PARTIAL SUMS OF CERTAIN ANALYTIC AND UNIVALENT FUNCTIONS

${ }^{1}$ Dr. Balvir Singh, ${ }^{2}$ Arun Saini
${ }^{1}$ Assoc. Professor, ${ }^{2}$ Assistant Professor
${ }^{1}$ Department of Mathematics
R P Degree College, Kamalganj, Farrukhabad-209601
(U.P.) India

Abstract : Let $f_{m}(z)=z+\sum_{k=2}^{m} a_{k} z^{k}$ be the sequence of partial sums of a function $f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}$ that is analytic in $|z|<1$ and belong to the class $S_{n}(\alpha)$, where $(0 \leq \alpha<1)$. When the coefficients of $\left\{a_{k}\right\}$ are " small " we determine sharp lower bounds for $\operatorname{Re}\left\{\frac{D^{p} f(z)}{D^{p} f_{m}(z)}\right\}$ and $\operatorname{Re}\left\{\frac{D^{p} f_{m}(z)}{D^{p} f(z)}\right\}$, where D^{p} stands for the Salagean derivative introduced in [4].
Keywords. Analytic functions, Univalent functions, Salagean derivative, Partial sums.
AMS 2010 Mathematics Subject Classification: 30C45.

I. Introduction

Let A denote the class of functions f of the form

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disc $U=\{z:|z|<1\}$. Further, by S we shall denote the class of all functions in A which are univalent in U. Further T denotes subclass of A consisting of functions $f(z)$ of the form

$$
\begin{equation*}
f(z)=z-\sum_{k=2}^{\infty} a_{k} z^{k}, \quad a_{k} \geq 0 \tag{1.2}
\end{equation*}
$$

We denote by $S^{*}(\alpha), K(\alpha),(0 \leq \alpha<1)$, the class of starlike functions of order α and class of convex functions of order α, respectively, where

$$
S^{*}(\alpha)=\left\{f \in S: \operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha, z \in U\right\}
$$

and

$$
K(\alpha)=\left\{f \in S: \operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\alpha, z \in U\right\}
$$

We also denote by $T^{*}(\alpha)$ and $C(\alpha)$ the subclasses of T that are, respectively, starlike of order α and convex of order α.
For $f(z)$ belonging to A, Salagean [4] has introduced the following operator called the Salagean operator

$$
D^{0} f(z)=f(z)
$$

$$
\begin{array}{rr}
D^{1} f(z) & =z f^{\prime}(z) \\
D^{n} f(z)=D\left(D^{n-1} f(z)\right) & (n \in N=\{1,2,3 \ldots . . .\}) .
\end{array}
$$

Note that

$$
D^{n} f(z)=z+\sum_{k=2}^{\infty} k^{n} a_{k} z^{k}, \quad\left(n \in N_{0}=N \cup\{0\}\right)
$$

A function $f(z) \in A$ is said to belong to the class $S_{n}(\alpha)$ if it satisfies

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{D^{n+1} f(z)}{D^{n} f(z)}\right\}>\alpha, \quad(z \in U) \tag{1.3}
\end{equation*}
$$

for some $\alpha(0 \leq \alpha<1)$ and $n \in N_{0}$.
The class $S_{n}(\alpha)$ have been studied by various authors (for example [1], [2], [3]).
Note that
$S_{0}(\alpha)=S^{*}(\alpha)$ and $S_{1}(\alpha)=K(\alpha)$.
A sufficient condition for a function f of the form (1.1) to be in $S_{n}(\alpha)$ is that

$$
\begin{equation*}
\sum_{k=2}^{\infty} \frac{k^{n}(k-\alpha)}{1-\alpha}\left|a_{k}\right| \leq 1 \tag{1.4}
\end{equation*}
$$

For the functions of the form (1.2) the sufficient condition (1.4) is also necessary. For detailed study see [1].
In the present paper, we determine sharp lower bounds for $\operatorname{Re}\left\{\frac{D^{p} f(z)}{D^{p} f_{m}(z)}\right\}$ and $\operatorname{Re}\left\{\frac{D^{p} f_{m}(z)}{D^{p} f(z)}\right\}$ (where $f_{m}(z)=z+\sum_{k=2}^{m} a_{k} z^{k}$ is the sequence of partial sums of $f(z)$ given by (1.1) and coefficients of are sufficiently small to satisfy the condition (1.4)) which are motivated from the investigation of Silverman [5].

