PAIR SUM LABELING OF GRAPH OPERATIONS IN $\Gamma\left(\mathrm{Z}_{\mathrm{n}}\right)$

J.Periaswamy ${ }^{1}$, N.Selvi ${ }^{2}$
${ }^{1}$ Part-Time Research Scholar, Bharathidasan University
Tiruchirapalli, Tamilnadu, India-620 024.
A.V.C.College(Autonomous), Mayiladuthurai, Tamilnadu, India-606 305.
A.D.M.College for Women(Autonomous)
Nagappattinam, Tamilnadu, India-611 001.

ABSTRACT: In this chapter, we investigate the pair sum labeling behavior of the graphs $\Gamma\left(Z_{2 p}\right) \cup \Gamma\left(Z_{2 q}\right), \quad \Gamma\left(Z_{9}\right) \cup \Gamma\left(Z_{2 p}\right), \quad \Gamma\left(Z_{8}\right) \cup \Gamma\left(Z_{2 p}\right)$, $\Gamma\left(Z_{6}\right) \cup \Gamma\left(Z_{2 p}\right), \quad m \Gamma\left(Z_{p^{2}}\right), \quad p \leq 5$, Comp $\Gamma\left(Z_{8}\right) \odot \Gamma\left(Z_{4}\right), \quad \Gamma\left(Z_{6}\right) \odot \Gamma\left(Z_{4}\right)$, $\Gamma\left(Z_{6}\right) \odot 2 \Gamma\left(Z_{4}\right), \quad \Gamma\left(Z_{8}\right) \odot 2 \Gamma\left(Z_{4}\right), \quad \Gamma\left(Z_{9}\right) \odot 2 \Gamma\left(Z_{4}\right), \quad S\left(\Gamma\left(Z_{2 p}\right)\right)$, $\mathrm{S}\left(\Gamma\left(Z_{6}\right) \odot \Gamma\left(Z_{4}\right)\right), \mathrm{S}\left(\Gamma\left(Z_{8}\right) \odot \Gamma\left(Z_{4}\right)\right)$ and $\mathrm{S}\left(\Gamma\left(Z_{8}\right) \odot \Gamma\left(Z_{4}\right)\right)$. Keywords: Labeling, pair Sum Labeling, Zero divisor graph. AMS Subject classification: 05C25, 05C69.

1. INTRODUCTION

Let G be a (r, s) graph. An one to one map $f: V(G) \rightarrow\{ \pm 1, \pm 2, \ldots, \pm r\}$ is called a pair sum labeling if the induced edge mapping, $f_{e}: E(G) \rightarrow Z-\{0\}$ defined by $f_{e}(u v)=f(u)+f(v)$ is oneone and $f_{e}(E(G))$ is either of the form $\left\{ \pm l_{1}, \pm l_{2}, \ldots, \pm l_{s / 2}\right\}$ or $\left\{ \pm l_{1}, \pm l_{2}, \ldots, \pm l_{(s-1) / 2}\right\} \cup\left\{l_{(s+1) / 2}\right\}$ according as S is even or odd. A graph with a pair sum labeling defined on it is called pair sum graph. The pair sum labeling was introduced in [3] by R.Ponraj and et al. In [3], [4], [5] and [6] they study the pair sum labeling of cycle, path, star and some of their related graphs. Let R be a commutative ring and let $\mathrm{Z}(\mathrm{R})$ be its set of zero-divisors. We associate a graph $\Gamma(R)$ to R with vertices $\Gamma(R)^{*}=Z(R)-\{0\}$, the set of non-zero zero divisors of R and for distinct $u, v \in Z(R)^{*}$, the vertices u and v are adjacent if and only if $u v=0$. The zero divisor graph is very useful to find the algebraic structures and properties of rings. The idea of a zero divisor graph of a commutative ring was introduced by I.Beck in [2]. The first simplication of Beck's zero divisor graph was introduced by D.F.Anderson and P.S.Livingston [1]. Their motivation was to give a better illustration of the zero divisor structure of the ring. D.F.Anderson and P.S.Livinston, and others e.g., [7, 8, 9], investigate the interplay between the graph theoretic properties of $\Gamma(R)$ and the ring theoretic properties of R . Throught this paper, we consider the commutative ring R by Z_{n} and zero divisor graph $\Gamma(R)$ by $\Gamma\left(Z_{n}\right)$.

