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Abstract.  The present problem consists of the existence and uniqueness of sextic C
3
-splines 

interpolating to a given data at the mid-points of each sub interval together with the function 

value and first derivative at the partition points with suitable end conditions. The estimate 

calculated can not be improved for a uniform partition. The technique used is that of due to Hall 

and Meyer. 
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1.  INTRODUCTION. 

 In a paper Subotin [9] has considered the problem of the existence and convergence of 

even degree splines with equidistant mesh points, which interpolate to given data at the mid-

points of the mesh intervals. Some of these results have been treated by I.J. Schoenberg [10], G. 

Birkhoff and C.deBoor [2, 3] and A. Meir and A. Sharma [8] from various point of view. Garry 

Howell and A.K. Varma [5] presented the best error bounds for quartic spline interpolation by 

using the technique devised by Hall and Meyer in [6]. In the present paper we describe the 

problem  as follows : 

Let 

(1.1)    : 0 = x0 < x1  < ................ < xn = 1 

be any subdivision of [0, 1]. Consider the sextic splines s(x) such that  

      (i)    s(x)  C
3
 [0, 1],         

(1.2)   

     (ii)    s(x) is a polynomial of deg. < 6 in each subinterval  

     [xi-1, xi], i = 1, 2, ..............., n. 
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Here we state the following theorems, which we shall prove in the next sections. 

Theorem 1.  Given arbitrary numbers f (i), i = 1, 2,......n; f(xi), i = 0, 1, ............. n; f '(xi), i = 0, 

1, .............. n; f ''' (xi), i = 0, n, then there exists a unique sextic spline s(x)  C
3
 [0, 1] such that 

  s(i) = f(i) with 
2

 x x
  i1-i

i


  for i = 1, 2, ............., n; 

(1.3)  s(xi) = f(xi) & s'(xi) = f '(xi) for i = 0, 1, ...........,n, 

together with s''' (x0) = f ''' (x0), s''' (xn) = f ''' (xn). 

Theorem 2.  Let f  C
7
 [0, 1] and let s(x) be the unique sextic spline satisfying the conditions 

of Theorem 1. Then we have 

(1.4)  s(x) – f(x)  <    
! 8

hM
max

1  x  0

7
0



f 
(7)

 (x) , 

where  

(1.5)  M0 = max
1  t  0

2/1

  
26

1
 - 

2

1
 

4

26
  

26

1
























   (t) , 

and 

(1.6)   (t) = 
2

)8t-8t(5 t)-(1 1)-(2t t 222 
 

 

2.  PRELIMINARIES. 

 If p(u) is a polynomial of degree 6, 0 < u < 1, it is easily seen that 

(2.1)  p(u) = p(0) Q1(u) + p (½) Q2(u) + p(1) Q3(u) + p'(0) Q4(u) 

   + p'(1) Q5(u) + p'''(0) Q6(u) + p''' (1) Q7 (u), 

 

where  

  Q1(u) = (1 - u)
2
 (1 - 2u) (1 + 4u + 

6

19
 u

2
 - 

3

16
 u

3
), 
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  Q2(u) = 
3

32
 u

2
 (1 – u)

2
 (1 + 2u – 2u

2
) 

  Q3(u) = 
6

1
 u

2
 (2u – 1) (17 + 34u – 77u

2
 + 32 u

3
), 

(2.2)  Q4(u) = 
12

1
u (1 – u)

2
 (1 – 2u) (12 + 11u – 16u

2
), 

  Q5(u) = 
12

1
u

2
 (1 – u) (1 – 2u) (7 + 21u – 16u

2
), 

  Q6(u) = 
144

1
u

2
 (2u – 1) (1 – u)

2
 (5 – 4u), 

  Q7(u) = 
144

1
u

2
 (2u – 1) (1 – u)

2
 (1 + 4u). 

 

3.  PROOF OF THEOREM 1. 

 Let s(x) denote the restriction of p(u), 0 < u < 1, in the subinterval  

[xi-1, xi] for i = 1, 2, ........., n, we have 

(3.1) s(x) = f(xi-1) Q1(t) + f(i) Q2(t) + f(xi) Q3(t)  

           + hi {f ' (xi-1) Q4(t) + f '(xi) Q5(t)} 

           + 
3

i
h  {s'''(xi-1) Q6(t) + s'''(xi) Q7(t)}, 

where  hi = xi – xi-1   and  t = 
i

1-i

h

 x- x
,  0 < t < 1. 

On using (2.1) and the conditions  

(3.2)  s'''(0) = f '''(0)  and  s'''(1)  =  f '''(1), 

we see that s(x) given by (3.1) does satisfy (1.3) and that it is sextic in  

[xi-1, xi] for i = 1, 2, ........., n. We still need to decide whether it is possible to determine s'''(xi) (i 

= 1, 2, ........, n-1) uniquely. For this purpose we use the condition of continuity that 

(3.3)  s''(xi -  )  =  s''(xi +   ),  i =  1, 2, ........, n-1. 

