PARTIAL SUMS OF CERTAIN ANALYTIC AND UNIVALENT FUNCTIONS

1 Dr. Balvir Singh, 2 Arun Saini
1 Assoc. Professor, 2 Assistant Professor
1 Department of Mathematics
R P Degree College, Kamalganj, Farrukhabad-209601
(U.P.) India

Abstract: Let $f_m(z) = z + \sum_{k=2}^{m} a_k z^k$ be the sequence of partial sums of a function $f(z) = z + \sum_{k=2}^{\infty} a_k z^k$ that is analytic in $|z| < 1$ and belong to the class S_α, where $0 \leq \alpha < 1$. When the coefficients of a_k are "small" we determine sharp lower bounds for $\text{Re} \left\{ \frac{D^p f(z)}{D^p f_m(z)} \right\}$ and $\text{Re} \left\{ \frac{D^p f_m(z)}{D^p f(z)} \right\}$, where D^p stands for the Salagean derivative introduced in [4].

Keywords. Analytic functions, Univalent functions, Salagean derivative, Partial sums.

AMS 2010 Mathematics Subject Classification: 30C45.

I. INTRODUCTION

Let A denote the class of functions f of the form

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k,$$

which are analytic in the open unit disc $U = \{ z : |z| < 1 \}$. Further, by S we shall denote the class of all functions in A which are univalent in U. Further T denotes subclass of A consisting of functions $f(z)$ of the form

$$f(z) = z - \sum_{k=2}^{\infty} a_k z^k, \quad a_k \geq 0.$$

We denote by $S^*\alpha, K(\alpha), (0 \leq \alpha < 1)$, the class of starlike functions of order α and class of convex functions of order α, respectively, where

$$S^*\alpha = \left\{ f \in S : \text{Re} \left\{ \frac{zf'(z)}{f(z)} \right\} > \alpha, z \in U \right\},$$

and

$$K(\alpha) = \left\{ f \in S : \text{Re} \left\{ 1 + \frac{zf^*(z)}{f'(z)} \right\} > \alpha, z \in U \right\}.$$

We also denote by $T^*\alpha$ and $C(\alpha)$ the subclasses of T that are, respectively, starlike of order α and convex of order α.

For $f(z)$ belonging to A, Salagean [4] has introduced the following operator called the Salagean operator

$$D^p f(z) = f(z)$$
\[D^1 f(z) = zf'(z) \]
\[D^n f(z) = D(D^{n-1} f(z)) \quad (n \in N = \{1,2,3,\ldots\}). \]

Note that
\[D^n f(z) = z + \sum_{k=2}^{\infty} k^\alpha a_k z^k, \quad (n \in \mathbb{N}_0 = N \cup \{0\}). \]

A function \(f(z) \in A \) is said to belong to the class \(S_n(\alpha) \) if it satisfies
\[\Re \left(\frac{D^{n+1} f(z)}{D^n f(z)} \right) > \alpha, \quad (z \in U) \]
for some \(0 \leq \alpha < 1 \) and \(n \in \mathbb{N}_0 \).

The class \(S_n(\alpha) \) have been studied by various authors (for example [1], [2], [3]).

Note that
\[S_0(\alpha) = S^*(\alpha) \]
and
\[S(\alpha) = K(\alpha). \]

A sufficient condition for a function \(f \) of the form (1.1) to be in \(S_n(\alpha) \) is that
\[\sum_{k=2}^{\infty} \frac{k^\alpha (k-\alpha)}{1-\alpha} a_k \leq 1. \]
(1.4)

For the functions of the form (1.2) the sufficient condition (1.4) is also necessary. For detailed study see [1].

In the present paper, we determine sharp lower bounds for \(\Re \left(\frac{D^n f(z)}{D^n f_m(z)} \right) \) and \(\Re \left(\frac{D^p f_m(z)}{D^p f(z)} \right) \) (where \(f_m(z) = z + \sum_{k=2}^{m} a_k z^k \) is the sequence of partial sums of \(f(z) \) given by (1.1) and coefficients of \(f \) are sufficiently small to satisfy the condition (1.4)) which are motivated from the investigation of Silverman [5].

