
www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 February 2018 | ISSN: 2320-2882

IJCRT1801422 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1

Popularity of Agile over Software Models

Dr. Joginder Singh Cheema

HOD, Department of Computer Applications,

Baba Budha College, Bir Sahib, Tarntaran

Abstract: In this paper, we can study the standard life cycle models namely waterfall model, prototype model, V-shaped model, spiral

model, incremental model, rapid application development and Agile Development Model. We can also discuss the advantages and

disadvantages of all software models and situations where we can use these models. In this paper, we can compare the agile method to

traditional methods.

Keywords: SDLC, Agile model, Extreme programming

I. INTRODUCTION

[1] In order to achieve a structured and controllable software

development effort, several software development models are

being used. There are many accepted models in development

process, for example, the Spiral Model, the Waterfall-model,

the V-Model and the Agile Model, which are popular today.

All this models define a systematic way to accomplish an

orderly way of working during the project. Testing appears in

each of these life cycle models, but with very different

meanings and different extend. Some methods work better

for specific type of projects, but in the final result, the most

important factor for the project success may be how closely

particular plan was followed. According to my experience, in

some projects we can see some models work in parallel; the

reason is a very dynamic project aids. For example: a project

chooses the Spiral Model in advanced, but during the

developing process, it becomes clear that the project should

update some of its requirements because of customer change

of design. In this example we can see that Spiral Model has

interaction with some indications of Agile Model.

II. RELATED WORKS

A. Waterfall-Model
[2] [3] The original SDLC model was the Waterfall-model.

This model is very simple to understand and very well known

in development process. The Waterfall Model was first

Process Model to be introduced. It is also referred to as

a linear-sequential life cycle model. It is very simple to

understand and use. In a waterfall model, each phase must be

completed fully before the next phase can begin.

When to use the waterfall

 Project is short.

 Technology is understood.

 When the requirements are very well

known, clear and fixed.

 Product definition is stable.

 There are no ambiguous requirements.

Advantages of waterfall model:

 This model is simple and easy to understand and

use.

 It is easy to manage due to the rigidity of the model

– each phase has specific deliverables and a review

process.

 In this model phases are processed and completed

one at a time. Phases do not overlap.

 Waterfall model works well for smaller projects

where requirements are very well understood.

 Disadvantages of waterfall model:

 Once an application is in the testing stage, it is very

difficult to go back and change something that was

not well-thought out in the concept stage.

 No working software is produced until late during

the life cycle.

 High amounts of risk and uncertainty.

 Not a good model for complex and object-oriented

projects.

 Poor model for long and ongoing projects.

 Not suitable for the projects where requirements are

at a moderate to high risk of changing.

B. V-Model

[2] V- Model means Verification and Validation model. Just

like the waterfall model, the V-Shaped life cycle is a

sequential path of execution of processes. Each phase must

be completed before the next phase begins. V-Model is one

of the many software development models. Testing of the

product is planned in parallel with a corresponding phase of

development in V-model.

http://istqbexamcertification.com/what-is-a-software-testing/
http://istqbexamcertification.com/what-is-waterfall-model-advantages-disadvantages-and-when-to-use-it/
http://istqbexamcertification.com/what-are-the-software-development-models/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 February 2018 | ISSN: 2320-2882

IJCRT1801422 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 2

When to use the V-model:

 Medium sized projects where requirements are

clearly defined and fixed.

 Ample technical resources are available with needed

technical expertise.

Advantages of V-model:

 Simple and easy to use.

 Testing activities like planning, test

designing happens well before coding. This saves a

lot of time. Hence higher chance of success over the

waterfall model.

 Proactive defect tracking – that is defects are found

at early stage.

 Avoids the downward flow of the defects.

 Works well for small projects where requirements

are easily understood.

Disadvantages of V-model:

 Very rigid and least flexible.

 Software is developed during the implementation

phase, so no early prototypes of the software are

produced.

 If any changes happen in midway, then the test

documents along with requirement documents has to

be updated.

C. Prototype model

[2] [4] The basic idea in Prototype model is that instead of

freezing the requirements before a design or coding can

proceed, a throwaway prototype is built to understand the

requirements. This prototype is developed based on the

currently known requirements. Prototype model is a software

development model.

The prototype is usually not complete systems and many of

the details are not built in the prototype. The goal is to

provide a system with overall functionality.

When to use Prototype model

 When the desired system needs to have a lot of

interaction with the end users.

 Typically, online systems, web interfaces have a

very high amount of interaction with end users, are

best suited for Prototype model.

 They are excellent for designing good human

computer interface systems.

Advantages of Prototype model:

 Users are actively involved in the development

 Since in this methodology a working model of the

system is provided, the users get a better

understanding of the system being developed.