This condition with the help of (3.1) reduces to  

(3.4) hi s'''(xi-1) + 5(hi + hi+1) s'''(xi) + hi+1 s'''(xi+1) 
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= 
2

i
h

408
 f(xi-1) + 1128 











2
h

1
 - 

1i

2

i
h

1
 f(xi) - 2

1i
h

408



 f(xi+1) 

  +   ))
h

84

i

1i

1i

i

1ii

1-i
(x ' f 

h

84
  (x ' f 

h

1
  

h

1
 444 - x ' f 













  

  - 
2

i
h

1536
 f(i) + 

2

1i
h

1536



 f(i+1).  (i = 1, 2, .........., n-1) 

Obviously the above system of equations are strictly tridiagonally dominant. With which 

s'''(xi) (i = 1, 2, ......., n-1) can be determined uniquely. This establishes Theorem 1. 

 

4.  ESTIMATE. 

 In order to prove Theorem 2, we require the following.  

Lemma. Let f(x)  C
7
 [0, 1] and let e'''(xi) = s'''(xi) – f '''(xi),  i = 1, 2, ., n-1, then  

(4.1)  max
1-n  i  1 

 e'''(xi)  < 
)(7!  2

h9 4

R, 

where  R = max
1  x  0 

 f 
(7)

 (x)  and i
n,..,1i

hmaxh


  . 

Proof.  Let j be an index such that 

  max
1-n  i  1 

 e''' (xi)   =    e''' (xj) . 

From (3.4) it follows that 

(4.2)  hj e''' (xj-1) + 5(hj + hj+1) e''' (xj) + hj+1 e''' (xj+1) = P0 ( f ), 

where  

(4.3)  P0( f ) = 
2

j
h

408
 f(xj-1) + 1128 

















2
h

1
 - 

1j

2

j
h

1
 f(xj) - 2

1j
h

408



 f(xj+1) 

+   )(x ' f 
h

84
  )(x ' f 

h

1
  

h

1
 444 - x ' f 

h

84
1j

1j
j

1jj
1-j

j


















  

- 
2

j
h

1536
 f(j) + 

2

1j
h

1536



 f(j+1) – hj f '''(xj-1)  
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– 5(hj + hj+1) f ''' (xi) – hj+1 f ''' (xj+1). 

 

As P0 ( f ) is a linear functional which is zero for polynomials of      deg.  < 6, we can 

apply the Peano Theorem [4, p. 70], to obtain 

(4.4)  P0 (f ) = 


 !6

)y(f
 

(7)
1j

x

1jx
 P0 [(x-y) 6

 ] dy. 

From the above, we have 

(4.5)             P0 ( f )  < 
1jx

1-jx
 

!6

R
 P0 [(x-y) 6

 ] dy, 

where  R = max
1  x  0 

 f 
(7)

 (x) . 

Now, we obtain from (4.3) that for xj-1 < y < xj+1 

(4.6)  P0 [(x-y) 6
 ] = 1128 
















2

1j
2
j h

1
 - 

h

1
 (xj – y) 6

   - 
2

1jh

408



 (xj+1 – y) 6
  

  - 2664 















1jj h

1
  

h

1
 (xj – y) 5

  + 

1jh

504



 (xj+1 – y) 5
  

- 
2
jh

1536
 (j - y) 6

   + 
2

1jh

1536



 (j+1 - y) 6
   

- 600 (hj + hj+1)  (xj – y) 3
  - 120 hj+1 (xj+1 – y) 3

 , 

and the expression thus obtained can be made symmetric about xj. Which implies that P0 [(x-y) 

) 6
 ] is non-negative for xj-1 < y < xj+1. 

Therefore, as required by the r.h.s. of (4.5), we have 

(4.7)  
1jx

1-jx
  P0 [(x-y) 6

 ] dy <  5

1j

5

j
h  h 




7

18
. 

From (4.5) and (4.7), we obtain 

(4.8)   P0 ( f )  =  Rh  h 
!7

18 5
1j

5
j  . 
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From (4.2) and (4.8) it follows  that 

   e''' (xj)  < 
 1jj

5
1j

5
j

h  h )!7(2

)h  (h 9








R,  

as hj + hj+1   0  so the term in the denominator cancells out.  

We set  h = max
n .., 1, i 

 hi   in the above, we have 

(4.9)  e'''(xj)  <   
 

R
7! 2

h 9 4

, 

which establishes the lemma. 