2. PAIR SUM LABELING OF UNION OF $\Gamma\left(Z_{n}\right)$

Theorem 2.1. $\Gamma\left(Z_{2 p}\right) \cup \Gamma\left(Z_{2 q}\right)$ is a pair sum graphs where p and q are different prime numbers.

Proof. Let $\{p, 2,4, \ldots, 2(p-1)\}$ be the vertices of $\Gamma\left(Z_{2 p}\right)$. That is, the vertex set of $\Gamma\left(Z_{2 p}\right)$ is $\left\{u, u_{1}, u_{2}, \ldots, u_{p-1}\right\}$ and the $E\left(\Gamma\left(Z_{2 p}\right)\right)=\left\{u u_{i}: 1 \leq i \leq p\right\}$. Let $\{q, 2,4, \ldots ., 2(q-1)\}$ be the vertices of $\Gamma\left(Z_{2 q}\right)$, That is, the vertex set of $\Gamma\left(Z_{2 q}\right)$ is $\left\{v, v_{1}, v_{2}, \ldots, v_{q-1}\right\}$ and $E\left(\Gamma\left(Z_{2 q}\right)\right)=\left\{v v_{i}: 1 \leq i \leq q\right\}$, where p and q are distinct prime numbers.
Case (i): Let $p=q$.
Clearly from [6], $T \cup T$ is a pair sum tree, for any tree.
Case (ii): Without loss of generality, assume that $q>p$.
Define,

$$
\begin{aligned}
& f(u)=1 \\
& f\left(u_{i}\right)=i+1,1 \leq i \leq n \\
& f(v)=-1 \\
& f\left(v_{i}\right)=-(i+1), 1 \leq i \leq n \\
& f\left(v_{p+2 i-1}\right)=-(p+3+i), 1 \leq i \leq \frac{q-p}{2}, \text { if } q-\text { pis even } \\
& f\left(v_{p+2 i-1}\right)=-(p+3+i), 1 \leq i \leq \frac{q-p-1}{2}, \text { if } q-\text { pisodd } \\
& f\left(v_{p+2 i}\right)=p+i+1,1 \leq i \leq \frac{q-p}{2}, \text { if } q-\text { piseven } \\
& f\left(v_{p+2 i}\right)=p+i+1,1 \leq i \leq \frac{q-p-1}{2}, \text { if } q-\text { pisodd }
\end{aligned}
$$

Thus the edge set,
$f_{e}\left(E\left(\Gamma\left(Z_{2 p}\right) \cup \Gamma\left(Z_{2 q}\right)\right)\right)=\{ \pm 3, \pm 5, \ldots ., \pm(p+2)\} \cup\{ \pm(p+3), \ldots, \pm(p+q+3) / 2\} \cup\{-(p+q+5) / 2\}$
if $q-n$ is odd. Clearly the function is a pair sum labeling. Hence, for any distinct prime numbers p and $\mathrm{q}, \Gamma\left(Z_{2 p}\right) \cup \Gamma\left(Z_{2 q}\right)$ is a pair sum labeling graph.
Theorem 2.2. For any graph $\Gamma\left(Z_{n}\right)$, the following holds:
(i) $\Gamma\left(Z_{8}\right) \cup \Gamma\left(Z_{2 p}\right)$ is a pair sum graph.
(ii) $\Gamma\left(Z_{6}\right) \cup \Gamma\left(Z_{2 p}\right)$ is a pair sum graph.
(iii) $\Gamma\left(Z_{9}\right) \cup \Gamma\left(Z_{2 p}\right)$ is a pair sum graph.

Proof. (i) To prove $\Gamma\left(Z_{8}\right) \cup \Gamma\left(Z_{2 p}\right)$ is a pair sum graph.
Let uvw be the path $\Gamma\left(Z_{8}\right)$. Since the vertex set of $\Gamma\left(Z_{8}\right)$ is $\{2,4,6\}$. Clearly, $\Gamma\left(Z_{8}\right)$ is isomorphic to P_{3}. Let $V\left(\Gamma\left(Z_{2 p}\right)\right)=\left\{v, v_{i}: 1 \leq i \leq p\right\}$ and $E\left(\Gamma\left(Z_{2 p}\right)\right)=\left\{v v_{i}: 1 \leq i \leq p\right\}$.
If $p=3$, then $\Gamma\left(Z_{2 p}\right)=\Gamma\left(Z_{6}\right)$. Clearly, we know that $\Gamma\left(Z_{6}\right)$ is isomorphic to $K_{1,2}$ or $\Gamma\left(Z_{6}\right)$ is isomorphic to P_{3}. Hence, the union of two paths (or) the union of trees is pair sum graph. That is $\Gamma\left(Z_{8}\right) \cup \Gamma\left(Z_{2 p}\right)$ is a pair sum graph.
(ii) To prove $\Gamma\left(Z_{6}\right) \cup \Gamma\left(Z_{2 p}\right)$ is a pair sum graph.

