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Abstract:  Abstract In this paper we prove the symmetry result for solutions of nonlinear elliptic Neumann boundary value 

problems by using the Alexandrov's method of reflection and maximum principle, on the unit ball in the n-dimensional Euclidean 

space with n ≥3. 
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I. INTRODUCTION 

. Maximum principle is one of the most used tools in the study of elliptic differential equations. It is generalization of the 

following well known theorem of the elemental calculus, “If f is a function of class C
2
 in [a; b] such that the second derivative is 

positive on (a; b), then the maximum value of the function f attains at the end point of the interval [a; b]". It can be easily notice 

that the maximum principle gives information about the global behavior of a function over a domain from the information of the 

qualitative character in the boundary and without explicit knowledge of the same function. The maximum principle allows us to 

obtain uniqueness of solution of certain problems with conditions of Dirichlet or Neumann type. Also it help to obtain a priori 

estimate for solutions. These reasons make interesting the study of the maximum principle on several forms and its eneralizations 

and Hopf Lemma. For example a geometric version of the maximum principle allows us to compare locally surfaces that coincide 

at a point. Using the method of reection and a version of maximum principle for thin domains, Beresticky and Nirenberg in [2] 

made a generalization of symmetry result for the solution of Dirichlet BVP in the paper [8]. The maximum principles are very 

much useful to obtain the uniqueness of the solutions of certain Dirichlet or Neumann boundary value problems. The maximum 

principle and the Alexandrov reection principle in [1] have been used to prove symmetry with respect to some point, some plane. 

It is also useful to prove symmetry of domain and to determine asymptotic-symmetric behavior of the solution of some elliptic 

problems ([2], [8], [9], [14]). The first person who used this technique was Serrin. He proved that " If u is positive solution of the 

problem                                                                   

                                                                                   Δu = -1 in Ω with u = 0;  
𝜕𝑢

𝜕𝜂
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

 

on 𝜕Ω then  is ball and u is radially symmetric with respect to the center of Ω ".  

 

Our proof shows that the technique used by Berestycki and Nirenberg [2]; Gidas, Ni and nirenberg [8]; Serrin [14]; 

Ca_arelli, Gidas and Spruck [3]; Dhaigude and Patil [4],[5] , for the study of symmetry of solutions of the Dirichlet elliptic BVP , 

can be applied to prove the symmetry of the solutions of the Neuman elliptic BVP, with nonlinear term f(x; u(x)). [13] shows a 

result of symmetry for a big class of problems with condition of Neumann on the boundary in the one dimensional case. We use 

the method of reection of Alexandrov Maximum principle is one of the most used tools in the study of elliptic diferential 

equations. It is generalization of the following well known theorem of the elemental calculus,"If f is a function of class C
2
 in [a; 

b] such that the second derivative is positive on (a; b), then the maximum value of the function f attains at the end point of the 

interval [a; b]". It can be easily notice that the maximum principle gives information about the global behavior of a function over 

a domain from the information of the qualitative character in the boundary and without explicit knowledge of the same function. 

The maximum principle allows us to obtain uniqueness of solution of certain problems with conditions of Dirichlet or Neumann 

type. Also it help to obtain a priori estimate for solutions. These reasons make interesting the study of the maximum principle on 

several forms and its eneralizations and Hopf Lemma. For example a geometric version of the maximum principle allows us to 

compare locally surfaces that coincide at a point. Using the method of reection and a version of maximum principle for thin 

domains, Beresticky and Nirenberg in [2] made a generalization of symmetry result for the solution of Dirichlet BVP in the paper 

[8]. The maximum principles are very much useful to obtain the uniqueness of the solutions of certain Dirichlet or Neumann 

boundary value problems. The maximum principle and the Alexandrov reection principle in [1] have been used to prove 

symmetry with respect to some point, some plane. It is also useful to prove symmetry of domain and to determine asymptotic-

symmetric behavior of the solution of some elliptic problems  Our proof shows that the technique used by Berestycki and 

Nirenberg [2]; Gidas, Ni and nirenberg [8]; Serrin [14]; Ca_arelli, Gidas and Spruck [3]; Dhaigude and Patil [4],[5] , for the study 
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of symmetry of solutions of the Dirichlet elliptic BVP , can be applied to prove the symmetry of the solutions of the Neuman 

elliptic BVP, with nonlinear term f(x; u(x)). [13] shows a result of symmetry for a big class of problems with condition of 

Neumann on the boundary in the one dimensional case. We use the method of reflection of Alexandrov. 

