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Abstract : The cover-incomparability graph of a poset P is the edge-union of the covering and the incomparability graph of P. Here 

we use 3-colored diagrams to characterize the forbidden  ⊲ - preserving subposets of the posets whose cover-incomparability graphs 

are not line graphs is proved. 
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________________________________________________________________________________________________________ 

1 Introduction and preliminaries 

Cover-incomparability graphs of posets, or shortly C-I graphs, were introduced in [2] as the underlying graphs of the 

standard interval function or transit function on posets (for more on transit functions in discrete structures cf. [3, 4, 5, 6, 11]). On the 

other hand, C-I graphs can be defined as the edge-union of the covering and incomparability graph of a poset; in fact, they present the 

only non-trivial way to obtain an associated graph as unions and/or intersections of the edge sets of the three standard associated 

graphs (i.e. covering, comparability and incomparability graph). In the paper that followed [9], it was shown that the complexity of 

recognizing whether a given graph is the C-I graph of some poset is in general NP-complete. In [1] the problem was investigated for 

the classes of split graphs and block graphs, and the C-I graphs within these two classes of graphs were characterized. This resulted in 

a linear-time recognition algorithms for C-I block and C-I split graphs. It was also shown in [1] that whenever a C-I graph is a chordal 

graph, it is necessarily an interval graph, however a structural characterization of C-I interval graphs (and thus C-I chordal graphs) is 

still open. Recently C-I distance-hereditary graphs have been characterized and shown to be efficiently recognizable [10]. 

 

Let P = (V;_≤) be a poset. If u ≤ v but u ≠ v, then we write u < v. For u, v 𝜖 V we say that v covers u in P if u < v and there is 

no w in V with u < w < v.  If u ≤ v we will sometimes say that u is below v, and that v is above u. Also, we will write u ⊲ v if v covers 

u; and u ⊲⊲ v if u is below v but not covered by v.  By u ||  v we denote that u and v are incomparable. Let 𝑉′ be a nonempty subset of 

V . Then there is a natural poset Q = (𝑉′;≤ ′), where u ≤ ′ v if and only if u ≤ v for any u,v  𝜖 𝑉′. The poset Q is called a subposet of P 

and its notation is simplified to Q =  (𝑉′;≤). If, in addition, together with any two comparable elements u and v of Q, a chain of 

shortest length between u and v of P is also in Q, we say that Q is an isometric subposet of P. Recall that a poset P is dual to a poset Q 

if for any x, y 𝜖 P the following holds: x ≤ y in P if and only if y ≤ x in Q. Given a poset P, its cover-incomparability graph GP has V 

as its vertex set, and uv is an edge of GP if u ⊲ v, v ⊲ u, or u and v are incomparable. A graph that is a cover-incomparability graph of 

some poset P will be called a C-I graph. 

Lemma 1 [2] Let P be a poset and GP its C-I graph. Then 

(i)    GP is connected; 

(ii)   vertices in an independent set of GP lie on a common chain of P; 

(iii)  an antichain of P corresponds to a complete subgraph in GP ; 

(iv)  GP contains no induced cycles of length greater than 4. 

 

2. 3-colored diagrams 

 A 3-coloured diagram Q; we consider normal edges to represent vertices in a covering relation and red edges to represent 

incomparable vertices or vertices in a covering relation and dashed lines to represent a chain of length three and thus  constitute the 

3-colors and hence the name 3-colored diagram. The idea of 3-colored diagrams is explained as follows. Let G be a C-I graph and H 

be an induced subgraph of G. We note that there can be different ⊲- preserving subposets Qi of some posets with 𝐺𝑄𝑖  isomorphic to 

the subgraph H. Let u, v,w be an induced path in the direction from u to v in H. There are four possibilities in which u, v and w can be 

related in the ⊲ - preserving subposets. It is possible to have u ⊲ v, u || v, v ⊲ w and v || w. Each case will appear as a ⊲ - preserving 

subposet of four different posets. If u ⊲ v and v ⊲ w in a subposet, then u ⊲ v ⊲ w is a chain in the subposet and u, v,w is an induced 

path in H. If there is either u || v or v || w in a subposet Q, then there should be another chain from u to w in Q in order to have u, v,w 

an induced path in H. We try to capture this situation using the idea of 3-colored diagram. Suppose in ⊲ - preserving subposet Q of a 

poset P, there exists two elements u, v which is always connected by some chain of length three in Q. Let w be an element in Q such 
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that either both uw and vw are red edges or any one of them is a red edge. Then in order to have a chain between u and v, there must 

exist an element x in Q so that u, x, v form a chain in Q. When both edges are normal, then we have the chain u,w, v in Q and hence 

the chain u, x, v is not required in this case. We denote the chain u, x, v by dashed lines between ux and xv in order to specify that it is 

possible to have the presence or absence of the chain u, x, v in Q. The presence of the chain u, x, v implies that either both of the 

