.

VII. REFERENCES

[1] B. Nuseibeh, S. M. Easterbrook, and A. Russo,

―Leveraging inconsistency in software development,‖ IEEE

Computer, vol. 33, no. 4, pp. 24–29, 2000.

[2] G. Spanoudakis and A. Zisman, ―Inconsistency

management in software engineering: Survey and open

research issues,‖ Handbook of software engineering and

knowledge engineering, vol. 1, pp. 329–380, 2001.

[3] A. Demuth, R. E. Lopez-Herrejon, and A. Egyed,

―Supporting the co-evolution of metamodels and constraints

through incremental constraint management,‖ in 16th

International Conference on Model- Driven Engineering

Languages and Systems (MODELS 2013), ser. LNCS, vol.

8107. Springer, 2013, pp. 287–303.

[4]R.V.D. Straeten and M. D’Hondt, ―Model refactorings

through rule-based inconsistency resolution,‖ in 2006 ACM

Symposium on Applied Computing (SAC 2006). ACM,

2006, pp. 1210–1217.

Fig. 16. Model repair update alternatives generated by

Echo.

[5] D. Benavides, S. Segura, and A. R. Cort´es, ―Automated

analysis of feature models 20 years later: A literature

review,‖ Inf. Syst., vol. 35, no. 6, pp. 615–636, 2010.

[6] H. K. Dam, A. Reder, and A. Egyed, ―Inconsistency

resolution in merging versions of architectural models,‖ in

2014 IEEE/IFIP Conference on Software Architecture

(WICSA 2014). IEEE, 2014, pp. 153–162.

[7] S. Easterbrook and B. Nuseibeh, ―Using ViewPoints for

inconsistency management,‖ Software Engineering Journal,

vol. 11, no. 1, pp. 31–43, 1996.

[8] R. Balzer, ―Tolerating inconsistency,‖ in 13th

International Conference on Software Engineering (ICSE

1991). IEEE / ACM, 1991, pp. 158–165.

[9] J. P. Puissant, R. . D. Straeten, and T. Mens, ―Resolving

model inconsistencies using automated regression

planning,‖ Software and System Modeling, vol. 14, no. 1,

pp. 461–481, 2015.

[10] A. Reder and A. Egyed, ―Computing repair trees for

resolving inconsistencies in design models,‖ in IEEE/ACM

International Conference on Automated Software

Engineering (ASE 2012). ACM, 2012, pp. 220–229.

[11] A. Finkelstein, D. M. Gabbay, A. Hunter, J. Kramer,

and B. Nuseibeh, ―Inconsistency handling in

multiperspective specifications,‖ IEEE Trans. Software

Eng., vol. 20, no. 8, pp. 569–578, 1994.

[12] T. Mens, R. V. D. Straeten, and M. D’Hondt,

―Detecting and resolving model inconsistencies using

transformation dependency analysis,‖ in 9th International

Conference on Model Driven Engineering Languages and

Systems (MoDELS 2006), ser. LNCS, vol. 4199. Springer,

2006, pp. 200–214.

[13] A. Egyed, E. Letier, and A. Finkelstein, ―Generating

and evaluating choices for fixing inconsistencies in UML

design models,‖ in 23rd IEEE/ACM International

Conference on Automated Software Engineering (ASE

2008). IEEE, 2008, pp. 99–108.

[14] D. S. Kolovos, R. F. Paige, and F. Polack, ―Detecting

and repairing inconsistencies across heterogeneous

models,‖ in 1st International Conference on Software

Testing, Verification, and Validation (ICST

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 February 2018 | ISSN: 2320-2882

IJCRT1801538 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 852

2008). IEEE, 2008, pp. 356–364.

[15] H. K. Dam and M. Winikoff, ―Supporting change

propagation in UML models,‖ in 26th IEEE International

Conference on Software Maintenance (ICSM 2010). IEEE,

2010, pp. 1–10.

[16] M. Antkiewicz and K. Czarnecki, ―Design space of

heterogeneous synchronization,‖ in International Summer

School on Generative and Transformational Techniques in

Software Engineering II (GTTSE 2007),

ser. LNCS, vol. 5235. Springer, 2007, pp. 3–46.