 

It is interesting to study the behavior of solutions of the elliptic boundary value problem. 

 

Δu = f(x; u) in B 

                                                                                                              (1.1) 

    
𝜕𝑢

  𝜕𝜂  
=  g(u)     on    𝜕𝐵           

                                                                                                                                                         

Escobar [6] completely studied the set of conformal metrics G, of the standard metric óij in  𝐵  . Furthermore, he proved that 

solutions of boundary value problems are symmetric with respect to some point, where B is unitary ball in R
n
 and 

𝜕

𝜕𝜂 
  is outward 

normal derivative to 𝜕B, f and g are functions defined in R . For n ≥ 3, the problem (1.1) appears in the study of conformal 

deformation of the standard metric over the unitary ball 𝜕𝐵 that have constant scalar curvature in B and mean curvature on 𝜕B. 

Also Escobar and Garcia [7] studied the conformal metrics on the ball with zero scalar curvature and prescribed mean curvature 

on the boundary. Recently, author [11] proved symmetry of solutions of system of ordinary differential equations with Neumann 

boundary conditions. We prove that the solution of the elliptic boundary value problem with Neumann boundary condition, 

                                                                

                                                                          𝑎∆𝑢 +  𝑢𝑖  +  cu =  f(x;  u𝑛
𝑖=1 )                in    B 

 

   
𝜕𝑢

  𝜕𝜂 
=   g(u)     on    𝜕𝐵 

are radially symmetric with respect to the origin. 

Our proof shows that techniques used in [[2],[8], [9]] for the study of symmetric solutions of the elliptic problem with 

Dirichlet condition. 

                                                  

                                                             Δu + f(u) = 0   in B 

 

                                                               𝑢 =  ∅            on 𝜕B  

 

where 𝜕B is the closed ball, can be applied in elliptic boundary value problems with Neumann condition.  

 

2 Maximum Principle and Hopf Lemma: 

 

Our result is based on the well known maximum principle and on the Hopf boundary lemma for the differential operator 

of the form,  

 

𝐿 𝑢 ≡  
𝜕2𝑢

𝜕𝑥𝑙  𝜕𝑥𝑗
+  𝑏𝑖  (𝑥)

𝜕𝑢

𝜕𝑥𝑖

𝑛

𝑖=1

𝑛

𝑖 ,𝑗=1

  +  c(x)u 

 

Theorem 2.1 [12]-(Maximum principle): Let u(x1; x2; x3; :::; xn) satisfy the differential inequality L(u) ≥ 0 with c(x)  ≤ 0 with L 

uniformly elliptic in Ω , and the coeffcients of L bounded. If u attains a nonnegative maximum M at an interior point of Ω , then  

u = M. 

 we prove that solutions of the elliptic problem with Neumann condition are radially symmetric with respect to the 

origin. 

 

3 Symmetry result: 

 

Let B1(0) is unit ball with center at origin and radius 1. Let x = (x1; x2; x3; :::; xn) ∈ B1(0). x’ = (- x1; x2; x3; :::; xn) be the point of 

reflection of x with respect to the hyperplane x1 = 0. We use the symbol, 

 

∆ ≡  
𝜕2

𝜕𝑥1
2

+  
𝜕2

𝜕𝑥2
2

+  
𝜕2

𝜕𝑥3
2

 +    …… . + 
𝜕2

𝜕𝑛2
 

 

Theorem 3.1 Let u ∈ C
2
(B)  ∩C

0  (𝐵 ) 
 be a positive solution of the elliptic problem with Neumann condition, 

                                                                  

                                                             𝑎∆𝑢 + 𝑏  𝑢𝑖 +  𝑐𝑢 =  f(x;  u)   𝑛
𝑖−1               in    𝐵1(0) 

 

                                                                                             
    𝜕𝑢

𝜕𝜂 
 =   g(u)     on    𝜕𝐵1(0) 
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 where 𝛼: 𝐵   → 𝑅  is a bounded function and symmetric with respect to the origin. such that a(x) > 0 for all 𝑥 ∈ 𝐵1       (0) and 

𝑏 ∶  𝐵  → 𝑅  is a bounded and odd function and c : 𝐵  → 𝑅   is a bounded function and symmetric with respect to the origin such 

that c(x) ≤ 0 for all  𝑥 ∈ 𝐵1
     0 .   Let 𝜂  denote the outward normal vector to 𝜕B. Let 𝑓 ∈  𝐶1    𝑅 × 𝑅+ , 𝑅    is such that f(x; t) is 

strictly increasing in t for all x ∈ B1(0) and is symmetric to x = 0 for all t ∈ R
+
 and g is strictly decreasing. Then u is symmetric 

with respect to the origin. 