Let uvw be the path $\Gamma\left(Z_{6}\right)$. Since the vertex set of $\Gamma\left(Z_{6}\right)$ is $\{2,3,4\}$. Clearly, $\Gamma\left(Z_{6}\right)$ is isomorphic to P_{5}. Using the above proof (i) $\Gamma\left(Z_{6}\right) \cup \Gamma\left(Z_{2 p}\right)$ is a pair sum graph.
(iii) To prove $\Gamma\left(Z_{9}\right) \cup \Gamma\left(Z_{2 p}\right)$ is a pair sum graph.

Let uv be the path $\Gamma\left(Z_{6}\right)$. The vertex set of $\Gamma\left(Z_{6}\right)$ is $\{3,6\}$. Clearly, $\Gamma\left(Z_{9}\right)$ is a path of order 2 . We know that the union of two trees is a pair sum labeling graph. Hence, $\Gamma\left(Z_{9}\right) \cup \Gamma\left(Z_{2 p}\right)$ is a pair sum labeling.
In general, for any path P_{m} in $\Gamma\left(Z_{n}\right)$, the vertex set of P_{m} is $\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$. That is $\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{m}}$ be the path P_{m}. Let $V\left(\Gamma\left(Z_{2 p}\right)\right)=\left\{v, v_{i}: 1 \leq i \leq p\right\}$ and $E\left(\Gamma\left(Z_{2 p}\right)\right)=\left\{v v_{i}: 1 \leq i \leq p\right\}$.
Case (i): $m=p$
Define,
$f\left(u_{i}\right)=i, 1 \leq i \leq m$
$f(v)=-1$
$f\left(v_{i}\right)=-2 i, 1 \leq i \leq m$
Hence, $f_{e}\left(E\left(P_{m}\right) \cup \Gamma\left(Z_{2 p}\right)\right)=\{ \pm 3, \pm 5, \ldots, \pm(2 p-1)\} \cup\{-(2 p+1)\}$
Case (ii): $p>m$
Define,
$f\left(u_{i}\right)=i, 1 \leq i \leq m$
$f(v)=-1$
$f\left(v_{i}\right)=-2 i, 1 \leq i \leq m-1$
$f\left(v_{m+2 i-1}\right)=2 m+i, 1 \leq i \leq \frac{p-m+1}{2}$, if $p-m i s o d d$.
$f\left(v_{m+2 i-1}\right)=2 m+i, 1 \leq i \leq \frac{p-m}{2}$, if $p-$ miseven.
$f\left(v_{m+2 i-2}\right)=-(2 m+i-2), 1 \leq i \leq \frac{p-m+1}{2}$, if $p-m i s o d d$.
$f\left(v_{m+2 i-2}\right)=-(2 m+i-2), 1 \leq i \leq \frac{p-m}{2}$, if $p-$ miseven.
Here
$f_{e}\left(E\left(P_{m}\right) \cup \Gamma\left(Z_{2 p}\right)\right)=\{ \pm 3, \pm 5, \ldots, \pm(2 m-1)\} \cup\left\{ \pm 2 m, \pm(2 m-1), \ldots, \frac{(3 m+p-2)}{2}\right\}$ if $p-m$ is odd $f_{e}\left(E\left(P_{m}\right) \cup \Gamma\left(Z_{2 p}\right)\right)=\{ \pm 3, \pm 5, \ldots, \pm(2 m-1)\} \cup\left\{ \pm 2 m, \pm(2 m+1), \ldots, \frac{(3 m+p-2)}{2}\right\} \cup\left\{\frac{(3 m+n}{2}\right\}$ if
$n-m$ is even. Then, f is a pair sum labeling.
Theorem 2.3. If any prime $p \leq 5$, then $m \Gamma\left(Z_{p^{2}}\right)$ is a pair sum graph.
Theorem 2.4. If $p \geq 11$, then $m \Gamma\left(Z_{p^{2}}\right)$ is not a pair sum graph.
Proof. We prove this by the method of contradiction. Suppose, $m \Gamma\left(Z_{p^{2}}\right)$ is a pair sum graph. We know that, if $\Gamma\left(Z_{n}\right)$ is a (r,s) pair sum graph then $s \leq 4 r-2$, where r is the number of vertices and s is the number of edges in $\Gamma\left(Z_{n}\right)$. We know that $\Gamma\left(Z_{p^{2}}\right)$ is isomorphic with K_{p-1}. Then, the number of edges in a complete graph K_{p-1} is $\frac{(p-1)(p-2)}{2}$. Then the total edges of m copies of $\Gamma\left(Z_{p^{2}}\right)$ is $\frac{m(p-1)(p-2)}{2}$.