 Errors can be detected much earlier.

 Quicker user feedback is available leading to better

solutions.

 Missing functionality can be identified easily

 Confusing or difficult functions can be identified

Requirements validation, Quick implementation of,

incomplete, but functional, application.

Disadvantages of Prototype model:

 Leads to implementing and then repairing way of

building systems.

 Practically, this methodology may increase the

complexity of the system as scope of the system

may expand beyond original plans.

 Incomplete application may cause application not to

be used as the full system was designed Incomplete

or inadequate problem analysis.

D. Spiral Model

[2] [5] The spiral model is similar to the incremental model,

with more emphasis placed on risk analysis. The spiral model

has four phases: Planning, Risk Analysis, Engineering and

Evaluation. A software project repeatedly passes through

these phases in iterations (called Spirals in this model). The

baseline spiral, starting in the planning phase, requirements

are gathered and risk is assessed. Each subsequent spiral

builds on the baseline spiral. Its one of the software

development models like Waterfall, Agile, V-Model.

http://istqbexamcertification.com/what-is-test-design-or-how-to-specify-test-cases/
http://istqbexamcertification.com/what-is-test-design-or-how-to-specify-test-cases/
http://istqbexamcertification.com/what-is-test-design-or-how-to-specify-test-cases/
http://istqbexamcertification.com/what-are-the-software-development-models/
http://istqbexamcertification.com/what-are-the-software-development-models/
http://istqbexamcertification.com/what-are-the-software-development-models/
http://istqbexamcertification.com/what-is-incremental-model-advantages-disadvantages-and-when-to-use-it/
http://istqbexamcertification.com/what-are-the-software-development-models/
http://istqbexamcertification.com/what-are-the-software-development-models/
http://istqbexamcertification.com/what-is-waterfall-model-advantages-disadvantages-and-when-to-use-it/
http://istqbexamcertification.com/what-is-agile-model-advantages-disadvantages-and-when-to-use-it/
http://istqbexamcertification.com/what-is-v-model-advantages-disadvantages-and-when-to-use-it/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 February 2018 | ISSN: 2320-2882

IJCRT1801422 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 3

When to use Spiral model

 When costs and risk evaluation is important

 For medium to high-risk projects

 Long-term project commitment unwise because of

potential changes to economic priorities

 Users are unsure of their needs

 Requirements are complex

 New product line

 Significant changes are expected (research and

exploration)

Advantages of Spiral model

 High amount of risk analysis hence, avoidance of

Risk is enhanced.

 Good for large and mission-critical projects.

 Strong approval and documentation control.

 Additional Functionality can be added at a later

date.

 Software is produced early in the software life

cycle.

Disadvantages of Spiral model

 Can be a costly model to use.

 Risk analysis requires highly specific expertise.

 Project’s success is highly dependent on the risk

analysis phase.

 Doesn’t work well for smaller projects.

E. Incremental model

[2] In incremental model the whole requirement is divided

into various builds. Multiple development cycles take place

here, making the life cycle a “multi-waterfall” cycle.

Cycles are divided up into smaller, more easily managed

modules. Incremental model is a type of software

development model like V-model, Agile model etc.

When to use the Incremental model:

 This model can be used when the requirements of

the complete system are clearly defined and

understood.

 Major requirements must be defined; however, some

details can evolve with time.

 There is a need to get a product to the market early.

 A new technology is being used

 Resources with needed skill set are not available

 There are some high risk features and goals.

Advantages of Incremental model

 Generates working software quickly and early

during the software life cycle.

 This model is more flexible – less costly to change

scope and requirements.

 It is easier to test and debug during a smaller

iteration.

 In this model customer can respond to each built.

 Lowers initial delivery cost.

 Easier to manage risk because risky pieces are

identified and handled during it’d iteration.

Disadvantages of Incremental model

 Needs good planning and design.

 Needs a clear and complete definition of the whole

system before it can be broken down and built

incrementally.

 Total cost is higher than waterfall.

F. RAD model

[2] [6] RAD model is Rapid Application Development

model. It is a type of incremental model. In RAD model the

components or functions are developed in parallel as if they

were mini projects. The developments are time boxed,

delivered and then assembled into a working prototype. This

can quickly give the customer something to see and use and

to provide feedback regarding the delivery and their

requirements.

http://istqbexamcertification.com/what-are-the-software-development-life-cycle-phases/
http://istqbexamcertification.com/what-are-the-software-development-life-cycle-phases/
http://istqbexamcertification.com/what-are-the-software-development-life-cycle-phases/
http://istqbexamcertification.com/what-is-waterfall-model-advantages-disadvantages-and-when-to-use-it/
http://istqbexamcertification.com/what-is-v-model-advantages-disadvantages-and-when-to-use-it/
http://istqbexamcertification.com/what-is-agile-model-advantages-disadvantages-and-when-to-use-it/
http://istqbexamcertification.com/what-is-waterfall-model-advantages-disadvantages-and-when-to-use-it/
http://istqbexamcertification.com/what-is-incremental-model-advantages-disadvantages-and-when-to-use-it/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 February 2018 | ISSN: 2320-2882

IJCRT1801422 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 4

When to use RAD model

 RAD should be used when there is a need to create a

system that can be modularized in 2-3 months of

time.