 

5.  PROOF OF THEOREM 2. 

 Suppose that Li[f, x] is the unique sextic agreeing with f(xi-1), f(xi), f(i), f(i+1), f '(xi-1), f 

'(xi), f '''(xi-1) and f '''(xi). Let f  C
7
 [0, 1] and let    s(x)  C

3
 [0, 1] be the unique sextic spline 

under the conditions of   Theorem 1. Then, for xi-1 < x < xi, we have 

(5.1)   s(x) – f(x)  <   s(x) – Li[f, x]  +  Li[f, x] – f(x) . 

 By a well- known theorem of Cauchy [4] we obtain  

(5.2)   Li[f, x] – f(x)  < 
!8

h 7

  t
2
 (1-t)

2
 (2t – 1) (1 + 4t – 4t

2
)  R, 

where  
i

h
t 1-i

x -x 
   and      R = max

1  x  0 

 f 
(7)

 (x) . 

Now, from (3.1) we have 

  s(x) – Li[f, x] = 3
ih  e'''(xi-1) Q6(t) + 3

ih  e'''(xi) Q7(t). 

We set    h = max
n .., 1, i 

 hi   and   e'''(xj)  =  max
1-n .., 1, i 

  e'''(xi) , 

then we have 

(5.3)   s(x) – Li[f, x] < h
3
  e'''(xj)  {  Q6(t)  +  Q7(t) }. 
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As Q6(t) and Q7(t) both are negative for 0 < t < ½ and both are positive for ½ < t < 1, it follows 

that  

(5.4)   Q6(t)  +  Q7(t)  =  Q6(t) + Q7(t)  = 
24

1
  t

2
 (2t–1) (1–t)

2
 . 

Hence, (5.3) with the help of (4.9) and (5.4) gives  

(5.5)   s(x) – Li[f, x]  < 
)!8(2

h3 7

R  t
2
 (2t - 1) (1 – t)

2
   . 

Now, on using (5.2) and (5.5), the inequality (5.1) gives 

(5.6)   s(x) – f(x)  < 
!8

h 7

   (t)  R, 

where  

(5.7)    (t)  = 
2

 3
  t

2
 (2t-1) (1-t)

2
  +  t

2
 (2t-1) (1-t)

2
 (1+4t-4t

2
)  

and  

  (t)      t
2
 (2t – 1) (1 – t)

2
 (5 + 8t – 8t

2
) , 

     2 

which establishes Theorem 2. 

Remark. It is of interest to note that M0 in (1.5) can not be improved for a uniform partition. 

For it, we show that inequality (1.4) is best possible in the limit. Let f0(x) = x
7
/7!. Then from the 

Cauchy formula, we have (i = 1,2...,n) 

(5.8)  Li 
!7

,
!7

t 7 7
x

 - x 







 = 

!8

h 7

  t
2
 (1-t)

2
 (2t – 1) (1 + 4t – 4t

2
)  . 

Again, for uniform spacing between knots, we have  

(5.9)  Po 








!7

7
x

 = 
!7

h36 5
  

 = h e'''(xi-1) + 10 h e'''(xi) + h e'''(xi+1). 

From the above, we have 

  max
n .., 1, i 

  e'''(xi)  = 
)!72

h9 4

( 

  
. 

On using (5.3), we have 

=    
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(5.10)   s(x) – Li [f0, x]   = 
)!72

h9 7

( 

  
  Q6(t) + Q7(t)  

     = 
)!82

h3 7

( 

  
  t

2
 (2t - 1) (1 – t)

2
 . 

Now combining (5.8) and (5.10), we have 

(5.11)   s(x) – f(x)  =  
!8

h 7

 {
2

3
 t

2
 (2t - 1) (1 – t)

2
  

         +  t
2
 (2t – 1) (1 – t)

2
 (1 + 4t – 4t

2
) }, 

         for xi-1 < x < xi. 

 From (5.11) we conclude that (1.4) is best possible for uniform spacing in the limit. 

 Lastly, we state some theorems of the less smooth class of functions without proof as 

follows :  

Theorem 3.  Let f  C
3
 [0, 1]. Let s(x) be the unique sextic spline under the conditions of 

Theorem 1. Then we have 

(5.12)   s(x) – f(x)  < 
!3

h 3

 N0 3 (f; h), 

where 3(*) is the modulus of continuity of f 
(3) 

(x),  

  N0 = max
1  t  0 

 c1 (t)   1.0827, 

and 

  c1(t) = 







 1  t

8

89
 - t

2

37
  t

8

5
 - t

4

63
 - t8 23456

. 

Theorem 4.  Let f  C
5
 [0, 1]. Let s(x) be the unique sextic spline under the conditions of 

Theorem 1. 

Then we have 

   s(x) – f(x) <  
!5

h 5

 U0 5 (f; h), 

where 5(*) is the modulus of continuity of f 
(5)

(x), 
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  U0 = max
1  t  0 

 c2 (t)   1.0872, 

and 

  c2(t) = 







 1  t

8

99
  - t

2

39
  t

8

25
  t

4

85
 - t10 23456

. 
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