## K-Distance Non-negative Signed Domination Number of Graphs

<sup>1</sup>R. Padmavathi, <sup>2</sup>S. Chandra Kumar

<sup>1</sup>Assistant Professor of Mathematics, <sup>2</sup>Associate Professor of Mathematics <sup>1</sup>Department of Mathematics, Sri Meenakshi Government Arts College for Women Madurai 625002, India.

Abstract: Let G be a finite and simple graph with the vertex set V = V(G) and edge set E = E(G). If v is a vertex of a graph G, the open k-neighborhood of v, denoted by  $N_k(v)$  and  $N_k[v] = N_k(v) \cup \{v\}$  is the closed k-neighborhood of v. A function  $f : V(G) \rightarrow \{-1, +1\}$  is a k-distance non-negative signed dominating function (k-DNNSDF) of a graph G, if for every vertex  $v \in V$ ,  $f(N_k[v]) = \sum_{u \in N_k[v]} f(u) \ge 0$ . The k-distance non-negative signed domination number (k-DNNSDN) of a graph G equals the minimum weight of a k-DNNSDF of G, denoted by  $\gamma_{k,s}^{NN}(G)$ . This paper contains some properties of k-DNNSDN in graphs and some families of graphs such as cycles, paths, Complement of cycles, Complete graphs, Wheel graphs and Friendship graphs which admit 2-DNNSDF.

IndexTerms - Signed dominating function, k-distance non-negative signed dominating function.

## I. INTRODUCTION

Let G be a finite and simple graph with the vertex set V = V(G) and edge set E = E(G). If v is a vertex of a graph G, the open k-neighborhood of v, denoted by  $N_k(v)$  and  $N_k[v] = N_k(v) \cup \{v\}$  is the closed k-neighborhood of v.  $\delta_k(G) = \min\{|N_k(v)|v \in V\}$  and  $\Delta_k(G) = \max\{|N_k(v)|v \in V\}$ .

In 1995, J.E. Dunbar et al. defined signed dominating function. A function  $f: V \to \{-1, +1\}$  is a signed dominating function of G, if for every vertex  $v \in V$ ,  $f(N[v]) \ge 1$ . The signed domination number, denoted by  $\gamma_s(G)$ , is the minimum weight of a signed dominating function on G [1].

In 2013 [2], Zhongsheng Huang et al. introduced the concept of on non-negative signed domination in graphs. A function  $f: V \rightarrow \{-1, +1\}$  is a non-negative signed dominating function of G, if for every vertex  $v \in V$ ,  $f(N[v]) \ge 0$ . The non-negative signed domination number, denoted by  $\gamma_s^{NN}$  (G). is the minimum weight of a non-negative signed dominating function on G.

In this paper, we introduced the concept of k-distance non-negative signed dominating function. A function  $f : V(G) \rightarrow \{-1, +1\}$  is a k-distance non-negative signed dominating function (k-DNNSDF) of a graph G, if for every vertex  $v \in V$ ,  $f(N_k[v]) = \sum_{u \in N_k} f(u) \ge 0$ . The k-distance non-negative signed domination number (k-DNNSDN) of a graph G equals the minimum weight of a k-DNNSDF of G, denoted by  $\gamma_{k,s}^{NN}(G)$ . This paper contains some properties of k-DNNSDN in graphs and some families of graphs such as cycles, paths, Complement of cycles, Complete graphs, Wheel graphs and Friendship graphs which admit 2-DNNSDF.

## MAIN RESULTS

In this section, we obtain some properties of k-DNNSDN in graphs.

**Lemma .1.** Let **f** be a k-DNNSDF of G and let  $S \subset V$ . Then  $f(S) \equiv |S| \pmod{2}$ .

Proof. Let  $S^+ = \{v | f(v) = 1, v \in S\}$  and  $S^- = \{v | f(v) = -1, v \in S\}$ . Then  $|S^+| + |S^-| = |S|$  and  $|S^+| - |S^-| = f(S)$ . Therefore f(S) + |S| = 2|S|.