[17] P. Stevens, ―A landscape of bidirectional model

transformations,‖ in International Summer School on

Generative and Transformational Techniques in Software

Engineering II (GTTSE 2007), ser. LNCS, vol. 5235.

Springer, 2007, pp. 408–424.

[18] E. Leblebici, A. Anjorin, A. Sch ¨ urr, S. Hildebrandt,

J. Rieke, and J. Greenyer, ―A comparison of incremental

Triple Graph Grammar tools,‖ ECEASST, vol. 67, 2014.

[19] J. Etzlstorfer, A. Kusel, E. Kapsammer, P. Langer, W.

Retschitzegger, J. Schoenboeck, W. Schwinger, and M.

Wimmer, ―A survey on incremental model transformation

approaches,‖ in Workshop on Models and Evolution (ME

2013), ser. CEURWorkshop Proceedings,

vol. 1090. CEUR-WS, 2013, pp. 4–13.

[20] A. Cunha, N. Macedo, and T. Guimar˜aes, ―Target

oriented relational model finding,‖ in 17th International

Conference Fundamental Approaches to Software

Engineering (FASE 2014), ser. LNCS, vol. 8411. Springer,

2014, pp. 17–31.

[21] B. A. Kitchenham and S. Charters, ―Guidelines for

performing systematic literature reviews in software

engineering,‖ School of Computer Science and

Mathematics, Keele University, Tech. Rep. EBSE-2007-01,

2007.

[22] A. Finkelstein, G. Spanoudakis, and D. Till,

―Managing interference,‖ in 1996 International Workshop

on Multiple Perspectives in Software Developmemt

(Viewpoints’ 1996). ACM, 1996, pp. 172–174.

[23] J. P. Puissant, ―Resolving inconsistencies in model-

driven engineering using automated planning,‖ Ph.D.

dissertation, Universit de Mons, 2012.

[24] K. Czarnecki and S. Helsen, ―Feature-based survey of

model transformation approaches,‖ IBM Systems Journal,

vol. 45, no. 3, pp. 621–646, 2006.

[25] S. Hidaka, M. Tisi, J. Cabot, and Z. Hu, ―Feature-

based classification of bidirectional transformation

approaches,‖ Software and Systems Modeling, 2015, in

Press.

[26] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and

A. S. Peterson, ―Feature-oriented domain analysis (FODA)

feasibility study,‖ Software Engineering Institute, Carnegie

Mellon University, Tech. Rep. CMU/SEI-90-TR-21, 1990.

[27] N. Macedo, T. Jorge, and A. Cunha. (2016) Systematic

literature review of model repair approaches. [Online].

Available: http://tinyurl.com/hv7eh6h

[28] N. Macedo and A. Cunha, ―Least-change bidirectional

model transformation with QVT-R and ATL,‖ Software and

System Modeling, 2014, in press.

[29] F. J. Lucas, F. Molina, and J. A. T. A´ lvarez, ―A

systematic review of UML model consistency

management,‖ Information & Software Technology, vol.

51, no. 12, pp. 1631–1645, 2009.

[30] OMG, OMG Object Constraint Language (OCL),

Version 2.3.1, January

2012, available at http://www.omg.org/spec/OCL/2.3.1/.

[31] ——, MOF 2.0 Query/View/Transformation

Specification (QVT), Version 1.1, January 2011, available

at http://www.omg.org/spec/QVT/1.1/.

[32] P. Stevens, ―Bidirectionally tolerating inconsistency:

Partial transformations,‖in 17th International Conference on

Fundamental Approaches to Software Engineering (FASE

2014), ser. LNCS, vol. 8411. Springer, 2014, pp. 32–46.

[33] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson,

―Systematic mapping studies in software engineering,‖ in

12th International Conference on Evaluation and

Assessment in Software Engineering (EASE 2008), ser.

Workshops in Computing. BCS, 2008.

[34] M. S. Ali, M. A. Babar, L. Chen, and K. Stol, ―A

systematic review of comparative evidence of aspect-

oriented programming,‖ Information & Software

Technology, vol. 52, no. 9, pp. 871–887, 2010.

[35] M. Galster, D. Weyns, D. Tofan, B. Michalik, and P.

Avgeriou, ―Variability in software systems – A systematic

literature review,‖ IEEE Trans. Software Eng., vol. 40, no.