 

Proof 1:  Let v(x) = u(x’) for x ∈ 𝐵  where x’ denotes the reflection of x with respect to the hyperplane x1 = 0. Then  

 

                                    𝑎 𝑥 ∆𝑢 𝑥 +  𝑏 𝑥  𝑢𝑖 𝑥 +  c(x)u(x)  =  f(x;  u(x))𝑛
𝑖=1      in B1(0)              (3.1) 

 

                                                                                                  

                                                                                                
𝜕𝑢 (𝑥)

  𝜕𝜂  
=   g(u(x))     on    𝜕𝐵1(0)                 (3.2) 

These equations are also satisfied at x0. 

 

                           𝑎 𝑥′ ∆𝑢 𝑥′ +  𝑏 𝑥′  𝑢𝑖 𝑥′ +  c(x′)u(x′)  =  f(x′;  u(x′))𝑛
𝑖=1      in B1(0)           (3.3) 

 

                                                                                                  

                                                                                                
𝜕𝑢 (𝑥′)

  𝜕𝜂  
=   g(u(x′))     on    𝜕𝐵1(0)               (3.4) 

 

Since v(x) = u(x’) for 𝑥 ∈ 𝐵  and conditions in the statement of theorem, equation  (3.3) can be expressed as 

 

                                 𝑎 𝑥 ∆𝑣 𝑥 +  𝑏 𝑥  𝑣𝑖 𝑥 +  c(x)v(x)  =  f(x;  v(x))𝑛
𝑖=1      in B1(0)              (3.5) 

 

                                                                                                  

                                                                                                
𝜕𝑣(𝑥)

  𝜕𝜂  
=   g(v(x))     on    𝜕𝐵1(0)                 (3.6) 

 

Let w be the function defined by w(x) = u(x) −v(x) for 𝑥 ∈ 𝐵  

 
𝜕𝑤

𝜕𝑥1

=   
𝜕𝑢

𝜕𝑥1

 −  
𝜕𝑣

𝜕𝑥1

 

                                                                                                                                                                                                                                                                                                              

                                                                                                     
 𝜕𝑤

   𝜕𝑥𝑖
=   

𝜕𝑢

𝜕𝑥𝑖
 −  

𝜕𝑣

𝜕𝑥𝑖
  for 𝑖 ≠  −1 

 

            
𝜕2𝑤

  𝜕𝑥1
2

=   
𝜕2𝑢

𝜕𝑥1
2

 −  
𝜕2𝑣

𝜕𝑥1
2
 

and  similarly 

 

                                                                                                       
𝜕2𝑤

  𝜕𝑥1
2 =   

𝜕2𝑢

𝜕𝑥1
2  −  

𝜕2𝑣

𝜕𝑥1
2    for 𝑖 ≠  −1 

 

∴ ∆ 𝑤 =  ∆ 𝑢 −  ∆ 𝑣 
 

 

 

Subtracting the equations we get,  

 

                𝑎 𝑥 ∆𝑤 𝑥 +  𝑏 𝑥  𝑤𝑖 𝑥 +  c x w x = f x;  v x  −  f(x;  v(x))𝑛
𝑖=1      in B1(0)      (3.5) 

 

                                                                                                  

                                                                          
𝜕𝑤 (𝑥)

  𝜕𝜂  
=  g v x  −   g(v(x))     on    𝜕𝐵1(0)                 (3.6) 

 

 

Since u is continuous function in 𝐵  , w is continuous function in 𝐵  therefore there must exist  

 

                                                                                        𝑥𝑚𝑖𝑛   and  𝑥𝑚𝑖𝑛  ∈ 𝐵  

such that 

𝑤 𝑥𝑚𝑖𝑛   =  𝑤𝐵 
𝑚𝑖𝑛  

and  

 

