Analysis of Base Structure of CNC Router for Strength and Deformation

¹Amarishkumar J Patel, ²Prof.Someshwar S Pandey, ³Sunilkumar N.Chaudhari, ⁴Prof.Nilesh H Gupta,

⁵Prof. Vipal R Panchal

¹³Lecturer, ²⁴⁵Assistant Professor
 ¹²³⁴Mechanical Engineering Department,
 ¹³Bhailalbhai and Bhikhabhai Institute of Technology, Anand, ²⁴⁵Gandhinagar Institute of Technology, MotiBhoyan

Abstract –

CNC router is used to make a cavity on wooden and it is widely used in industry. Other processes for producing holes are punching and various advanced machining processes. The cost of holes and cavity making is one of the highest machining costs. There are several types of wooden cutting which is different tool or cutter.

The three mechanical subsystems will consist of the framing system, the guide system, and the mechanical drive system. The guide and mechanical drive systems have several choices of material and structure type, and each of these choices will be evaluated based on cost and precision. The drive subsystem will be analyzed for efficiency and cost tradeoffs.

The electrical subsystem consists of the communications and the motor drive electronics subsystems.

The software subsystem will be evaluated and selected based upon the number and types of drawing files with which it can be used, without requiring intermediate programs to translate the files.

The cost of structure is estimated, which is a significant saving over current machines currently available on the market with the proposed features.

IndexTerms - CNC Router, Wood, Marking, Analysis, Mechanical Drive

I. INTRODUCTION

CNC ROUTER TECHNICAL SPECIFICATION

Figure 1 Photograph of NR-115

TECHNICAL DATA

Table 1 Technical Data

Description	NR-115		
X-Y-Z Axis Movement	1300 x 2500 x 200m		
Reposition Accuracy	0.01mm		
X-Y Movement	Taiwan Rack & Pinion Transmission		
Z Movement	German Ball Screw		
Table Size	1440 x 3040 mm		
Max Idling Speed	35 m/min		
Max Cutting Speed	25 m/min		
Working Voltage	3 [¢] / 380V/ 50Hz		
Spindle Power	6 HP (HSD ITALIAN Air Cooled)/ 6 HP (Water Cooled)		
Spindle Rotating Spee <mark>d</mark>	0-18000 RPM/ 0-24000 RPM		
Drive Motor	Stepper/Servo		
Command	G code		
Computer Interface	USB		
Controls	DSP (Digital Signal Processor)		
Collet Size	6mm, 8mm, 12mm		
Working Holding	Manual T <mark>-Slot Cl</mark> amping / Vacuum Holding		
Dust Collecting Arrangement	Yes		

II. CAD MODELING AND FEA ANALYSIS OF CNC ROUTER STRUCTURE

Figure 2 Detail view drawing CNC Router Structure

STRUCTURAL ANALYSIS OF NR-115 BASE STRUCTURE

BASIC STEPS OF FEA ANALYSIS FOR NR-115 BASE STRUCTURE

(1) Preprocessing: defining the problem

The major steps in preprocessing are define key points/lines/areas/volumes,

(i)define element type and material/geometric properties,

(ii) Mesh lines/areas/ volumes as required. The amount of detail required will depend on the dimensionality of the analysis, i.e., 1D, 2D, ax symmetric, and 3D.

(2) Solution: assigning loads, constraints, and solving

Here, it is necessary to specify the loads (point or pressure), constraints (translational and rotational), and finally solve the resulting set of equations.

(3) Post processing: further processing and viewing of the results

In this stage one may wish to see lists of nodal displacements,

(i)element forces and moments,

(ii)deflection plots, and

(iii)stress contour diagrams or temperature maps.

Step-1 Pre-processing

First Prepare Assembly in Solidworks 2015.

2) Check the Geometry for Meshing.

3) Apply Material for Each Component.