3, pp. 282–306, 2014.

[36] D. S. Cruzes and T. Dyb°a, ―Recommended steps for

thematic synthesis in software engineering,‖ in 5th

International Symposium on Empirical Software

Engineering and Measurement (ESEM 2011). IEEE, 2011,

pp. 275–284.

[37] R. Eramo, I. Malavolta, H. Muccini, P. Pelliccione,

and A. Pierantonio, ―A model-driven approach to automate

the propagation of changes among architecture description

languages,‖ Software and System Modeling, vol. 11, no. 1,

pp. 29–53, 2012.

[38] T. Hettel, M. Lawley, and K. Raymond, ―Towards

model roundtrip engineering: An abductive approach,‖ in

2nd International Conference on Theory and Practice of

Model Transformations (ICMT 2009), ser. LNCS, vol.

5563. Springer, 2009, pp. 100–115.

[39] B. Nuseibeh and A. Russo, ―Using abduction to evolve

inconsistent requirements specification,‖ Australasian J. of

Inf. Systems, vol. 6, no. 2, 1999.

[40] J. P. Puissant, T. Mens, R. Van, and D. Straeten,

―Resolving model inconsistencies with automated

planning,‖ in 3rd Workshop on Living with Inconsistencies

in Software Development (LWI 2010), ser. CEUR

Workshop Proceedings, vol. 661. CEUR-WS, 2010, pp. 8–

14.

[41] J. Schoenboeck, A. Kusel, J. Etzlstorfer, E.

Kapsammer, W. Schwinger, M. Wimmer, and M.

Wischenbart, ―CARE –A constraint-based approach for re-

establishing conformancerelationships,‖in 10th Asia-Pacific

Conference on Conceptual Modelling(APCCM 2014), ser.

CRPIT, vol. 154. Australian ComputerSociety, 2014, pp.

19–28.

[42] M. A. A. da Silva, A. Mougenot, X. Blanc, and R.

Bendraou,―Towards automated inconsistency handling in

design models,‖in 22nd International Conference on

Advanced Information SystemsEngineering (CAiSE 2010),

ser. LNCS, vol. 6051. Springer, 2010,pp. 348–362.

[43] R. V. D. Straeten, T. Mens, J. Simmonds, and V.

Jonckers, ―Usingdescription logic to maintain consistency

between UML models,‖in 6th International Conference on

The Unified Modeling Language,Modeling Languages and

Applications (UML 2003), ser. LNCS, vol.2863. Springer,

2003, pp. 326–340.

[44] S. Easterbrook, ―Handling conflict between domain

descriptionswith computer-supported negotiation,‖

Knowledge Acquisition,vol. 3, no. 3, pp. 255–289, 1991.

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 February 2018 | ISSN: 2320-2882

IJCRT1801538 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 853

[45] C. Nentwich, W. Emmerich, and A. Finkelstein,

―Consistencymanagement with repair actions,‖ in 25th

International Conferenceon Software Engineering (ICSE

2003). IEEE, 2003, pp. 455–464.

[46] W. N. Robinson and S. D. Pawlowski, ―Managing

requirementsinconsistency with development goal

monitors,‖ IEEE Trans. SoftwareEng., vol. 25, no. 6, pp.

816–835, 1999.

[47] J. Scheffczyk, U. M. Borghoff, A. Birk, and J.

Siedersleben, ―Pragmaticconsistency management in

industrial requirements specifications,‖in 3rd IEEE

International Conference on Software Engineering

and Formal Methods (SEFM 2005). IEEE, 2005, pp. 272–

281.

[48] Y. Xiong, D. Liu, Z. Hu, H. Zhao, M. Takeichi, and H.

Mei,―Towards automatic model synchronization from

model transformations,‖in 22nd IEEE/ACM International

Conference on AutomatedSoftware Engineering (ASE

2007). ACM, 2007, pp. 164–173.

[49] M. Chechik,W. Lai, S. Nejati, J. Cabot, Z. Diskin, S.

M. Easterbrook,M. Sabetzadeh, and R. Salay,

―Relationship-based change propagation:A case study,‖ in

ICSE Workshop on Modeling in SoftwareEngineering

(MiSE 2009). IEEE, 2009, pp. 7–12.