𝑤 𝑥𝑚𝑎𝑥   =  𝑤𝐵 
𝑚𝑎𝑥  
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We can conclude that  𝑥𝑚𝑖𝑛  and  𝑥𝑚𝑎𝑥  cannot be in 𝜕 B. To prove this contrary suppose that 𝑥𝑚𝑎𝑥 ∈ 𝜕B and satisfies  

𝑤 𝑥𝑚𝑎𝑥  > 𝑤(𝑥)for all x ∈ 𝐵 . Then 

 

                                                            
𝜕𝑤 (𝑥𝑚𝑎𝑥 )

𝜕𝜂 
  ≥ 0  and    𝑤(𝑥𝑚𝑎𝑥  ) > 0 

 

in consequence 

𝑔 𝑢 𝑥𝑚𝑎𝑥   −  𝑔 𝑣 𝑥𝑚𝑎𝑥   ≥ 0 
 

and  

 

                                                                             𝑔 𝑢 𝑥𝑚𝑎𝑥    ≥  𝑔 𝑢(𝑥)   for all 𝑥 ∈ 𝐵 

 

Since g is strictly decreasing we have 

𝑢 𝑥𝑚𝑎𝑥  ≤ 𝑣 𝑥𝑚𝑎𝑥   

 

𝑢 𝑥𝑚𝑎𝑥  − 𝑣 𝑥𝑚𝑎𝑥   ≤ 0 
 

𝑤 𝑥𝑚𝑎𝑥   ≤ 0 

 

This contradicts to                      𝑤 𝑥𝑚𝑎𝑥   > 0, therefore 𝑥𝑚𝑎𝑥  cannot be in 𝜕B.  Now suppose that 𝑥𝑚𝑖𝑛   ∈ 𝜕B and satisfies  

 

                                                                               𝑤 𝑥𝑚𝑖𝑛  < 𝑤(𝑥)   for all 𝑥 ∈ 𝐵 

 

 Then 

                                                            
𝜕𝑤 (𝑥𝑚𝑖𝑛 )

𝜕𝜂 
  ≤ 0  and    𝑤(𝑥𝑚𝑖𝑛  ) < 0 

 

in consequence 

𝑔 𝑢 𝑥𝑚𝑖𝑛   −  𝑔 𝑣 𝑥𝑚𝑖𝑛   ≥ 0 

 

and  

 

                                                                             𝑔 𝑢 𝑥𝑚𝑖𝑛    ≥ 𝑔 𝑢(𝑥)   for all 𝑥 ∈ 𝐵 

 

Since g is strictly decreasing we have 

𝑢 𝑥𝑚𝑖𝑛  ≥ 𝑣 𝑥𝑚𝑖𝑛   
 

𝑢 𝑥𝑚𝑖𝑛  − 𝑣 𝑥𝑚𝑖𝑛   ≥ 0 

 

𝑤 𝑥𝑚𝑖𝑛   ≥ 0 
 

 

Which contradicts to                 𝑤 𝑥𝑚𝑖𝑛  < 0 , therefore 𝑥𝑚𝑖𝑛 cannot be in 𝜕B..  

Hence  

                                                                         𝑥𝑚𝑎𝑥  , 𝑥𝑚𝑖𝑛  ∈ 𝐵. 

Therefore we have 

 

                                         𝑎(𝑥𝑚𝑖𝑛 )∆𝑤(𝑥𝑚𝑖𝑛 ) +  𝑏(𝑥𝑚𝑖𝑛 )  𝑤𝑖(𝑥𝑚𝑖𝑛 ) +  c(𝑥𝑚𝑖𝑛 )v(𝑥𝑚𝑖𝑛 )  ≥ 0𝑛
𝑖=1    

 

                                         𝑎(𝑥𝑚𝑎𝑥 )∆𝑤(𝑥𝑚𝑎𝑥 ) +  𝑏(𝑥𝑚𝑎𝑥 )  𝑤𝑖(𝑥𝑚𝑎𝑥 ) +  c(𝑥𝑚𝑎𝑥 )v(𝑥𝑚𝑎𝑥 )   ≤ 0𝑛
𝑖=1    

 

So u is symmetric with respect to 𝑥𝑛  = 0. Since B is unit ball we can apply the same argument in all directions. It follows that u is 

radially symmetric with respect to the origin. 
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