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ABSTRACT: In this chapter, we investigate the pair sum labeling behavior of 

the graphs    qp ZZ 22   ,    
pZZ 29   ,    

pZZ 28   , 

   
pZZ 26   ,  2p

Zm , 5p , Comp  8Z ʘ  4Z ,  6Z ʘ  4Z , 

 6Z ʘ2  4Z ,  8Z ʘ2  4Z ,  9Z ʘ2  4Z ,   pZS 2 , 

S(  6Z ʘ  4Z ), S(  8Z ʘ  4Z ) and S(  8Z ʘ  4Z ). 
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1. INTRODUCTION 

Let G be a (r, s) graph. An one to one map  rGVf  ..,..........,2,1)(:  is called a pair sum 

labeling if the induced edge mapping,  0)(:  ZGEfe
 defined by )()()( vfufuvfe   is one-

one and  )(GEfe  is either of the form  2/21 ....,,, slll   or    
2/)1(2/)1(21 ....,,,   ss llll  

according as S is even or odd. A graph with a pair sum labeling defined on it is called pair sum 

graph. The pair sum labeling was introduced in [3] by R.Ponraj and et al. In [3], [4], [5] and [6] they 

study the pair sum labeling of cycle, path, star and some of their related graphs. Let R be a 

commutative ring and let Z(R) be its set of zero-divisors. We associate a graph )(R  to R with 

vertices  0)()(   RZR , the set of non-zero zero divisors of R and for distinct  )(, RZvu , the 

vertices u and v are adjacent if and only if 0uv . The zero divisor graph is very useful to find the 

algebraic structures and properties of rings. The idea of a zero divisor graph of a commutative ring 

was introduced by I.Beck in [2]. The first simplication of Beck’s zero divisor graph was introduced 

by D.F.Anderson and P.S.Livingston [1]. Their motivation was to give a better illustration of the 

zero divisor structure of the ring. D.F.Anderson and P.S.Livinston, and others e.g., [7, 8, 9], 

investigate the interplay between the graph theoretic properties of )(R and the ring theoretic 

properties of R. Throught this paper, we consider the commutative ring R by Zn and zero divisor 

graph )(R  by  nZ . 

 

2. PAIR SUM LABELING OF UNION OF  nZ  

Theorem 2.1.    qp ZZ 22    is a pair sum graphs where p and q are different prime numbers. 
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Proof. Let  )1(2....,,4,2, pp  be the vertices of  
pZ2 . That is, the vertex set of  

pZ2  is 

 121 ....,,,, puuuu  and the     piuuZE ip  1:2 . Let  )1(2....,,4,2, qq  be the vertices of 

 qZ 2 , That is, the vertex set of  qZ 2  is  121 ....,,,, qvvvv  and     qivvZE iq  1:2 , where 

p and q are distinct prime numbers. 

Case (i): Let qp  . 

Clearly from [6], TT   is a pair sum tree, for any tree. 

Case (ii): Without loss of generality, assume that pq  . 

Define, 

1)( uf  

niiuf i  1,1)(  

1)( vf  

niivf i  1),1()(  

evenispqif
pq

iipvf ip 


 ,
2

1),3()( 12  

oddispqif
pq

iipvf ip 


 ,
2

1
1),3()( 12  

evenispqif
pq

iipvf ip 


 ,
2

1,1)( 2  

oddispqif
pq

iipvf ip 


 ,
2

1
1,1)( 2  

Thus the edge set, 

           2/)5(2/)3(...,),3()2(....,,5,322  qpqpppZZEf qpe  

if nq   is odd. Clearly the function is a pair sum labeling. Hence, for any distinct prime numbers p 

and q,    qp ZZ 22    is a pair sum labeling graph. 

Theorem 2.2. For any graph  nZ , the following holds: 

(i)    
pZZ 28    is a pair sum graph. 

(ii)    
pZZ 26    is a pair sum graph. 

(iii)    
pZZ 29    is a pair sum graph. 