Table 2 1080 Mild Steel Material Properties

Structure	Material used	Young	Yield	Poisions	Density
		Modulus	Strength	Ratio	(Kg/m3)
		(Gpa)	(Mpa)		
NR-115 Base	1080 Mild	210	550	0.266	7860
Structure	Steel				

4) Create mesh.

Solid mesh (Jacobian Point : 4 Point) which is programme generated. Fine Meshing is apply No. of Nodes:- 88097 No. of Elements:-44793

Figure 4 Meshing of NR-115 Base Structure using static analysis

5) Define Boundry condition

Apply Fixed Support at bottom edge of base structure. In fixed support boundary condition, bottom face of structure having not movement along X,Y & Z and also rotation same axis.

Figure 5 Boundary condition of NR-115 Base Structure using static analysis

Apply Force

Force magnitude on Y-axis is 4000N. (Weight on Y-axis =400kg, FY =400 x 9.81 = 4000)

Figure 6 Force applying NR-115 Base Structure

Results of Analysis Equivalent Stress for static analysis

Name	Туре	Min	Max
Stress1	VON: von Mises Stress	8027.45 N/m^2 Node: 80451	4.50689e+007 N/m^2 Node: 11318
FS1325-10-00-S	tatic 1-Stress-Stress1		
Model name:F51325-10-00 Study name:Static 14-Defrault) Plot type: Static nodal stress Stress Deformation scale: 543.913	1 Functional Version. For In	structional Use Only	von Mises (N/m^2) 4.507e+007 4.131e+007 3.756e+007 3.300e+007 2.629e+007 2.254e+007 1.878e+007 1.127e+007 1.127e+007 3.7518e+006 8.027e+003 → Yield strength: 2.206e+008
z	Educational Version. For In	structional Use Only	

Figure 7 Equivalent Stress analysis of NR-115 Base Structure

Displacement

Name	Туре		Min	Max	
Displacement1	URES: Displacement	Resultant	0 mm	0.579132 mm	
FS1325-10-00-Static 1-Displacement-Displacement1					

Figure 8 Displacement of NR-115 Base Structure

Equivalent Strain

Name	Туре	Min	Max	
Strain1	ESTRN: Equivalent Strain	5.81393e-008 Element: 40646	0.000159671 Element: 14984	
FS1325-10-00-Static 1-St	rain-Strain1			
Model name: F51325-10-00 Study name: Static Lip Orbaule) Piot type: Static strain Strain1 Deformation scale: 543.319	Educational Version. For Inst	ructional Use Only	ESTRN 1.5970-004 1.4640-004 1.1310-004 1.1380-004 3.3170-005 3.3170-005 5.3260-005 3.3960-005 2.6660-005 1.3360-005 5.3260-005 5.8140-008	
Figure 5 Equivalent Stress analysis of MR-115 Dase Structure				
	Table 3	Result		
Material	Von mises stress (MPa)	Strain I	Displacement mm)	
1080 Mild Steel	45.06	0.000159671).5791	

Step-1 Pre-processing

First Prepare Assembly in Solidworks 2015.

Figure 10 Geometry of Modify NR-115 Base Structure using static analysis

2) Check the Geometry for Meshing.

3) Apply Material for Each Component.

Structure	Material used	Young	Yield	Poisions	Density
		Modulus	Strength	Ratio	(Kg/m3)
		(Gpa)	(Mpa)		
NR-115 Base Structure	1080 Mild Steel	210	550	0.266	7860

Table 4 1080 Mild Steel Material Properties

4) Create mesh.

Solid mesh (Jacobian Point : 4 Point) which is programme generated.

Fine Meshing is apply

No. of Nodes:- 88097

No. of Elements:-44793

Figure 11 Meshing of Modify NR-115 Base Structure using static analysis

5) Define Boundry condition

Apply Fixed Support at bottom edge of base structure. In fixed support boundary condition, bottom face of structure having not movement along X,Y & Z and also rotation same axis.