[50] J. C. Grundy, J. G. Hosking, and W. B. Mugridge,

―Inconsistencymanagement for multiple-view software

development environments,‖IEEE Trans. Software Eng.,

vol. 24, no. 11, pp. 960–981,

1998.

[51] G. Hinkel, ―Change propagation in an internal model

transformationlanguage,‖ in 8th International Conference

on Theory andPractice of Model Transformations (ICMT

2015), ser. LNCS, vol. 9152.Springer, 2015, pp. 3–17.

[52] J. M. K¨ uster and K. Ryndina, ―Improving

inconsistency resolutionwith side-effect evaluation and

costs,‖ in 10th International Conferenceon Model Driven

Engineering Languages and Systems (MoDELS2007), ser.

LNCS, vol. 4735. Springer, 2007, pp. 136–150.

[53] W. Liu, S. Easterbrook, and J. Mylopoulos, ―Rule-

based detectionof inconsistency in UML models,‖ in

Workshop on ConsistencyProblems in UML-based

Software Development. Blekinge Instituteof Technology,

2002, pp. 106–123.

[54] I. Ra´th, A. O¨ kro¨ s, and D. Varro´ ,

―Synchronization of abstractand concrete syntax in domain-

specific modeling languages – Bymapping models and live

transformations,‖ Software and System

Modeling, vol. 9, no. 4, pp. 453–471, 2010.

[55] H. Song, G. Huang, F. Chauvel, W. Zhang, Y. Sun, W.

Shao,and H. Mei, ―Instant and incremental QVT

transformation forruntime models,‖ in 14th International

Conference on Model DrivenEngineering Languages and

Systems (MODELS 2011), ser. LNCS, vol. 6981. Springer,

2011, pp. 273–288.

[56] G. Spanoudakis and A. Finkelstein, ―Reconciling

requirements:A method for managing interference,

inconsistency and conflict,‖Ann. Software Eng., vol. 3, pp.

433–457, 1997.

[57] A. Wider, ―Implementing a bidirectional model

transformationlanguage as an internal DSL in Scala,‖ in

Workshops of theEDBT/ICDT 2014 Joint Conference

(EDBT/ICDT 2014), ser. CEURWorkshop Proceedings,

vol. 1133. CEUR-WS, 2014, pp. 63–70.

[58] Y. Xiong, Z. Hu, H. Zhao, H. Song, M. Takeichi, and

H. Mei,―Supporting automatic model inconsistency fixing,‖

in 7th jointmeeting of the European Software Engineering

Conference and theACM SIGSOFT International

Symposium on Foundations of Software Engineering

(ESEC/FSE 2009). ACM, 2009, pp. 315–324.

[59] Y. Xiong, H. Song, Z. Hu, and M. Takeichi,

―Synchronizing concurrent model updates based on

bidirectional transformation,‖ Software and System

Modeling, vol. 12, no. 1, pp. 89–104, 2013.

[60] N. Macedo, A. Cunha, and H. Pacheco, ―Towards a

framework for multidirectional model transformations,‖ in

Workshops of theEDBT/ICDT 2014 Joint Conference

(EDBT/ICDT 2014), ser. CEURWorkshop Proceedings,

vol. 1133. CEUR-WS, 2014, pp. 71–74.

[61] R. V. D. Straeten, J. P. Puissant, and T. Mens,

―Assessing theKodkod model finder for resolving model

inconsistencies,‖ in7th European Conference on Modelling

Foundations and Applications(ECMFA 2011), ser. LNCS,

vol. 6698. Springer, 2011, pp. 69–84.

[62] C. Amelunxen, E. Legros, A. Sch ¨ urr, and I. St

¨urmer, ―Checking andenforcement of modeling guidelines

with graph transformations,‖in 3rd International

Symposium on Applications of Graph Transformationswith

Industrial Relevance (AGTIVE 2007), ser. LNCS, vol.

5088.Springer, 2007, pp. 313–328.

[63] A. Anjorin, S. Rose, F. Deckwerth, and A. Sch ¨ urr,

―Efficient modelsynchronization with View Triple Graph

Grammars,‖ in 10th EuropeanConference on Modelling

Foundations and Applications (ECMFA2014), ser. LNCS,

vol. 8569. Springer, 2014, pp. 1–17.