**Theorem .1.** Let G be a graph of order n. If  $\gamma_{k,s}^{NN}(G) = n$ , then  $G \approx \overline{K_n}$ .

Proof. Proof. Let  $\gamma_{k,s}^{NN}(G) = n$ . If deg(v)  $\geq 1$  for some  $v \in V(G)$ , then the function  $f : V(G) \rightarrow \{-1, +1\}$  defined by f(v) = -1 and f(x) = +1 for all other vertices x, is k-DNNSDF and this implies that  $\gamma_{k,s}^{NN}(G) \leq n-2$ , a contradiction. Thus  $\Delta(G) = 0$  and so  $G \approx \overline{K_n}$ .

**Observation .2.1.** Let G be a graph of order n and k be a positive integer. Then  $\gamma_{k,s}^{NN}(G) = \gamma_s^{NN}(G^k)$ .

Proof. Let f be a k-DNNSDF of G. It is easy to see that for every  $v \in V(G)$ ,  $N_k[v] = N_{G^k}[v]$ . Hence  $f(N_{G^k}[v]) = f(N_k[v])$  Therefore f is a k-DNNSDF of G if and only if f is a k-distance non-negative signed dominating set of  $G^k$ . Thus  $\gamma_{k,s}^{NN}(G) = \gamma_s^{NN}(G^k)$ .

**Lemma .2.** Let G be a graph of order n. Then  $2\gamma(G) - n \leq \gamma_s^{NN}(G)$ .

Proof. Let f be a minimum non-negative signed dominating function of G. Let  $V^+ = \{u \in V : f(u) = +1\}$ and  $V^- = \{u \in V : f(u) = -1\}$ . If  $v \in V^-$  since  $f(N_G[v]) \ge 0$ , then v has at least one neighbor in  $V^+$ . Therefore  $V^+$  is a dominating set for G and  $|V^+| \ge \gamma(G)$ . Since  $\gamma_s^{NN}(G) = |V^+| - |V^-|$  and  $n = |V^+| + |V^-|$ , then  $\gamma_s^{NN}(G) = 2|V^+| - n$  and finally we have  $\gamma_s^{NN}(G) \ge 2\gamma(G) - n$ .

**Lemma .3.** Let  $n \ge 5$  be an integer. Then the cycle  $C_n$  admits 2-DNNSDF with

 $\gamma_{2,s}^{NN}(C_n) \le k \text{ when } n = 5k.$   $\gamma_{2,s}^{NN}(C_n) \le k + 1 \text{ when } n = 5k+1.$  $\gamma_{2,s}^{NN}(C_n) \le k + 2 \text{ when } n = 5k + 2 \text{ or } n = 5k + 4.$ 

 $\gamma_{2,s}^{NN}(C_n) \leq k+3$  when n = 5k+3.  $a_i \oplus n$ 

Proof. Let  $n \ge 5$  be an integer. Let  $V(C_n) = \{a_i / 1 \le i \le n\}$  and  $E(C_n) = \{a_i a_{i\oplus_n} 1 / 1 \le i \le n\}$ . Define a function  $f : V(C_n) \to \{-1, +1\}$  such that  $f(a_i) = -1$ , when i = 5l or i = 5l - 1,  $l \ge 1$  and otherwise  $f(a_i) = +1$ . Consider the vertex  $a_i$  for  $1 \le i \le n$ ,  $N_2[a_i] = \{a_{i-2}, a_{i-1}, a_i, a_{i+1}, a_{i+2}\}$ . From the above labeling, it is easy to observe that at least 3 vertices of any five consecutive vertices must have +1 sign and hence  $f(N_2[a_i]) \ge 1$  for all i,  $1 \le i \le n$ .

Thus from the above labeling the result follows.



From the above graphs we observe that  $\gamma_{2,s}^{NN}(C_5) \le 1 \ne 3 = n-2$ ,  $\gamma_{2,s}^{NN}(C_6) \le 2 \ne 4 = n-2$  and  $\gamma_{2,s}^{NN}(C_7) \le 3 \ne 5 = n-2$ . From Lemma .3 and Example .1, we can have following result.