Then, $\frac{m(p-1)(p-2)}{2} \leq 4(p-1)-2=4 p-6$
$m(p-1)(p-2)-8 p+12 \leq 0$
$8 m-m(p-1)(p-2)-12 \geq 0$
If $p=11$ and $m=5$, then $8 m-m(p-1)(p-2)-12$ is a negative value. Clearly,
$8 m-m(p-1)(p-2)-12 \geq 0$, a contradiction.
Hence, If any prime $p \geq 11$, then $m \Gamma\left(Z_{p^{2}}\right)$ is not a pair sum graph.

3. PAIR SUM LABELING OF CORONA OF TWO ZERO DIVISOR GRAPHS

In this section, we investigate the pair sum labeling behavior of some graphs obtained as a Corona of two standard graph in zero divisor graphs.
Theorem 3.1. (i) The comb $\Gamma\left(Z_{6}\right) \odot \Gamma\left(Z_{4}\right)$ is a pair sum graph.
(ii) $\Gamma\left(Z_{8}\right) \odot \Gamma\left(Z_{4}\right)$ is a pair sum graph.
(iii) $\Gamma\left(Z_{9}\right) \odot \Gamma\left(Z_{4}\right)$ is a pair sum graph.

Proof. (i) and (ii), We know that, $\Gamma\left(Z_{6}\right) \odot \Gamma\left(Z_{4}\right)$ and $\Gamma\left(Z_{8}\right) \odot \Gamma\left(Z_{4}\right)$ are same graphs. Since $\Gamma\left(Z_{6}\right)$ and $\Gamma\left(Z_{8}\right)$ are isomorphic to P_{3}.
Let P_{3} be the path uvw and u and w are the pendent vertices, adjacent to v . Let $n=3=2 m+1$, where $m=1$.
Define, $f: V\left(P_{3} \odot \Gamma\left(Z_{4}\right)\right) \rightarrow\{ \pm 1, \pm 2, \ldots, \pm(2 m+1)\}$ by

$$
\begin{aligned}
& f\left(u_{i}\right) \text { or } f\left(w_{i}\right)=2 i ; 1 \leq i \leq m \\
& f\left(u_{i}\right) \operatorname{or} f\left(w_{i}\right)=-(2 m+4) ; i=m+1 \\
& f\left(u_{i}\right) \text { or } f\left(w_{i}\right)=2 i-4(m+1) ; m+1 \leq i \leq 2 m+1 \\
& f\left(v_{i}\right)=2 i-1 ; 1 \leq i \leq m \\
& f\left(v_{i}\right)=2 m+8 ; i=m+1 \\
& f\left(v_{i}\right)=2 i-4 m-3 ; m+2 \leq i \leq 2 m+1
\end{aligned}
$$

Here, $f_{e}\left(E\left(P_{3}\right) \odot \Gamma\left(Z_{4}\right)\right)=\{ \pm 3, \pm 6, \pm 7, \ldots, \pm(4 m-2), \pm(4 m-1)\} \cup\{ \pm 4, \pm(4 m-4)\}$
Then, f is a pair sum labeling.
(iii) We know that $\Gamma\left(Z_{9}\right) \odot \Gamma\left(Z_{4}\right)$ is isomorphic to $\mathrm{P}_{2} \odot K_{1}$.