2. Main Results

Theorem 2.1: If f of the form (1.1) satisfies the condition (1.4), then

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{D^{p} f(z)}{D^{p} f_{m}(z)}\right\} \geq \frac{(m+1)^{n-p}(m+1-\alpha)-(1-\alpha)}{(m+1)^{n-p}(m+1-\alpha)}, \quad(z \in U) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{D^{p} f_{m}(z)}{D^{p} f(z)}\right\} \geq \frac{(m+1)^{n-p}(m+1-\alpha)}{(m+1)^{n-p}(m+1-\alpha)+(1-\alpha)}, \quad(z \in U) \tag{2.2}
\end{equation*}
$$

The results (2.1) and (2.2) are sharp for every m with the function given by

$$
\begin{equation*}
f(z)=z+\frac{1-\alpha}{(m+1)^{n}(m+1-\alpha)} z^{m+1} \tag{2.3}
\end{equation*}
$$

where $0 \leq \alpha<1, n \in N_{0}$ and $p \leq n+1$.
Proof: Define the function $\omega(z)$ by

$$
\begin{align*}
\frac{1+\omega(z)}{1-\omega(z)} & =\frac{(m+1)^{n-p}(m+1-\alpha)}{1-\alpha}\left[\frac{D^{p} f(z)}{D^{p} f_{m}(z)}-\frac{(m+1)^{n-p}(m+1-\alpha)-(1-\alpha)}{(m+1)^{n-p}(m+1-\alpha)}\right] \\
& =\frac{1+\sum_{k=2}^{m} k^{p} a_{k} z^{k-1}+\frac{(m+1)^{n-p}(m+1-\alpha)}{1-\alpha} \sum_{k=m+1}^{\infty} k^{p} a_{k} z^{k-1}}{1+\sum_{k=2}^{m} k^{p} a_{k} z^{k-1}} \tag{2.4}
\end{align*}
$$

It suffices to show that $|\omega(z)| \leq 1$. Now, from (2.4) we can write

$$
\omega(z)=\frac{\frac{(m+1)^{n-p}(m+1-\alpha)}{1-\alpha} \sum_{k=m+1}^{\infty} k^{p} a_{k} z^{k-1}}{2+2 \sum_{k=2}^{m} k^{p} a_{k} z^{k-1}+\frac{(m+1)^{n-p}(m+1-\alpha)}{1-\alpha} \sum_{k=m+1}^{\infty} k^{p} a_{k} z^{k-1}} .
$$

Hence we obtain

$$
|\omega(z)| \leq \frac{\frac{(m+1)^{n-p}(m+1-\alpha)}{1-\alpha} \sum_{k=m+1}^{\infty} k^{p}\left|a_{k}\right|}{2-2 \sum_{k=2}^{m} k^{p}\left|a_{k}\right|-\frac{(m+1)^{n-p}(m+1-\alpha)}{1-\alpha} \sum_{k=m+1}^{\infty} k^{p}\left|a_{k}\right|}
$$

Now $|\omega(z)| \leq 1$ if

$$
2 \frac{(m+1)^{n-p}(m+1-\alpha)}{1-\alpha} \sum_{k=m+1}^{\infty} k^{p}\left|a_{k}\right| \leq 2-2 \sum_{k=2}^{m} k^{p}\left|a_{k}\right|
$$

or, equivalently,

$$
\begin{equation*}
\sum_{k=2}^{m} k^{p}\left|a_{k}\right|+\frac{(m+1)^{n-p}(m+1-\alpha)}{1-\alpha} \sum_{k=m+1}^{\infty} k^{p}\left|a_{k}\right| \leq 1 \tag{2.5}
\end{equation*}
$$

