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Abstract:  In this paper, authors introduce a new subclass *

, 0( , , )HS t z   of HS  by using fractional calculus. We give univalence 

criteria and sufficient coefficient condition for normalized harmonic functions belonging to the class *

, 0( , , )HS t z   where 

0 1, 0 1      and 0 1t  . These coefficient condition are also shown to be necessary for subclass *

, 0( , , )HTS t z   of 

*

, 0( , , )HS t z   in which h has negative and g has positive coefficients. This leads to extreme points, distortion bounds and radius of 

convexity. We also discuss a class preserving integral operator and show that the class studied in this paper is closed under 

convolution and convex combinations. 
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I. INTRODUCTION 

 

 

A continuous complex-valued function ivuf  defined in a simply connected complex domain D is said to be harmonic in D 

if both u and v are real harmonic in D. In any simply connected domain we can write ghf  , where h and g are analytic in D. 

We call h the analytic part and g the co-analytic part of .f  A necessary and sufficient condition for f  to be locally univalent 

and sense-preserving in D is that .,)()( Dzzgzh   See Clunie and Sheil-Small [2]. 

  Denote by 
HS  the class of functions ghf   which are harmonic univalent and sense-preserving in the unit disk 

 1:  zzU  for which     .0100  zff  Then for HSghf   we may express the analytic functions h and g as   
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Recently, Jahangiri [6] defined the class * ( )HTS  consisting of function ghf   such that h and g are of the form 
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Which satisfy the condition 
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The case when 0   is given in [12] and for 1 0b    see [11]. 

The class HS  reduces to class S of normalized analytic univalent functions if co-analytic part of f i.e. 0.g   For this class f(z) may 

be expressed as 

2

( ) .k

k

k

f z z a z




                       (3) 

Several authors such ([3], [4], [5], [9], [11] [12]), studied the sub-classes of analytic univalent functions by using fractional 

calculus operator. In this paper, an attempt has been made to study the subclass of harmonic univalent functions by using 

fractional calculus with fixed points in the following way 

1 1
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is said to be in the family 
*

, 0( )HTS z  satisfying the condition (4) and  

0 0 0 0( ) ,  1 1,  0f z z z z             (5) 

where 1 0 0 0
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In this paper, we investigate sense preserving harmonic univalent function of form (4) with a fixed point (5) and determine the 

coefficients bounds, distortion and extreme points, convolution convex combination and a family of class preserving integral 

operator. 

2. Fractional Calculus 

  The following definitions of fractional derivatives and fractional integrals are due to Owa [5] and Srivastava and Owa [9]. 

Definition 2.1.   The fractional derivative of order λ  is defined, for a function  zf  of the form (2), by  
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where 10   ,  zf  is an analytic function in a simply-connected region of the z-plane containing the origin. 

Definition 2.2.  Under the hypothesis of Definition 2.1, the fractional derivative of order n  is defined for a function  zf  by  

                                                    )()( zfD
dz

d
zfD zn

n
n

z

 
                                            (7) 

where 10   , and  .....2,1,00 Nn .  

 

Using the Definition 2.2 and its known extreme involving fractional derivatives Owa and Srivastava [10] introduced the operator 

: A A   as follows 

( ) ( )   ( 2,3,4)zf z z D f z       where A denote the class of function of the (3) which are analytic in U. 

Let  *

, 0( , , )HTS t z   denote the subclass of HS  consisting of function f of the form (4) satisfy the following condition 

1

( ( )) ( ( ))
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(1 ) ( ( ) ( )

z h z z g z

t a z t h z g z

 

 


     
  

     

        (8) 

with condition (5), where 0 1, 0 1      and 0 1.t   

We note that for t=1 the class *

, ( , )HS t   reduces to *

, ( )HS    studied by Dixit and Porwal [5] and 0, 1t    the class 

* *

, ,( , )and ( , )H HS t TS t    reduces to the class studied by Jahangiri [5]. 