Let $n=2 m=2$. Then define $f: V\left(\Gamma\left(Z_{9}\right) \odot \Gamma\left(Z_{4}\right)\right) \rightarrow\{ \pm 1, \pm 2\}$ by $n \equiv 2(\bmod 4)$
$f\left(u_{i}\right)=2 i$, if iis odd and $i \leq m-1$
$f\left(u_{i}\right)=2 i-1$, if iseven and $i \leq m$
$f\left(u_{i}\right)=-(2 m+1)$, if $i=m$
$f\left(u_{i}\right)=2 m+3$, if $i=m+1$
$f\left(u_{i}\right)=2 i-1-4 m$, if is odd $m+1<i \leq 2 m$
$f\left(u_{i}\right)=2 i-(4 m+2)$, if iiseven $m+1<i \leq 2 m$
$f\left(v_{i}\right)=2 i-1$, if iisodd and $i \leq m$
$f\left(v_{i}\right)=2 i$, if is even and $i \leq m$
$f\left(v_{i}\right)=2 i-1-4 m$, if is even and $m<i \leq 2 m$
$f\left(v_{i}\right)=2 i-(4 m+2)$, if is odd $m<i \leq 2 m$

Here, $f_{e}\left(E\left(\Gamma\left(Z_{9}\right) \odot \Gamma\left(Z_{4}\right)\right)=\{ \pm 3, \pm 5, \ldots, \pm(4 m-5)\} \cup\{ \pm 2, \pm 4, \pm 6\}\right.$.
Then, f is a pair sum labeling. Therefore $\Gamma\left(Z_{6}\right) \odot \Gamma\left(Z_{4}\right), \Gamma\left(Z_{8}\right) \odot \Gamma\left(Z_{4}\right)$ and $\Gamma\left(Z_{9}\right) \odot \Gamma\left(Z_{4}\right)$ are pair sum graphs.
Theorem 3.2. The graph $\Gamma\left(Z_{n}\right) \odot 2 \Gamma\left(Z_{4}\right)$ is a pair sum graph, where $n=6,8$ and 9 .
Proof. We know that $\Gamma\left(Z_{6}\right) \cong \Gamma\left(Z_{8}\right) \cong \mathrm{P}_{3}$. Let v_{i} and w_{i} be the pendent vertices adjacent to u_{i} for $1 \leq i \leq n$.
Case (i) $n=3$ [odd]
Define,

$$
\begin{aligned}
& f\left(u_{i}\right)=3 i-1 ; 1 \leq i \leq \frac{n-1}{2} \\
& f\left(u_{i}\right)=\frac{1-3 n}{2} ; i=\frac{n+1}{2} \\
& f\left(u_{i}\right)=3 i-(3 n+2) ; \frac{n+3}{2} \leq i \leq n \\
& f\left(v_{i}\right)=3 i ; 1 \leq i \leq \frac{n-1}{2} \\
& f\left(v_{i}\right)=\frac{3 n+5}{2} ; i=\frac{n+1}{2} \\
& f\left(v_{i}\right)=3 i-(3 n+3) ; \frac{n+3}{2} \leq i \leq n \\
& f\left(w_{i}\right)=3 n-5 ; i=1 \\
& f\left(w_{i}\right)=3 i-2 ; 2 \leq i \leq \frac{n-1}{2} \\
& f\left(w_{i}\right)=\frac{3(n+1)}{2} ; i=\frac{n+1}{2} \\
& f\left(w_{i}\right)=3 i-(3 n+1) ; \frac{n+3}{2} \leq i \leq n
\end{aligned}
$$

Here, $f_{e}\left(E\left(\Gamma\left(Z_{n}\right) \odot 2 \Gamma\left(Z_{4}\right)\right)=\{ \pm 2, \pm 3, \ldots ., \pm(3 n-4)\} \cup\{ \pm(3 n-3)\}\right.$.
Then, f is a pair sum labeling.
Case (ii): We know that $\Gamma\left(Z_{9}\right) \cong \mathrm{P}_{2}$. Clearly, u and v are pendent vertices in P_{2}.
Let $n=2$ is even.
Since, $\mathrm{P}_{2} \mathrm{O} 2 \Gamma\left(Z_{4}\right)=\mathrm{B}_{2,2}$. Let $V\left(B_{2,2}\right)=\left\{u, v, u_{i}, v_{j}: 1 \leq i \leq 2,1 \leq j \leq 2\right\}$ and $E\left(B_{2,2}\right)=\left\{u v, u u_{i}, v v_{j}: 1 \leq i \leq 2,1 \leq j \leq 2\right\}$.
Define, $f: V\left(B_{2,2}\right) \rightarrow\{ \pm 1, \pm 2, \ldots, \pm(2 n+2)\}$ by
$f(u)=-1$
$f(v)=2$
$f\left(u_{i}\right)=-2 i ; 1 \leq i \leq n$
$f\left(v_{i}\right)=2 i-1 ; 1 \leq i \leq n$, where $n=2$.
Thus, $f_{e}\left(E\left(B_{2,2}\right)\right)=\{ \pm 3, \pm 5, \ldots, \pm(2 n+1)\} \cup\{1\}$ and have $\mathrm{B}_{2,2}$ is a pair sum graph. That is $\Gamma\left(Z_{9}\right) \odot 2 \Gamma\left(Z_{4}\right)$ is a pair sum graph.
4. PAIR SUM LABELING ON SUBDIVISION GRAPHS IN $\Gamma\left(Z_{n}\right)$