From the condition (1.4), it is sufficient to show that

$$
\sum_{k=2}^{m} k^{p}\left|a_{k}\right|+\frac{(m+1)^{n-p}(m+1-\alpha)}{1-\alpha} \sum_{k=m+1}^{\infty} k^{p}\left|a_{k}\right| \leq \sum_{k=2}^{\infty} \frac{k^{n}(k-\alpha)}{1-\alpha}\left|a_{k}\right|
$$

which is equivalent to

$$
\sum_{k=2}^{m} \frac{k^{n+1}-\alpha k^{n}-k^{p}(1-\alpha)}{1-\alpha}\left|a_{k}\right|+\sum_{k=m+1}^{\infty} \frac{k^{n+1}-\alpha k^{n}-(m+1)^{n-p}(m+1-\alpha) k^{p}}{1-\alpha}\left|a_{k}\right| \geq 0
$$

To see that the function given by (2.3) gives the sharp result, we observe that for $z=r e^{i \pi / m}$ that

$$
\begin{aligned}
\frac{D^{p} f(z)}{D^{p} f_{m}(z)}=1+\frac{1-\alpha}{(m+1)^{n}(m+1-\alpha)}(m & +1)^{p} z^{m} \rightarrow 1-\frac{1-\alpha}{(m+1)^{n-p}(m+1-\alpha)} \\
& =\frac{(m+1)^{n-p}(m+1-\alpha)-(1-\alpha)}{(m+1)^{n-p}(m+1-\alpha)}, \quad \text { when } r \rightarrow 1^{-}
\end{aligned}
$$

To prove the second part of this theorem, we may write

$$
\begin{aligned}
\frac{1+\omega(z)}{1-\omega(z)} & =\frac{(m+1)^{n-p}(m+1-\alpha)+(1-\alpha)}{1-\alpha}\left[\frac{D^{p} f_{m}(z)}{D^{p} f(z)}-\frac{(m+1)^{n-p}(m+1-\alpha)}{(m+1)^{n-p}(m+1-\alpha)+(1-\alpha)}\right] \\
& =\frac{1+\sum_{k=2}^{m} k^{p} a_{k} z^{k-1}-\frac{(m+1)^{n-p}(m+1-\alpha)}{1-\alpha} \sum_{k=m+1}^{\infty} k^{p} a_{k} z^{k-1}}{1+\sum_{k=2}^{\infty} k^{p} a_{k} z^{k-1}}
\end{aligned}
$$

where

$$
|\omega(z)| \leq \frac{\frac{(m+1)^{n-p}(m+1-\alpha)+(1-\alpha)}{1-\alpha} \sum_{k=m+1}^{\infty} k^{p}\left|a_{k}\right|}{2-2 \sum_{k=2}^{m} k^{p}\left|a_{k}\right|-\left\{\frac{(m+1)^{n-p}(m+1-\alpha)-(1-\alpha)}{1-\alpha}\right\} \sum_{k=m+1}^{\infty} k^{p}\left|a_{k}\right|} \leq 1 .
$$

This last inequality is equivalent to

$$
\begin{equation*}
\sum_{k=2}^{m} k^{p}\left|a_{k}\right|+\frac{(m+1)^{n-p}(m+1-\alpha)}{1-\alpha} \sum_{k=m+1}^{\infty} k^{p}\left|a_{k}\right| \leq 1 \tag{2.6}
\end{equation*}
$$