3. Main Results 

We begin with a sufficient coefficient condition for function in *

, 0( , , ).HTS t z   

Theorem 3.1. Let ghf   be such that h and g are given by (4). 

Then *

, 0( , , ),Hf TS t z  iff 
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where 0 1, 0 1, 0 1t        

and 
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Proof. First we note that f is locally univalent and  sense-preserving in U. This is because 
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To show that f if univalent in U, suppose 1 2,z z U  such that 1 2z z  then 
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0.  

Now we show that *

, 0( , , )Hf TS t z   using the fact that ( )w    iff 

|1 | |1 |w w      it is suffices to show that 

| ( ) (1 ) ( ) | | ( ) (1 ) ( ) | 0A z B z A z B z       ,        (10) 

Where  

( ) ( ( ) ( ( ))A z z h z z g z        

1( ) (1 ) ( ( ) ( ( ))B z t a z t h z z g z        

Substituting the values of A(z) and B(z) in L.H.S. of (10) 
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0    using (9). 

For ``only if'' part we notice that condition 
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The above condition must hold for all values of z, z r 1.   Upon choosing the value of z on the positive real axis 0 1z r    we 

must have 
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If the condition (9) does not hold then the numerator in  (11) is negative for r sufficiently close to 1. 

Thus there exists 0 0z r  in (0,1) for which quotient in (11) is negative. This contradict the required condition for 
*

, 0( , , ),Hf TS t z   and so proof is complete. 

Next, we determine the extreme point, closed convex hulls of *

, 0( , , )HTS t z  denoted by clco *

, 0( , , )HTS t z  . 

Theorem 3.2. If *

, 0( , , )Hf clcoTS t z   iff 
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In particular extreme points of *

, 0( , , )HTS t z   are { }kh and { }kg . 

Proof. For the function of the form 
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and so *

, 0( , , ).Hf TS t z   

Conversely, suppose that *

0( , , ).Hf clcoTS t z  Set 
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  as we require. 

The following theorem gives the bounds for function in *

, 0( , , )HTS t z  which yields a covering result for this class. 

Theorem 3.3. *

0( , , )Hf TS t z   then | | 1,z r   
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Proof. We only prove the right hand inequality. The proof of left hand inequality is similar and will be omitted. Let 
*

0( , , )Hf TS t z   taking the absolute value of f we obtain 
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4. Convolution and Convex Combination 

In this section we show that the class *

, 0( , , )HTS t z   is closed under convolution and convex combinations. Now we need the 

following definition of convolution of two harmonic functions. 

Let f(z) and F(z) be defined by  

1
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    we define the above convolution of two harmonic functions f and F as  
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Using this definition, we show that the class *

, 0( , , )HTS t z   is closed under convolution. 

Theorem 4.1. 0 1     let  *

0( , , )Hf TS t z   and *

, 0( , , )HF TS t z   

where 
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Then  
* *

0 0( * ) ( , , ) ( , , )H SHf F T t z T t z     

Proof. The proof of this theorem is much akin to that of corresponding results of [5], therefore we omit the details involved. 

Theorem 4.1.The class *

, 0( , , )HTS t z  is closed under convex combination. 

Proof. The proof of this theorem is much akin to that of corresponding results of [5], therefore we omit the details involved. 

5. A family of class presenting integral operator 

Let ( ) ( ) ( )f z h z g z   be defined by (1) 

Let us define f(z) by the relation 

1 1

0 0

1 1
( ) ( ) ( ) ( ) ,    1.

z z
c c

c c

c c
F z t h t d t t g t dt c

z z

  
             (13) 

The proof of the following theorem is similar to that of corresponding results of [5], therefore we only state the results.  

Theorem 5.1. Let ( ) ( ) ( )f z h z g z    be given by (1) and *

0( , , ),0 1Hf TS t z     . Then F(z) defined by (13) is also in the class 
*

0( , , )HTS t z  . 
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