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I. INTRODUCTION 

 

Let A denote the class of functions f of the form 

                                                        





2

)(
k

k

k zazzf ,                                                                                (1.1) 

which are analytic in the open unit disc  1:  zzU . Further, by S we shall denote the class of all functions in A which are 

univalent in U. Further T denotes subclass of A consisting of functions  zf  of the form 
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      We denote by  *S ,  K ,  10  , the class of starlike functions of order α and class of convex functions of order α, 

respectively, where 
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      We also denote by  *T  and  C  the subclasses of T that are, respectively, starlike of order α and convex  of order α. 

      For  zf  belonging to A, Salagean [4] has introduced the following operator called the Salagean operator 

                                            zfzfD 0
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Note that  
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      A function   Azf  is said to belong to the class  nS  if it satisfies 
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for some  10  and 
0Nn . 

      The class  nS  have been studied by various authors (for example [1], [2], [3]). 

Note that 
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0 SS   and     KS 1 . 

      A sufficient condition for a function f of the form (1.1) to be in  nS  is that 
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      For the functions of the form (1.2) the sufficient condition (1.4) is also necessary. For detailed study see [1]. 

      In the present paper, we determine sharp lower bounds for 
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)( is the sequence of partial sums of  zf  given by (1.1) and coefficients of f  are sufficiently small to 

satisfy the condition (1.4)) which are motivated from the investigation of Silverman [5]. 

 

2. Main Results 

 Theorem 2.1: If f  of the form (1.1) satisfies the condition (1.4), then  
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The results (2.1) and (2.2) are sharp for every m with the function given by  
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where 10  , 0Nn and 1 np . 

Proof:  Define the function  z  by  
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It suffices to show that   1z  . Now, from (2.4) we can write 
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Hence we obtain 
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From the condition (1.4), it is sufficient to show that  
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To see that the function given by (2.3) gives the sharp result, we observe that for m
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To prove the second part of this theorem, we may write 
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This last inequality is equivalent to 
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Since the L.H.S. of (2.6) is bounded above by 
 

2 1

n

k

k

k k
a












 , and the proof is complete. Finally, equality holds in (2.2) for 

the function given in (2.3). 

Taking 0,0  pn in Theorem 2.1, we obtain the following result given by Silverman in [5]. 

Corollary 2.2 ([5]).  If f of the form (1.1) and satisfies the condition
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The results are  sharp with the function given by  
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Taking 1,0  pn in Theorem 2.1, we obtain the following result given by Silverman in [5]. 
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The results are sharp with the function given by (2.9). 

Taking 0,1  pn in Theorem 2.1, we obtain the following result given by Silverman in [5]. 

Corollary 2.4 ([5]) If f of the form (1.1) and satisfies the condition
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The results are sharp with the function given by 
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Taking 1,1  pn in Theorem 2.1, we obtain the following result given by Silverman in [5]. 

Corollary 2.5 ([5]) If f of the form (1.1) and satisfies the condition
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The results are sharp with the function given by (2.14). 
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