Since the L.H.S. of (2.6) is bounded above by $\sum_{k=2}^{\infty} \frac{k^{n}(k-\alpha)}{1-\alpha}\left|a_{k}\right|$, and the proof is complete. Finally, equality holds in (2.2) for the function given in (2.3).
Taking $n=0, p=0$ in Theorem 2.1, we obtain the following result given by Silverman in [5].
Corollary 2.2 ([5]). If f of the form (1.1) and satisfies the condition $\sum_{k=2}^{\infty} \frac{k-\alpha}{1-\alpha}\left|a_{k}\right| \leq 1$, then

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f(z)}{f_{m}(z)}\right\} \geq \frac{m}{(m+1-\alpha)}, \quad(z \in U) \tag{2.7}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f_{m}(z)}{f(z)}\right\} \geq \frac{m+1-\alpha}{m+2-2 \alpha}, \quad(z \in U) \tag{2.8}
\end{equation*}
$$

The results are sharp with the function given by

$$
\begin{equation*}
f(z)=z+\frac{1-\alpha}{(m+1-\alpha)} z^{m+1} \tag{2.9}
\end{equation*}
$$

Taking $n=0, p=1$ in Theorem 2.1, we obtain the following result given by Silverman in [5].

Corollary 2.3 ([5]) If f of the form (1.1) and satisfies the condition $\sum_{k=2}^{\infty} \frac{k-\alpha}{1-\alpha}\left|a_{k}\right| \leq 1$, then

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f^{\prime}(z)}{f_{m}^{\prime}(z)}\right\} \geq \frac{m \alpha}{m+1-\alpha}, \quad(z \in U) \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f_{m}^{\prime}(z)}{f^{\prime}(z)}\right\} \geq \frac{m+1-\alpha}{(m+1)(2-\alpha)-\alpha}, \quad(z \in U) \tag{2.11}
\end{equation*}
$$

The results are sharp with the function given by (2.9).
Taking $n=1, p=0$ in Theorem 2.1, we obtain the following result given by Silverman in [5].
Corollary 2.4 ([5]) If f of the form (1.1) and satisfies the condition $\sum_{k=2}^{\infty} \frac{k(k-\alpha)}{1-\alpha}\left|a_{k}\right| \leq 1$, then

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f(z)}{f_{m}(z)}\right\} \geq \frac{m(m+2-\alpha)}{(m+1)(m+1-\alpha)}, \quad(z \in U) \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f_{m}(z)}{f(z)}\right\} \geq \frac{(m+1)(m+1-\alpha)}{(m+1)(m+1-\alpha)+(1-\alpha)}, \quad(z \in U) \tag{2.13}
\end{equation*}
$$

The results are sharp with the function given by

$$
\begin{equation*}
f(z)=z+\frac{1-\alpha}{(m+1)(m+1-\alpha)} z^{m+1} \tag{2.14}
\end{equation*}
$$

Taking $n=1, p=1$ in Theorem 2.1, we obtain the following result given by Silverman in [5].
Corollary 2.5 ([5]) If f of the form (1.1) and satisfies the condition $\sum_{k=2}^{\infty} \frac{k(k-\alpha)}{1-\alpha}\left|a_{k}\right| \leq 1$, then

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f^{\prime}(z)}{f_{m}^{\prime}(z)}\right\} \geq \frac{m}{m+1-\alpha}, \quad(z \in U) \tag{2.15}
\end{equation*}
$$

The results are sharp with the function given by (2.14).

References

[1] Kadioglu Ekrem, On Subclass of univalent functions with negative coefficients, Appl. Math. Comput. (2003), 146 351-358.
[2] Lin L.J. and Owa S., Properties of Salagean operator, Georgian Math. J. (1998), 5(4), 361-366.
[3] Owa S., Obradovi M. and Lee S.K., Notes on a certain subclass of analytic functions introduces by Salagean, Bull. Korean. Math. Soc. (1986), 23, 133-140.
[4] Salagean G.S.(1983), Subclasses of univalent functions, Lecture Notes in Mathematics 1013, Springer-verlag, Berlin1, 362-372.
[5] Silverman H., Partial sums of starlike and convex functions, J. Math. Anal. Appl. (1997), 209, 221-227.