 It should be used if there’s high availability of

designers for modeling and the budget is high

enough to afford their cost along with the cost of

automated code generating tools.

 RAD SDLC model should be chosen only if

resources with high business knowledge are

available and there is a need to produce the system

in a short span of time (2-3 months.

Advantages of the RAD model

 Reduced development time.

 Increases reusability of components

 Quick initial reviews occur

 Encourages customer feedback

 Integration from very beginning solves a lot

of integration issues.

Disadvantages of RAD model

 Depends on strong team and individual

performances for identifying business requirements.

 Only system that can be modularized can be built

using RAD

 Requires highly skilled developers/designers.

 High dependency on modeling skills

 Inapplicable to cheaper projects as cost of modeling

and automated code generation is very high.

III. AGILE DEVELOPMENT

[2][7] Agile model believes that every project needs to be

handled differently and the existing methods need to be

tailored to best suit the project requirements. In Agile, the

tasks are divided to time boxes (small time frames) to deliver

specific features for a release.

Iterative approach is taken and working software build is

delivered after each iteration. Each build is incremental in

terms of features; the final build holds all the features

required by the customer.

When to use Agile model

 New changes can be implemented at very little cost

because of the frequency of new increments that are

produced.

 To implement a new feature the developers need to

lose only the work of a few days, or even only

hours, to roll back and implement it.

 Unlike the waterfall model in agile model very

limited planning is required to get started with the

project. Agile assumes that the end users’ needs are

ever changing in a dynamic business and IT world.

Changes can be discussed and features can be newly

effected or removed based on feedback. This

effectively gives the customer the finished system

they want or need.

 Both system developers and stakeholders alike, find

they also get more freedom of time and options than

if the software was developed in a more rigid

sequential way. Having options gives them the

ability to leave important decisions until more or

better data or even entire hosting programs are

available; meaning the project can continue to move

forward without fear of reaching a sudden standstill.

The Agile thought process had started early in the software

development and started becoming popular with time due to

its flexibility and adaptability.

Following are the Agile Manifesto principles −

 Individuals and interactions − In Agile

development, self-organization and motivation are

important, as are interactions like co-location and

pair programming.

 Working software − Demo working software is

considered the best means of communication with

the customers to understand their requirements,

instead of just depending on documentation.

 Customer collaboration − As the requirements

cannot be gathered completely in the beginning of

the project due to various factors, continuous

customer interaction is very important to get proper

product requirements.

 Responding to change − Agile Development is

focused on quick responses to change and

continuous development.

Agile development model is also a type of Incremental

model. Software is developed in incremental, rapid cycles.

http://istqbexamcertification.com/what-are-the-software-development-models/
http://istqbexamcertification.com/what-is-system-integration-testing/
http://istqbexamcertification.com/what-is-waterfall-model-advantages-disadvantages-and-when-to-use-it/
http://istqbexamcertification.com/what-is-the-purpose-and-importance-of-test-plans/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 February 2018 | ISSN: 2320-2882

IJCRT1801422 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 5

This results in small incremental releases with each release

building on previous functionality. Each release is

thoroughly tested to ensure software quality is maintained.

It is used for time critical applications. Extreme

Programming (XP) is currently one of the most well known

agile development life cycle model.

The advantages of the Agile Model are as follows:

 Is a very realistic approach to software

development.

 Promotes teamwork and cross training.

 Functionality can be developed rapidly and

demonstrated.

 Resource requirements are minimum.

 Suitable for fixed or changing requirements

 Delivers early partial working solutions.

 Good model for environments that change steadily.

 Minimal rules, documentation easily employed.

 Enables concurrent development and delivery within

an overall planned context.

 Little or no planning required.

 Easy to manage.

 Gives flexibility to developers.

The disadvantages of the Agile Model are as follows:

 Not suitable for handling complex dependencies.

 More risk of sustainability, maintainability and

extensibility.

 An overall plan, an agile leader and agile PM

practice is a must without which it will not work.

 Strict delivery management dictates the scope,

functionality to be delivered, and adjustments to

meet the deadlines.

 Depends heavily on customer interaction, so if

customer is not clear, team can be driven in the

wrong direction.