edges uw and wv are red edges or one of them is a red edge. The absence of the chain implies that both uw and vw are normal edges 

in Q. We call posets having the above mentioned diagrams as 3-colored diagrams. Thus a 3-colored diagram contains normal edges, 

red edges and dashed lines, in which the dashed line between elements u and v will vanish, when there is a chain between u and v 

using normal or red edges. We can define 3-colored subposets in a similar way as discussed above. All subposets of the poset P that 

we consider in this paper are 3-colored diagrams. Thus by a single 3-colored diagram, we represent a collection of ⊲ - preserving 

subposets to be forbidden for a poset. We sometimes use the term 3-colored subposets instead of 3-colored diagrams in this paper. In 

a similar way the dual of a 3-colored diagram is also meaningful and represents a collection of ⊲- preserving dual subposets. 

Theorem 2 (Theorem 1,[8]):  Let G be a class of graphs with a forbidden induced subgraphs characterization. Let P = {P |  P is a 

poset with 𝐺𝑇𝑃  𝜖 G }. Then P  has a characterization by forbidden ⊲ - preserving subposets.             

Theorem 3 (Theorem 7.1.8, [7]) Let G be a graph. Then G is a line graph if and only if G contains none of the nine forbidden graphs 

of Figure 1 as an induced subgraph.  

 
Figure 1: Nine Forbidden induced subgraphs of line graphs 

We consider the 3-colored subposets to be forbidden so that its C-I graphs belong to the graph family F (G2) of G2 in Figure1   

 

3.  3-colored ⊲ - preserving subposets of posets whose C-I graphs belong to the family F(G2) 

  

We have the following theorem regarding the graph family F(G2). 

Theorem 4 If P is a poset, then GP belongs to  F(G2) if and only if P  contains the 3-colored diagram Q1 from Figure 3 and their duals. 

Proof. Suppose P contains the 3-colored diagram Q1. Then since w and z are incomparable in P, the set of vertices { u, v, w,  x,  y, z} 

induce the graph G2 from Figure 1(d).  
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Conversely, suppose GP 𝜖F (G2). Then GP contains an induced subgraph G2 shown in Figure 1(d), with vertices labeled by u, 

v, w,  x,  y  and z. The set of vertices {u, w, y} is an independent set in G2. Therefore these vertices lie on a common chain in P (by 

Lemma 1(ii)) and they are not in a covering relation. Denote the chain containing {u,w, y} by C. Then the following cases (i) and (ii) 

cannot occur. 

 
Figure 2: ⊲ - preserving subposets corresponding to Q1 

(i): u ⊲⊲ y ⊲⊲ w 

Since v and y are nonadjacent in G they lie on a common chain in P. v ⊲⊲  y: then v ⊲⊲ y ⊲⊲ w in P, contradicting v and w are 

adjacent in G. y ⊲⊲ v: then u ⊲⊲  y ⊲⊲  v in P, contradicting u and v are adjacent in G. The same contradiction arise if w ⊲⊲ y ⊲⊲ 

u. 

(ii): w ⊲⊲  u  ⊲⊲ y: 

Since u and x are nonadjacent in G, they lie on a common chain in P. u  ⊲⊲ x: then w  ⊲⊲ u  ⊲⊲ x in P, contradicting w and x are 

adjacent in G. x  ⊲⊲ u: then x  ⊲⊲  u  ⊲⊲  y in P, contradicting x and y are adjacent in G. The same contradiction arise if y  ⊲⊲ u  

⊲⊲ w. 

The only possible cases are u ⊲⊲ w⊲⊲ y and y ⊲⊲ w⊲⊲ u. Without loss of generality, assume that u ⊲⊲ w ⊲⊲ y. Since v is adjacent 

to u and w and x is adjacent to w and y in G, we have u ⊲ v ⊲ w ⊲ x ⊲ y: then we have two possibilities. 

 
Figure 3: Forbidden 3-colored diagrams for posets whose C-I graphs contains 

G2, depicted in Figure 1 (d). 

 

Case (1): v ⊲ z in P: again we have two possibilities. 

Subcase (1.1): z ⊲ x in P: take (v, z) and (x, z) as normal edges and avoid all dashed lines in Figure 3 to obtain the ⊲ - preserving 

subposet R1 in Figure 2. 

Subcase (1.2): z || x in P: take the chain from y to z through b to obtain the ⊲- preserving subposet R2 in Figure 2. 

Case (2): v || z in P: take the chain from u to z through a to obtain the ⊲- preserving subposet R3 in Figure 2. All posets in Figure 2 

are represented by a single 3-colored diagram Q1, see Figure 3. □ 
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Remarks 

The number of forbidden ⊲ - preserving subposets of a poset P is such that its C-I graph GP belongs to a graph possessing a forbidden 

induced subgraph characterization as instances of the Theorem 2 is in general very large compared to the number of forbidden 

induced subgraphs. The idea of 3-colored diagrams is introduced to shorten the list of forbidden ⊲ - preserving subposets. 
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