Proof. (i) To prove    
pZZ 28    is a pair sum graph. 

Let uvw be the path  8Z . Since the vertex set of  8Z  is  6,4,2 . Clearly,  8Z  is isomorphic to 

3P . Let     pivvZV ip  1:,2  and     pivvZE ip  1:2 . 

If 3p , then    62 ZZ p  . Clearly, we know that  6Z  is isomorphic to 2,1K  or  6Z  is 

isomorphic to 3P . Hence, the union of two paths (or) the union of trees is pair sum graph. That is 

   
pZZ 28    is a pair sum graph. 

(ii) To prove    
pZZ 26    is a pair sum graph. 

Let uvw be the path  6Z . Since the vertex set of  6Z  is  4,3,2 . Clearly,  6Z   is isomorphic 

to 5P . Using the above proof (i)    
pZZ 26    is a pair sum graph. 

(iii) To prove    
pZZ 29    is a pair sum graph. 
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Let uv be the path  6Z . The vertex set of  6Z  is  6,3 . Clearly,  9Z  is a path of order 2. We 

know that the union of two trees is a pair sum labeling graph. Hence,    
pZZ 29    is a pair sum 

labeling. 

In general, for any path 
mP  in  nZ , the vertex set of 

mP  is  muuu ....,,, 21
. That is u1, u2, …, um be 

the path 
mP . Let     pivvZV ip  1:,2  and     pivvZE ip  1:2 . 

Case (i): pm   

Define, 

miiuf i  1,)(  

1)( vf  

miivf i  1,2)(  

Hence,           1212...,,5,32  ppZPEf pme  

Case (ii): mp   

Define, 

miiuf i  1,)(  

1)( vf  

11,2)(  miivf i
 

oddismpif
mp

iimvf im 


 ,
2

1
1,2)( 12 . 

evenismpif
mp

iimvf im 


 ,
2

1,2)( 12 . 

oddismpif
mp

iimvf im 


 ,
2

1
1),22()( 22 . 

evenismpif
mp

iimvf im 


 ,
2

1),22()( 22 . 

Here 

        






 


2

)23(
),....,12(,212...,,5,32

pm
mmmZPEf pme  if mp   is odd 

       






 








 


2

3(

2

)23(
),....,12(,212...,,5,32

nmpm
mmmZPEf pme  if 

mn  is even. Then, f is a pair sum labeling. 

Theorem 2.3. If any prime 5p , then  2p
Zm  is a pair sum graph. 

Theorem 2.4. If 11p , then  2p
Zm  is not a pair sum graph. 

Proof. We prove this by the method of contradiction. Suppose,  2p
Zm  is a pair sum graph. We 

know that, if  nZ  is a (r,s) pair sum graph then 24  rs , where r is the number of vertices and s 

is the number of edges in  nZ . We know that  2p
Z  is isomorphic with 1pK  . Then, the number 

of edges in a complete graph 1pK  is 
2

)2)(1(  pp
. Then the total edges of m copies of  2p

Z  is 

2

)2)(1(  ppm
. 
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Then, 642)1(4
2

)2)(1(



pp

ppm
 

0128)2)(1(  pppm  

012)2)(1(8  ppmm  

If 11p  and 5m , then 12)2)(1(8  ppmm  is a negative value. Clearly, 

012)2)(1(8  ppmm , a contradiction. 

Hence, If any prime 11p , then  2p
Zm  is not a pair sum graph. 

3. PAIR SUM LABELING OF CORONA OF TWO ZERO DIVISOR GRAPHS 

In this section, we investigate the pair sum labeling behavior of some graphs obtained as a Corona of 

two standard graph in zero divisor graphs. 

Theorem 3.1. (i) The comb  6Z ʘ  4Z  is a pair sum graph. 

(ii)  8Z ʘ  4Z  is a pair sum graph. 

(iii)  9Z ʘ  4Z  is a pair sum graph. 