[64] S. M. Becker, S. Herold, S. Lohmann, and

B.Westfechtel, ―A graphbasedalgorithm for consistency

maintenance in incremental andinteractive integration

tools,‖ Software and System Modeling, vol. 6,no. 3, pp.

287–315, 2007.

[65] G. Bergmann, I. R´ath, G. Varr´ o, and D. Varr´ o,

―Change-drivenmodel transformations – Change (in) the

rule to rule the change,‖Software and System Modeling,

vol. 11, no. 3, pp. 431–461, 2012.

[66] H. Giese and R. Wagner, ―From model transformation

to incrementalbidirectional model synchronization,‖

Software and SystemModeling, vol. 8, no. 1, pp. 21–43,

2009.

[67] M. Goedicke, T. Meyer, and G. Taentzer, ―ViewPoint-

oriented softwaredevelopment by distributed graph

transformation: Towardsa basis for living with

inconsistencies,‖ in 4th IEEE InternationalSymposium on

Requirements Engineering (RE 1999). IEEE, 1999, pp.92–

99.

[68] J. Greenyer, S. Pook, and J. Rieke, ―Preventing

information lossin increental model synchronization by

reusing elements,‖ in7th European Conference on

Modelling Foundations and Applications(ECMFA 2011),

ser. LNCS, vol. 6698. Springer, 2011, pp. 144–159.

[69] J. H. Hausmann, R. Heckel, and S. Sauer, ―Extended

modelrelations with graphical consistency conditions,‖ in

Workshop onConsistency Problems in UML-based

Software Development. BlekingeInstitute of Technology,

2002, pp. 61–74.

[70] A´ . Hegedu¨ s, A´ . Horva´th, I. Ra´th, M. C. Branco,

and D. Varro´ ,―Quick fix generation for DSMLs,‖ in 2011

IEEE Symposium onVisual Languages and Human-Centric

Computing (VL/HCC 2011).IEEE, 2011, pp. 17–24.

[71] F. Hermann, H. Ehrig, C. Ermel, and F. Orejas,

―Concurrent modelsynchronization with conflict resolution

based on Triple GraphGrammars,‖ in 15th International

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 February 2018 | ISSN: 2320-2882

IJCRT1801538 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 854

Conference on Fundamental Approachesto Software

Engineering (FASE 2012), ser. LNCS, vol. 7212.Springer,

2012, pp. 178–193.

[72] F. Hermann, H. Ehrig, F. Orejas, K. Czarnecki, Z.

Diskin, Y. Xiong,S. Gottmann, and T. Engel, ―Model

synchronization based onTriple Graph Grammars:

Correctness, completeness and invertibility,‖Software and

System Modeling, vol. 14, no. 1, pp. 241–269,2015.

[73] I. Ivkovic and K. Kontogiannis, ―Tracing evolution

changes ofsoftware artifacts through model

synchronization,‖ in 20th InternationalConference on

Software Maintenance (ICSM 2004). IEEE,2004, pp. 252–

261.

[74] A. K¨onigs and A. Sch ¨ urr, ―MDI: A rule-based

multi-document and tool integration approach,‖ Software

and System Modeling, vol. 5, no. 4, pp. 349–368, 2006.

[75] A.-T. K¨ortgen, ―New strategies to resolve

inconsistencies betweenmodels of decoupled tools,‖ in 3rd

Workshop on Living with Inconsistenciesin Software

Development (LWI 2010), ser. CEUR

WorkshopProceedings, vol. 661. CEUR-WS, 2010, pp. 21–

31.

[76] M. Lauder, A. Anjorin, G. Varr´ o, and A. Sch ¨ urr,

―Efficient modelsynchronization with precedence Triple

Graph Grammars,‖ in 6thInternational Conference on

Graph Transformations (ICGT 2012), ser.LNCS, vol. 7562.

Springer, 2012, pp. 401–415.

[77] F. Orejas and E. Pino, ―Correctness of incremental

model synchronizationwith Triple Graph Grammars,‖ in 7th

InternationalConference on Theory and Practice of Model

Transformations (ICMT2014), ser. LNCS, vol. 8568.

Springer, 2014, pp. 74–90.

[78] I. Sasano, Z. Hu, S. Hidaka, K. Inaba, H. Kato, and K.