Hence, We investigate the pair sum labeling behavior of graphs obtained as the subdivision of some standard graphs in $\Gamma\left(Z_{n}\right)$.
Theorem 4.1. $S\left(\Gamma\left(Z_{2 p}\right)\right)$ is a pair sum graph.
Proof. Let $V\left(S\left(\Gamma\left(Z_{2 p}\right)\right)\right)=\left\{u, u_{i}, v_{i}: 1 \leq i \leq p-1\right\}$ and $E\left(S\left(\Gamma\left(Z_{2 p}\right)\right)\right)=\left\{u u_{i}, u_{i} v_{i}: 1 \leq i \leq p-1\right\}$.
Define $f: S\left(\Gamma\left(Z_{2 p}\right)\right) \rightarrow\{ \pm 1, \pm 2, \ldots, \pm(2 p-1)\}$ by
$f(u)=-1$
$f\left(u_{i}\right)=i+1 ; i=1,2, \ldots, n$
$f\left(v_{i}\right)=-(2 i+1) ; i=1,2, \ldots, n$
Here $f_{e}\left(E\left(S\left(\Gamma\left(Z_{2 p}\right)\right)\right)\right) \rightarrow\{ \pm 1, \pm 2, \ldots, \pm(p-1)\}$
Then f gives a pair sum labeling for $S\left(\Gamma\left(Z_{2 p}\right)\right)$.
Theorem 4.2. $S\left(\Gamma\left(Z_{n}\right) \odot \Gamma\left(Z_{4}\right)\right)$ is a pair sum graph, where $n=6,8$ and 9 .
Proof. Let $\mathrm{V}\left(S\left(\Gamma\left(Z_{n}\right) \odot \Gamma\left(Z_{4}\right)\right)\right)=\left\{u_{i}: 1 \leq i \leq 2 n-1\right\} \cup\left\{w_{i}, v_{i}: 1 \leq i \leq n\right\}$.
Let $\mathrm{E}\left(S\left(\Gamma\left(Z_{n}\right) \odot \Gamma\left(Z_{4}\right)\right)\right)=\left\{u u_{i+1}: 1 \leq i \leq 2 n-2\right\} \cup\left\{u_{2 i-1} w_{i}: 1 \leq i \leq n\right\} \cup\left\{v_{i} w_{i}: 1 \leq i \leq n\right\}$.
Since, $\Gamma\left(Z_{6}\right)$ and $\Gamma\left(Z_{8}\right)$ is path with length 2 , and $\Gamma\left(Z_{9}\right)$ is a path with length 1 .
Case (i): n is even $\left[\Gamma\left(Z_{9}\right) \cong P_{2}\right]$
Since we know that, any path is a pair sum graph. So, the Subdivision of $\Gamma\left(Z_{9}\right) \odot \Gamma\left(Z_{4}\right)$ is a pair sum graph.
Case (ii): $n=3$ is odd $\left[\Gamma\left(Z_{6}\right) \cong \Gamma\left(Z_{8}\right) \cong P_{3}\right]$
Define, $f: V\left(S\left(P_{3} \odot \Gamma\left(Z_{4}\right)\right)\right) \rightarrow\{ \pm 1, \pm 2, \ldots, \pm(4 n-1)\}$ by