Proof. (i) and (ii), We know that,  6Z ʘ  4Z  and  8Z ʘ  4Z  are same graphs. Since  6Z  

and  8Z  are isomorphic to 
3P . 

Let 
3P  be the path uvw and u and w are the pendent vertices, adjacent to v. Let 123  mn , 

where 1m . 

Define, 
3(: PVf  ʘ  4Z )  )12(...,,2,1  m  by  

miiwforuf ii  1;2)()(  

1;)42()()(  mimwforuf ii
 

121;)1(42)()(  mimmiwforuf ii
 

miivf i  1;12)(  

1;82)(  mimvf i  

122;342)(  mimmivf i  

Here, )(( 3PEfe
 ʘ  4Z ) =    )44(,4)14(),24(....,,7,6,3  mmm  

Then, f is a pair sum labeling. 

(iii) We know that  9Z ʘ  4Z  is isomorphic to P2ʘK1. 

Let .22  mn  Then define )((: 9ZVf  ʘ  4Z )  2,1   by )4(mod2n  

1,2)(  miandoddisiifiuf i
 

miandevenisiifiuf i  ,12)(  

miifmuf i  ),12()(  

1,32)(  miifmuf i  

mimoddisiifmiuf i 21,412)(   

mimevenisiifmiuf i 21),24(2)(   

miandoddisiifivf i  ,12)(  

miandevenisiifivf i  ,2)(  

mimandevenisiifmivf i 2,412)(   

mimoddisiifmivf i 2),24(2)(   
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Here, )((( 9ZEfe  ʘ  4Z ) =    6,4,2)54(....,,5,3  m . 

Then, f is a pair sum labeling. Therefore  6Z ʘ  4Z ,  8Z ʘ  4Z  and  9Z ʘ  4Z  are pair 

sum graphs. 

Theorem 3.2. The graph  nZ ʘ2  4Z  is a pair sum graph, where 6n , 8 and 9. 

Proof. We know that  6Z    8Z    P3. Let 
iv  and 

iw  be the pendent vertices adjacent to 
iu  for 

ni 1 . 

Case (i) ][3 oddn   

Define, 

2

1
1;13)(




n
iiuf i  

2

1
;

2

31
)(







n
i

n
uf i  

ni
n

niuf i 



2

3
;)23(3)(  

2

1
1;3)(




n
iivf i  

2

1
;

2

53
)(







n
i

n
vf i  

ni
n

nivf i 



2

3
;)33(3)(  

1;53)(  inwf i
 

2

1
2;23)(




n
iiwf i  

2

1
;

2

)1(3
)(







n
i

n
wf i  

ni
n

niwf i 



2

3
;)13(3)(  

Here, )((( ne ZEf  ʘ2  4Z ) =    )33()43(....,,3,2  nn . 

Then, f is a pair sum labeling. 

Case (ii): We know that  9Z   P2. Clearly, u and v are pendent vertices in P2. 

Let 2n  is even. 

Since, P2ʘ2  4Z  = B2,2. Let    21,21:,,,2,2  jivuvuBV ji  and 

   21,21:,,2,2  jivvuuuvBE ji . 

Define,    )22(...,,2,1: 2,2  nBVf  by 

1)( uf  

2)( vf  

niiuf i  1;2)(  

niivf i  1;12)( , where 2n . 

Thus,      1)12(...,,5,32,2  nBEfe  and have B2,2 is a pair sum graph. That is 

 9Z ʘ2  4Z  is a pair sum graph. 

4. PAIR SUM LABELING ON SUBDIVISION GRAPHS IN  nZ  
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Hence, We investigate the pair sum labeling behavior of graphs obtained as the subdivision of some 

standard graphs in  nZ . 

Theorem 4.1.   pZS 2  is a pair sum graph. 

Proof. Let      11:,,2  pivuuZSV iip  and      11:,2  pivuuuZSE iiip .  