2. Main Results

Theorem 2.1: If \(f \) of the form (1.1) satisfies the condition (1.4), then
\[\Re \left(\frac{D^n f(z)}{D^n f_m(z)} \right) \geq \frac{(m+1)^{\alpha-p} (m+1-\alpha)-(1-\alpha)}{(m+1)^{\alpha-p} (m+1-\alpha)}, \quad (z \in U). \]
(2.1)

and
\[\Re \left(\frac{D^p f_m(z)}{D^p f(z)} \right) \geq \frac{(m+1)^{\alpha-p} (m+1-\alpha)}{(m+1)^{\alpha-p} (m+1-\alpha)+(1-\alpha)}, \quad (z \in U). \]
(2.2)

The results (2.1) and (2.2) are sharp for every \(m \) with the function given by
\[f(z) = z + \frac{1-\alpha}{(m+1)^{\alpha} (m+1-\alpha)} z^{m+1}. \]
(2.3)

where \(0 \leq \alpha < 1, n \in \mathbb{N}_0 \) and \(p \leq n+1 \).

Proof: Define the function \(\omega(z) \) by
\[
1 + \omega(z) = \frac{(m+1)^{n-p} (m+1-\alpha)}{1-\alpha} \left[D^p f(z) \frac{(m+1)^{n-p} (m+1-\alpha) - (1-\alpha)}{D^p f_m(z)} \right] \\
= 1 + \sum_{k=2}^{\infty} k^p a_k z^{k-1} + \frac{(m+1)^{n-p} (m+1-\alpha)}{1-\alpha} \sum_{k=m+1}^{\infty} k^p a_k z^{k-1} \\
= 1 + \sum_{k=2}^{\infty} k^p a_k z^{k-1}.
\]

(2.4)

It suffices to show that \(|\omega(z)| \leq 1\). Now, from (2.4) we can write

\[
\omega(z) = \frac{(m+1)^{n-p} (m+1-\alpha)}{1-\alpha} \sum_{k=m+1}^{\infty} k^p a_k z^{k-1}.
\]

Hence we obtain

\[
|\omega(z)| \leq \frac{(m+1)^{n-p} (m+1-\alpha)}{1-\alpha} \sum_{k=m+1}^{\infty} k^p |a_k|.
\]

Now \(|\omega(z)| \leq 1\) if

\[
2 \frac{(m+1)^{n-p} (m+1-\alpha)}{1-\alpha} \sum_{k=m+1}^{\infty} k^p |a_k| \leq 2 - \sum_{k=2}^{m} k^p |a_k|.
\]

or, equivalently,

\[
\sum_{k=2}^{m} k^p |a_k| + \frac{(m+1)^{n-p} (m+1-\alpha)}{1-\alpha} \sum_{k=m+1}^{\infty} k^p |a_k| \leq \sum_{k=2}^{\infty} k^p (k-\alpha) |a_k|.
\]

(2.5)

From the condition (1.4), it is sufficient to show that

\[
\sum_{k=2}^{m} k^p |a_k| + \frac{(m+1)^{n-p} (m+1-\alpha)}{1-\alpha} \sum_{k=m+1}^{\infty} k^p |a_k| \leq \sum_{k=2}^{\infty} k^p (k-\alpha) |a_k|
\]

which is equivalent to

\[
\sum_{k=2}^{m} k^{n+1} - \alpha k^n - k^p (1-\alpha) |a_k| + \sum_{k=m+1}^{\infty} k^{n+1} - \alpha k^n - (m+1)^{n-p} (m+1-\alpha) k^p |a_k| \geq 0.
\]

To see that the function given by (2.3) gives the sharp result, we observe that for \(z = r e^{i\gamma}\) that

\[
\frac{D^p f(z)}{D^p f_m(z)} = 1 + \frac{1-\alpha}{(m+1)^p (m+1-\alpha)} (m+1)^p z^m \to 1 - \frac{1-\alpha}{(m+1)^{n-p} (m+1-\alpha)}
\]

\[
= \frac{(m+1)^{n-p} (m+1-\alpha) - (1-\alpha)}{(m+1)^{n-p} (m+1-\alpha)}, \quad \text{when } r \to 1.
\]

To prove the second part of this theorem, we may write
\[
1 + \omega(z) = \frac{(m+1)^{n-p}(m+1-\alpha)+(1-\alpha)}{1-\alpha} \left[D^n f_m(z) - \frac{(m+1)^{n-p}(m+1-\alpha)}{1-\alpha} \right]
\]
\[
= 1 + \sum_{k=2}^{m} k^p a_k z^{k-1} - \frac{(m+1)^{n-p}(m+1-\alpha)}{1-\alpha} \sum_{k=m+1}^{\infty} k^p a_k z^{k-1}
\]

where
\[
|\omega(z)| \leq \frac{(m+1)^{n-p}(m+1-\alpha)+(1-\alpha)}{1-\alpha} \sum_{k=m+1}^{\infty} k^p |a_k| \leq 1.
\]