Nakano,―Toward bidirectionalization of ATL with

GRoundTram,‖ in 4thInternational Conference on Theory

and Practice of Model Transformations(ICMT 2011), ser.

LNCS, vol. 6707. Springer, 2011, pp. 138–151.

[79] R. Wagner, H. Giese, and U. Nickel, ―A plug-in for

flexible andincremental consistency management,‖ in

Workshop on ConsistencyProblems in UML-based

Software Development. Blekinge Institute ofTechnology,

2003.

[80] A. Sch ¨ urr, ―Specification of graph translators with

Triple GraphGrammars,‖ in 20th International Workshop

on Graph-Theoretic Conceptsin Computer Science (WG

1994), ser. LNCS, vol. 903. Springer,1994, pp. 151–163.

[81] A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein,

andM. Goedicke, ―Viewpoints: A framework for integrating

multipleperspectives in system development,‖ International

Journal of SoftwareEngineering and Knowledge

Engineering, vol. 2, no. 1, pp. 31–57,1992.

[82] S. Mafazi, W. Mayer, and M. Stumptner, ―Conflict

resolution foron-the-fly change propagation in business

processes,‖ in 10thAsia-Pacific Conference on Conceptual

Modelling (APCCM 2014), ser.CRPIT, vol. 154. Australian

Computer Society, 2014, pp. 39–48.

[83] OMG, OMG Meta Object Facility (MOF) Core

Specification, Version2.4.2, June 2014, available at

http://www.omg.org/spec/MOF/2.4.2/.

[84] F. Bancilhon and N. Spyratos, ―Update semantics of

relationalviews,‖ ACM Trans. Database Syst., vol. 6, no. 4,

pp. 557–575, 1981.

[85] L. Meertens, ―Designing constraint maintainers for

user interaction,‖1998, available at

http://www.kestrel.edu/home/people/meertens.

[86] M. Ghallab, D. S. Nau, and P. Traverso, Automated

planning – Theoryand practice. Elsevier, 2004.

[87] X. Blanc, I. Mounier, A. Mougenot, and T. Mens,

―Detecting modelinconsistency through operation-based

model construction,‖ in30th International Conference on

Software Engineering (ICSE 2008).ACM, 2008, pp. 511–

520.

[88] A. Reder and A. Egyed, ―Model/Analyzer: A tool for

detecting,visualizing and fixing design errors in UML,‖ in

ASE 2010. ACM,2010, pp. 347–348.

[89] A. Egyed, ―Instant consistency checking for the

UML,‖ in 28thInternational Conference on Software

Engineering (ICSE 2006). ACM,2006, pp. 381–390.

[90] D. Jackson, Software Abstractions – Logic, Language,

and Analysis.MIT Press, 2006, revised edition.

[91] N. Macedo, T. Guimar˜aes, and A. Cunha, ―Model

repair and transformationwith Echo,‖ in 28th IEEE/ACM

International Conferenceon Automated Software

Engineering (ASE 2013). IEEE, 2013, pp.694–697.

Author's Profile:

 B.Prashanth Kumar is a Research scholar

at KL University India. Currently working

as Lecturer in the Department of

Information Technology at Shinas College

of Technology, Oman .He received M.

Tech degree from Department of Computer

Science and Engineering, Jawaharlal Nehru Technological

University Hyderabad, India and also received M.Sc.,

degree from Department of Computer Science, Osmania

University, India. He worked as Software Testing

Consultant for number of top MNC’s in India. His research

interest includes Software Engineering, Software Testing,

and Software Project Management.

 Dr.PrasanthYalla received his Ph.D.

degree in Web Services and SOA from

Acharya Nagarjuna University, India.

Currently working as Professor with the

Department of Computer Science and

Engineering at KL University India. He

has rich experience of decade in the field of engineering

education. He has been guiding several graduate and post

graduate projects in the relevant area. He has published

many research papers in various international journals,

attended several conferences and published papers in

different areas. He has attended several workshops like

Android, Teaching-Learning Methodologies conducted by

Institute of Public Enterprise (IPE). He is the Life member

of CSI. He is the life member of ISCA (The Indian Science

Congress Association). He received the young member

active participation award on 13-12-13 from CSI.