Define     )12(...,,2,1: 2  pZSf p  by  

1)( uf  

niiuf i ...,,2,1;1)(   

niivf i ...,,2,1;)12()(   

Here       )1(...,,2,12  pZSEf pe  

Then f gives a pair sum labeling for   pZS 2 . 

Theorem 4.2. )(( nZS  ʘ  4Z ) is a pair sum graph, where 98,6 andn  . 

Proof. Let V( )(( nZS  ʘ  4Z )) =    nivwniu iii  1:,121: . 

Let E( )(( nZS  ʘ  4Z )) =      niwvniwuniuu iiiii   1:1:221: 121
. 

Since,  6Z  and  8Z  is path with length 2, and  9Z  is a path with length 1. 

Case (i): n is even   29 PZ   

Since we know that, any path is a pair sum graph. So, the Subdivision of  9Z ʘ  4Z  is a pair 

sum graph. 

Case (ii): 3n  is odd     386 PZZ   

Define, 
3((: PSVf ʘ ))( 4Z )  )14(...,,2,1  n  by 

  12/)1( nuf  

  82/)1( nuf  

  82/)3( nuf  

  82/)1( nuf  

  1
2

1,11022/)1( 









n
iiuf in  

  1
2

1,5522/)1( 









n
iiuf in  

  1
2

1,11022/)3( 









n
iiuf in  

  1
2

1),55(22/)1( 









n
iiuf in  

  22/)1( nwf  

  52/)1( nwf  

  1
2

1,752/)1( 









n
iiwf in  

  1
2

1),75(2/)3( 









n
iiwf in  

  32/)1( nvf  
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  92/)1( nvf  

  92/)3( nvf  

  1
2

1,852/)1( 









n
iivf in  

  1
2

1),85(2/)3( 









n
iivf in  

Here 
3((( PSEfe
ʘ ))( 4Z ))  5...,,2,1   

Then f is pair sum labeling. 

5. PAIR SUM LABELING OF PATH AND CYCLE RELATED TO ZERO DIVISOR GRAPH 

In this chapter, we prove that    99 ZZ  ,  9ZCn   and  nm PC ,  are pair sum graphs. 

Theorem 5.1. The graph    99 ZZ   is a pair sum graph. 

Theorem 5.2. The graph  9ZCn   is a pair sum graph, if n is even. 

Proof. Let     nivuZCV iin  1:,9
 and 

        11119 ,1:11:, vvuunivunivvuuZCE nniiiiiin  
. 

Define     nZCVf n  ...,,2,1: 9
 as follows 

Case (i): 24  mn . 

Define , 121;)(  miiuf i
 

  121;12  miiuf im
 

121;628)(  miimvf i
 

  121;62812  miimvf im
 

Here          )58(...,),66(),56(2)14(...,,5,39  mmmmmZCEf ne . 

Case (ii): mn 4 . 

121;)(  miiuf i
 

121;)( 2  miiuf im  

)12()( 4  muf m
 

miimvf im 21;228)( 12 
 

miimvf im 21;)24()( 2 
 

Here    9ZCEf ne   

       )110()310(...,),64(),34(4,2)34(...,,5,3  mmmmmmm  

Clearly, f is a pair sum labeling. 

Theorem 5.3. The graph   6, ZCm   is a pair sum graph. 

Proof. Let the first copy of the cycle Cm be 121 ...,, uuuu m  and second copy of cycle Cm be 

121 ...,, vvvv n . Let  6Z  be path P3, w1w2w3. Let           66, ZVCVCVZCV mmm   and 

            131166 ,, vwwuZECECEZCE mmm  . 

Define      mZCVf m 3...,,2,1,: 6   by 

2)( 1 wf  

1)( 2 wf  

4)( 3 wf  
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miimvf i  1,13)(  

21,22)(  miimuf i
 

12)( 1  muf m
 

22)(  muf m
 

Here, 

        


















2

7
5),15()16(...,),54(),34(...,,5,3, 6 mmmmmnZCEf me  

Then, Clearly f is a pair sum labeling. 
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