 There is a very high individual dependency, since

there is minimum documentation generated.

 Transfer of technology to new team members may

be quite challenging due to lack of documentation.

IV. EXTREME PROGRAMMING IN AGILE

DEVELOPMENT

[2] The primary driver of any software project should be the

problem the software is aimed at solving. If the design of the

program is too large and expensive it may become the driver

of the project, either because it is too unwieldy to change or

too much has been invested in it. Similarly, a requirements

gathering process may become the main driver of the

project. Extreme Programming insists on the fundamental

importance of keeping the software problem to be solved as

the focus of the development effort. Extreme

Programming is also designed with that fundamental

observation in mind.

A. Extreme Programming

Extreme Programming maintains that tests should be created

as the beginning of the code and that the code is written to

pass those tests. As well, the client who has a problem to be

solved with software defines criteria to create Acceptance

Tests. The Extreme Programming aim of maintaining tight

feedback and iteration cycles among test, code, and design

offer a viewpoint on which to dispense with requirements

entirely. The framers of the software product simply have to

create a set of tests that the software must satisfy sets of tests

to code to and a set of tests to define acceptance criteria (this

can even go so far as to include integration, system, and

performance tests).

The classical view of Software Testing maintains that tests

are designed to verify that the software satisfies (or fails to

satisfy) given requirements. In fact, some Automated Test

Management Suites are built on this premise (e.g. Mercury

Test Director). This easy to understand and implement the

concept of a one to one relationship between requirements

and tests are unfortunately invalid. Software tests are

designed around models of the actual software. Similarly,

requirements define a model that the software is supposed to

adhere to.

V. AGILE VERSUS TRADITIONAL SDLC MODELS

[8][9] [10]Agile is based on the adaptive software

development methods, whereas the traditional SDLC

models like the waterfall model is based on a predictive

approach. Predictive teams in the traditional SDLC models

usually work with detailed planning and have a complete

forecast of the exact tasks and features to be delivered in the

next few months or during the product life cycle.

Predictive methods entirely depend on the requirement

analysis and planning done in the beginning of cycle. Any

changes to be incorporated go through a strict change control

management and prioritization.

Agile uses an adaptive approach where there is no detailed

planning and there is clarity on future tasks only in respect

of what features need to be developed. There is feature

driven development and the team adapts to the changing

product requirements dynamically. The product is tested

very frequently, through the release iterations, minimizing

the risk of any major failures in future.

Customer Interaction is the backbone of this Agile

methodology, and open communication with minimum

documentation are the typical features of Agile development

environment. The agile teams work in close collaboration

with each other and are most often located in the same

geographical location.

VI. CONCLUSION AND FUTURE SCOPE

We can study number of software models, their advantages,

disadvantages and where to use which software model

according to its features. In this paper, we can explain the

agile development process in a very efficient manner. On the

basis of such capabilities for a specific software project one

can choose which of such software development life cycle

models ought to be selected for the specific project. This

research work can make the strategy of picking the SDLC

model easy& therefore will prove to be extremely effective

for software industry.

http://softwaretestingbooks.com/types-software-testing

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 February 2018 | ISSN: 2320-2882

IJCRT1801422 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 6

REFERENCES

[1] Sharma, Anubha, Manoj Kumar, and Sonali Agarwal. "A

Complete Survey on Software Architectural Styles and

Patterns." Procedia Computer Science 70 (2015): 16-28.

[2] Ian Sommerville,”Software Engineering”, Addison

Wesley,7
th

 edition, 2004.

[3] Steve Easterbrook, “Software lifecycles”, University of

Toronto Department of Computer Science, 2001.

[4] Karlm, “Software Lifecycle Models”, KTH, 2006.

[5] Langer, Arthur M. "System Development Life Cycle

(SDLC)." In Analysis and Design of Information Systems,

pp. 10-20. Springer London, 2008.

[6] Mexican International Conference on Computer Science

IEEE Computer Society Washington, DC, USA, 2009.

[7] In Confluence The Next Generation Information

Technology Summit (Confluence), 2014 5th International

Conference-, pp. 221-226. IEEE, 2014.

[8] A. M. Davis, H. Bersoff, E. R. Comer, “A Strategy for

Comparing Alternative Software Development Life Cycle

Models”, Journal IEEE Transactions on Software

Engineering ,Vol. 14, Issue 10, 1988.

[9] Niazi, Mahmood, Muhammad Ali Babar, and June M.

Verner. "Software Process Improvement barriers: A cross-

cultural comparison." Information and software technology

52, no. 11 (2010): 1204-1216.

[10] Dybå, Tore. "An empirical investigation of the key

factors for success in software process improvement."

Software Engineering, IEEE Transactions on31, no. 5 (2005):

410-424.