$$
\begin{aligned}
& f\left(u_{(n+1) / 2}\right)=1 \\
& f\left(u_{(n-1) / 2}\right)=8 \\
& f\left(u_{(n+3) / 2}\right)=-8 \\
& f\left(u_{(n-1) / 2}\right)=8 \\
& \left.f\left(u_{(n-1) / 2-2 i}\right)=-10 i+1,1 \leq i \leq \frac{n}{2}\right\rfloor-1 \\
& f\left(u_{(n+1) / 2-2 i}\right)=5 i+5,1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1 \\
& f\left(u_{(n+3) / 2+2 i}\right)=-10 i-1,1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1 \\
& f\left(u_{(n+1) / 2+2 i}\right)=-(5 i+5), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1 \\
& f\left(w_{(n+1) / 2}\right)=-2 \\
& f\left(w_{(n-1) / 2}\right)=-5 \\
& \left.f\left(w_{(n-1) / 2-i}\right)=5 i+7,1 \leq i \leq \frac{n}{2}\right\rfloor-1 \\
& f\left(w_{(n+3) / 2+i}\right)=-(5 i+7), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1 \\
& f\left(v_{(n+1) / 2}\right)=3
\end{aligned}
$$

$$
\begin{aligned}
& f\left(v_{(n-1) / 2}\right)=9 \\
& f\left(v_{(n+3) / 2}\right)=-9 \\
& f\left(v_{(n-1) / 2-i}\right)=5 i+8,1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1 \\
& f\left(v_{(n+3) / 2+i}\right)=-(5 i+8), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1
\end{aligned}
$$

Here $f_{e}\left(E\left(S\left(P_{3} \odot \Gamma\left(Z_{4}\right)\right)\right)\right)=\{ \pm 1, \pm 2, \ldots, \pm 5\}$
Then f is pair sum labeling.
5. PAIR SUM LABELING OF PATH AND CYCLE RELATED TO ZERO DIVISOR GRAPH In this chapter, we prove that $\Gamma\left(Z_{9}\right) \times \Gamma\left(Z_{9}\right), C_{n} \times \Gamma\left(Z_{9}\right)$ and $\left[C_{m}, P_{n}\right]$ are pair sum graphs.
Theorem 5.1. The graph $\Gamma\left(Z_{9}\right) \times \Gamma\left(Z_{9}\right)$ is a pair sum graph.
Theorem 5.2. The graph $C_{n} \times \Gamma\left(Z_{9}\right)$ is a pair sum graph, if n is even.
Proof. Let $V\left(C_{n} \times \Gamma\left(Z_{9}\right)\right)=\left\{u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and
$E\left(C_{n} \times \Gamma\left(Z_{g}\right)\right)=\left\{u_{i} u_{i+1}, v_{i} v_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{u_{i} v_{i}: 1 \leq i \leq n\right\} \cup\left\{u_{n} u_{1}, v_{n} v_{1}\right\}$.
Define $f: V\left(C_{n} \times \Gamma\left(Z_{9}\right)\right) \rightarrow\{ \pm 1, \pm 2, \ldots, \pm n\}$ as follows
Case (i): $n=4 m+2$.
Define, $f\left(u_{i}\right)=i ; 1 \leq i \leq 2 m+1$

$$
\begin{aligned}
& f\left(u_{2 m+1+i}\right)=-i ; 1 \leq i \leq 2 m+1 \\
& f\left(v_{i}\right)=8 m-2 i+6 ; 1 \leq i \leq 2 m+1 \\
& f\left(v_{2 m+1+i}\right)=-8 m+2 i-6 ; 1 \leq i \leq 2 m+1
\end{aligned}
$$

Here $f_{e}\left(E\left(C_{n} \times \Gamma\left(Z_{9}\right)\right)\right)=\{ \pm 3, \pm 5, \ldots, \pm(4 m+1)\} \cup\{ \pm 2 m\} \cup\{ \pm(6 m+5), \pm(6 m+6), \ldots, \pm(8 m+5)\}$.
Case (ii): $n=4 m$.

$$
\begin{aligned}
& f\left(u_{i}\right)=i ; 1 \leq i \leq 2 m-1 \\
& f\left(u_{2 m+i}\right)=-i ; 1 \leq i \leq 2 m-1 \\
& f\left(u_{4 m}\right)=-(2 m+1) \\
& f\left(v_{2 m+1-i}\right)=8 m-2 i+2 ; 1 \leq i \leq 2 m \\
& f\left(v_{2 m+i}\right)=-(4 m+2 i) ; 1 \leq i \leq 2 m
\end{aligned}
$$