Figure 12 Boundary condition of Modify NR-115 Base Structure using static analysis

Apply Force

Force magnitude on Y-axis is 4000N.

(Weight on Y-axis =400kg , FY =400 x 9.81 = 4000)

Figure 13 Force applying Modify NR-115 Base Structure

NU

Results of Analysis

Equivalent Stress for static analysis

	• •	Min	Max
Stress1	VON: von Mises Stress	11677.6 N/m^2	4.27393e+007
		Node: 63978	N/m^2
		1000.05770	Node: 29321
	Modify FS1325-10-00-	-Static 1-Stress-Stress1	-
Model name:F51325-10-00 - Modify Study name:Static 1(-Default) Plot type: Static nodal stress Stress Deformation scale: 639.542			von Mises (N/m 2) 4.274e+007 3.918e+007 3.562e+007 2.2650e+007 2.2650e+007 2.2138e+007 1.1781e+007 1.1425e+007 1.1659e+007 7.133e+006 3.572e+006 1.168e+004

Figure 14 Equivalent Stress analysis of Modify NR-115 Base Structure

Displacement

Name	Туре	Min	Max	
Displacement1	URES: Resultant	0 mm	0.49254 mm	
	Displacement	Node: 82118	Node: 74810	
Modify FS1325-10-00-Static 1-Displacement-Displacement1				

Figure 15 Displacement of Modify NR-115 Base Structure

Equivalent Strain

Name	Туре	Min	Max
Strain1	ESTRN: Equivalent	7.98837e-008	0.000119805
	Strain	Element: 35443	Element: 36899
	FS1325-10-00-Static	1-Strain-Strain1	
Model name:F51325-10-00 - Modify Study name:Static 14-Default) Piot type: Static strain Strain1 Deformation scale: 639.542			ESTRN 1.198e-004 9.985e-005 0.397e-005 1.399e-005 5.3994e-005 3.399e-005 3.001e-005 2.003e-005 1.006e-005 7.988e-008

Figure 16 Equivalent Stress analysis of Modify NR-115 Base Structure

Material 1080 Mild Steel	Von mises stress (MPa) 45.06	Strain 0.000159671	Displacement (mm) 0.5791		
	Table 6Comparison Result				
Structure	Von mises stress	Strain	Displacement		
	(MPa)		(mm)		
NR-115 Base Structure	45.06	0.000159671	0.5791		
Modify NR-115 Base Structure	42.73	0.000798837	0.4925		

Table 5 Result

III. ACKNOWLEDGMENT

It is indeed a great pleasure for me to express my sincere gratitude to those who have always helped me for this publication of research paper. I am extremely thankful to my thesis guide Asst. Prof.Dhaval P Patel, Asst. professor in Mechanical Engineering Department, Gandhinagar Institute of Technology, MotiBhoyanis valuable guidance, motivation, cooperation, constant support with encouraging attitude at all stages of my work. I am highly obliged to him for his constructive criticism and valuable suggestions, which helped me to present the scientific results in an efficient and effective manner in this research.

IV. CONCLUSION

In this study, CNC Router is identified different operations and components. By using practical data of CNC Router structure, prepared 3D CAD model for in Solid Work 2015.Simulation of existing CNC router structure in Solid Work 2015 gives result likes Vonmises stress 45.06 MPa and Displacement 0.5791 mm as compare to modify CNC router structure result of Vonmises stress 42.73 MPa and Displacement 0.4925 mm.