This last inequality is equivalent to
\[
\sum_{k=2}^{m} k^p |a_k| + \frac{(m+1)^{n-p}(m+1-\alpha)}{1-\alpha} \sum_{k=m+1}^{\infty} k^p |a_k| \leq 1.
\]

Since the L.H.S. of (2.6) is bounded above by \(\sum_{k=2}^{m} k^p (k-\alpha) \sum_{k=m+1}^{\infty} k^p |a_k| \), and the proof is complete. Finally, equality holds in (2.2) for the function given in (2.3).

Taking \(n = 0, p = 0 \) in Theorem 2.1, we obtain the following result given by Silverman in [5].

Corollary 2.2 ([5]). If \(f \) of the form (1.1) and satisfies the condition \(\sum_{k=2}^{m} k^{-\alpha} (k-\alpha) \sum_{k=m+1}^{\infty} k^{-\alpha} |a_k| \leq 1 \), then
\[
\text{Re} \left\{ \frac{f(z)}{f_m(z)} \right\} \geq \frac{m}{m+1-\alpha}, \quad (z \in U).
\]
and
\[
\text{Re} \left\{ \frac{f_m(z)}{f(z)} \right\} \geq \frac{m+1-\alpha}{m+2-2\alpha}, \quad (z \in U).
\]

The results are sharp with the function given by
\[
f(z) = z + \frac{1-\alpha}{m+1-\alpha} z^{m+1}.
\]

Taking \(n = 0, p = 1 \) in Theorem 2.1, we obtain the following result given by Silverman in [5].

Corollary 2.3 ([5]) If \(f \) of the form (1.1) and satisfies the condition \(\sum_{k=2}^{m} k^{-\alpha} (k-\alpha) \sum_{k=m+1}^{\infty} k^{-\alpha} |a_k| \leq 1 \), then
\[
\text{Re} \left\{ \frac{f'(z)}{f_m'(z)} \right\} \geq \frac{m\alpha}{m+1-\alpha}, \quad (z \in U).
\]
and
\[
\text{Re} \left\{ \frac{f_m'(z)}{f'(z)} \right\} \geq \frac{m+1-\alpha}{(m+1)(2-\alpha)-\alpha},
\quad (z \in U).
\]
(2.11)

The results are sharp with the function given by (2.9).

Taking \(n = 1, p = 0 \) in Theorem 2.1, we obtain the following result given by Silverman in [5].

Corollary 2.4 ([5]) If \(f \) of the form (1.1) and satisfies the condition \(\sum_{k=2}^{\infty} k(k-\alpha) |d_k| \leq 1 \), then

\[
\text{Re} \left\{ \frac{f(z)}{f_m(z)} \right\} \geq \frac{m(m+2-\alpha)}{(m+1)(m+1-\alpha)},
\quad (z \in U),
\]
(2.12)

and

\[
\text{Re} \left\{ \frac{f_m(z)}{f(z)} \right\} \geq \frac{(m+1)(m+1-\alpha)}{(m+1)(m+1-\alpha)+(1-\alpha)},
\quad (z \in U).
\]
(2.13)

The results are sharp with the function given by

\[
f(z) = z + \frac{1-\alpha}{(m+1)(m+1-\alpha)} z^{m+1}
\]
(2.14)

Taking \(n = 1, p = 1 \) in Theorem 2.1, we obtain the following result given by Silverman in [5].

Corollary 2.5 ([5]) If \(f \) of the form (1.1) and satisfies the condition \(\sum_{k=2}^{\infty} k(k-\alpha) |d_k| \leq 1 \), then

\[
\text{Re} \left\{ \frac{f'(z)}{f_m'(z)} \right\} \geq \frac{m}{m+1-\alpha},
\quad (z \in U),
\]
(2.15)

and

\[
\text{Re} \left\{ \frac{f_m'(z)}{f'(z)} \right\} \geq \frac{m+1-\alpha}{m+2-2\alpha},
\quad (z \in U).
\]
(2.16)

The results are sharp with the function given by (2.14).

REFERENCES