Here $f_{e}\left(E\left(C_{n} \times \Gamma\left(Z_{9}\right)\right)\right)$
$=\{ \pm 3, \pm 5, \ldots, \pm(4 m-3)\} \cup\{ \pm 2 m, \pm 4 m\} \cup\{ \pm(4 m+3), \pm(4 m+6), \ldots, \pm(10 m-3)\} \cup\{ \pm(10 m+1)\}$
Clearly, f is a pair sum labeling.
Theorem 5.3. The graph $\left[C_{m}, \Gamma\left(Z_{6}\right)\right]$ is a pair sum graph.
Proof. Let the first copy of the cycle C_{m} be $u_{1} u_{2}, \ldots, u_{m} u_{1}$ and second copy of cycle C_{m} be $v_{1} v_{2}, \ldots, v_{n} v_{1}$. Let $\Gamma\left(Z_{6}\right)$ be path $\mathrm{P}_{3}, \mathrm{w}_{1} \mathrm{~W}_{2} \mathrm{~W}_{3}$. Let $V\left(\left[C_{m}, \Gamma\left(Z_{6}\right)\right]\right)=V\left(C_{m}\right) \cup V\left(C_{m}\right) \cup V\left(\Gamma\left(Z_{6}\right)\right)$ and $E\left(\left[C_{m}, \Gamma\left(Z_{6}\right)\right]\right)=E\left(C_{m}\right) \cup E\left(C_{m}\right) \cup E\left(\Gamma\left(Z_{6}\right)\right) \cup\left\{u_{1} w_{1}, w_{3} v_{1}\right\}$.
Define $f: V\left(\left[C_{m}, \Gamma\left(Z_{6}\right)\right]\right) \rightarrow\{ \pm 1, \pm 2, \ldots, \pm 3 m\}$ by
$f\left(w_{1}\right)=2$
$f\left(w_{2}\right)=1$
$f\left(w_{3}\right)=-4$

$$
\begin{aligned}
& f\left(v_{i}\right)=-3 m-i+1,1 \leq i \leq m \\
& f\left(u_{i}\right)=2 m+2+i, 1 \leq i \leq m-2 \\
& f\left(u_{m-1}\right)=2 m+1 \\
& f\left(u_{m}\right)=2 m+2
\end{aligned}
$$

Here,

$$
f_{e}\left(E\left(\left[C_{m}, \Gamma\left(Z_{6}\right)\right]\right)\right)=\{ \pm 3, \pm 5, \ldots, \pm n\} \cup\{ \pm(4 m+3), \pm(4 m+5), \ldots, \pm(6 m-1)\} \cup\left\{ \pm(5 m+1),\left(5 m+\frac{7}{2}\right)\right\}
$$

Then, Clearly f is a pair sum labeling.

REFERENCES

[1] D.F.Anderson, P.S.Livingston, The zero- divisor graph of a commutative ring, J.Algebra, 217, No.2, (1999), 434-447.
[2] I.Beck, Colouring of Commutative Rings, J.Algebra, 116, (1988), 208-226.
[3] R.Ponraj, J.V.X.Parthipan, Pair Sum Labeling of Graphs, The Journal of Indian Academy of Mathematics, 32, No.2, (2010), 587-595.
[4] R.Ponraj,J.V.X.Parthipan and R.Kala, Some Results on Pair Sum Labeling, International Journal of Mathematical Combinatorics, 4,(2010), 55-61.
[5] R.Ponraj, J.V.X.Parthipan and R.Kala, A Note on Pair Sum Graphs, Journal of Scientific Research, 3, No.2, (2011), 321-329.
[6] R.Ponraj, J.V.X.Parthipan, Further Results on Pair Sum Labeling of Trees, Applied Mathematics, 32, No.2, (2011), 1270-1278.
[7] J.RaviSankar and S.Meena, Changing and Unchanging the Domination Number of a Commutative ring ,International Journal of Algebra, 6,No.27, (2012), 1343-1352.
[8] J.RaviSankar and S.Meena, Connected Domination number of a commutative ring, International Journal of Mathematical Research, 5, No.1, (2012), 5-11.
[9] J.RaviSankar and S.Meena, On Weak Domination in a Zero Divisor Graph, International Journal of Applied Mathematics, 26, No.1, (2013), 83-91.