REFERENCES

PAPERS

- [1] Olufemi B. Akinnuli, Vincent A. Balogun, Tunde C. Akintayo, "Design of a Keypad Operated CNC Drilling Router", International Journal of Engineering Research and General Science Volume 3, Issue 5, September-October, 2015.
- [2] Mr.Dhruv H. Patel, Prof. V. N. Patni, "An Investigation Effect of Machining Parameters on CNC Router", 2014, IJEDR, Volume 2, Issue 2.
- [3] Dr.B.Jayachandraiah1, O. Vamsi Krishna, "Fabrication of Low Cost 3-Axis CNC Router", International Journal of Engineering Science Invention, Volume 3 Issue 6,June 2014,PP.01-10.
- [4] Sundar Pandian and S. Raj Pandian, "A Low-Cost Build-Your-Own Three Axis CNC Mill Prototype", International Journal on Mechanical Engineering and Robotics, Volume-2, Issue-1, 2014.
- [5] Wang Feng , Lin Hu, Zheng Liaomo , Yang Lei, Feng Jinjin , "Design and implementation of fiveaxis transformation function in CNC system", Chinese Journal of Aeronautics, (2014),27(2): 425– 437.
- [6] GautamJodh, PiyushSirsat, NagnathKakde, Sandeep Lutade, "Design of low Cost CNC Drilling Machine", International Journal of Engineering Research and General Science Volume 2, Issue 2, Feb-Mar 2014.
- [7] Sergej N. Grigorieva, Georgi M. Martinova, "Research and development of a cross-platform CNC kernel for multi-axis machine tool", 6th CIRP International Conference on High Performance

Cutting, HPC2014.

- [8] RajkiranBramhane, Arun Arora1 and H Chandra, "Simulation Of Flexible Manufacturing System Using Adaptive Neuro Fuzzy Hybrid Structure For Efficient Job Sequencing And Routing", Int. J. Mech. Eng. & Rob. Res. 2014.
- [9] Er. Manpreet Singh, Er. SanjeevVerma, Dr. Sanjiv Kumar Jain, "A literature review on machining of different materials with CNC", International Journal of Emerging Research in Management & Technology, Volume-3, Issue-8,2014.
- [10] B. MalleswaraSwami ,K.SunilRatna Kumar, "Design And Structural Analysis Of CNC Vertical Milling Machine Bed', IJAET,Vol.III,IssueIV,Oct.-Dec., 2012/97-100.
- [11] Anil Choubey, VedanshChaturvedi ,JyotiVimal, " Optimization of process parameters of CNC Milling machine for mild steel using Taguchi design and Single to Noise ratio Analysis" International Journal of Engineering Research & Technology (IJERT), Vol. 1 Issue 6, August -2012.
- [12] Amit Kumar, AkshayGajbhiye, B Lohit Kumar, Shailendra Patel, "Modeling And Analysis of CNC Lath Bed" IJARIIE, Vol-2 Issue-2 2016.
- [13] Kartavya S. Sagar, Alpesh B. Damor, Dr. Haresh P. Patolia, "A Literature Review on Design of CNC Machine Tool Structure" The International Journal Of Science & Technoledge, Vol 3 Issue 10, October, 2015.
- [14] R. R. Raval, Ankit Vaishnava, "A Review on FEM Analysis of CNC Slanted Bed" International Journal for Research in Technological Studies | Vol. 2, Issue 2, January 2015.
- [15] Ahmed A. D. Sarhan, S. R. Besharaty, JavadAkbaria, M. Hamdi, "Improvement on a CNC Gantry Machine Structure Design for Higher Machining Speed Capability" International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering Vol:9, No:4, 2015.
- [16] NikunjAadeshra, Prof. R. L. Patel, "Static and Dynamic Analysis of Base of Vertical Machining Center - A Review" International Journal of Engineering Trends and Technology (IJETT) – Volume 21 Number 9 – March 2015.
- [17] Venkata Ajay Kumar. G V. Venkatesh, "Modelling and Analysis of CNC Milling Machine Bed with Composite Material" IJSRD - International Journal for Scientific Research & Development | Vol. 2, Issue 09, 2014.
- [18] B. Malleswara Swami, K.SunilRatna Kumar, "Design And Structural Analysis of CNC Vertical Milling Machine Bed" IJAET/Vol.III/ Issue IV/Oct.-Dec., 2012/97-100.