**Remark .1.** For  $n \ge 8$ ,  $\gamma_{2,s}^{NN}(C_n) \le \lceil n/5 \rceil + 3 < n-2$ .

**Lemma .4.** Let  $n \ge 5$  be an integer. Then the path  $P_n$  admits 2-DNNSDF with

 $\gamma_{2s}^{NN}(P_n) \leq k$  when n = 5k or n = 5k + 2.

 $\gamma_{2,s}^{NN}(P_n) \le k + 1$  when n = 5k + 3.

 $\gamma_{2s}^{NN}(P_n) \le k + 2$  when n = 5k + 1 or n = 5k + 4.

Proof. Let  $V(P_n) = \{a_i / 1 \le i \le n\}$  and  $E(P_n) = \{a_i a_{i+1} / 1 \le i \le n-1\}$ . **Case 1:** Suppose n = 5k or n = 5k + 3 or n = 5k + 4 for  $k \ge 1$ . A 2-DNNSDF f on  $P_n$  is given by  $: V(P_n) \rightarrow \{-1, +1\}$  define by  $f(a_i) = -1$ , when i = 5l or i = 5l - 4,  $1 \le l \le k$  and otherwise  $f(a_i) = +1$ . **Case 2:** Suppose n = 5k + 1 or 5k + 2 for  $k \ge 1$ .

A 2-DNNSDF f on  $P_n$  is given by  $f: V(P_n) \rightarrow \{-1, +1\}$  define by  $f(a_i) = -1$ , when i = 5l or  $i = 5l - 4, 1 \le l \le k$ ,  $f(a_i) = +1$  when i = 5k + 1 or 5k + 2 and otherwise  $f(a_i) = +1$  Consider the vertex  $a_i$  for  $3 \le i \le n - 2$ ,  $N_2[a_i] = \{a_{i-2}, a_{i-1}, a_i, a_{i+1}, a_{i+2}\}$ . From the above labeling, it is easy to observe that at least 3 vertices of  $N_2[a_i]$  must have +1 sign and hence  $f(N_2[a_i]) \ge 1$  for all  $i, 3 \le i \le n - 2$ . Also the first and last four vertices have at least two vertices of +1 sign. Hence  $f(N_2[a_i]) \ge 0$  when i = 2, n - 2. Also the first and last three vertices have at least two vertices of +1 sign. Hence  $f(N_2[a_i]) \ge 1$  when i = 1, n.

Thus from the above labeling the result follows.

Example .2.





From the above graphs we observe that  $\gamma_{2,s}^{NN}(P_5) \le 1 \ne 3 = n - 2$ ,  $\gamma_{2,s}^{NN}(P_6) \le 2 \ne 4 = n - 2$ .

From Lemma .3 and Example .2, we can have following result.

**Remark .2.** For  $n \ge 7$ ,  $\gamma_{2,s}^{NN}(P_n) \le \lceil n/5 \rceil + 32 < n - 2$ .

**Lemma .5.** Let G be a connected graph of order n. Then  $\gamma_{2,s}^{NN}(G) = n - 2$  if and only if

$$G \approx P_2, P_3 \text{ or } C_3.$$

Proof. Let  $\gamma_{2,s}^{NN}(G) = n - 2$ . We claim that  $\Delta(G) \leq 2$ . Assume, to the contrary, that  $\Delta(G) \geq 3$ . Let v be a vertex of maximum degree and let  $N_2(v) = \{v_1, ..., v_{\Delta}\}$ . If  $N_2[v_i] \cap N_2[v_j] = \{v\}$  for some i = j, then define  $f : V(G) \rightarrow \{-1, +1\}$  by  $f(v_i) = f(v_j) = -1$  and f(x) = 1 for all other vertices x. Clearly, f is a 2-DNNSDF of G with weight n - 4 which leads to a contradiction. Assume that  $N_2[v_i] \cap N_2[v_j] = \{v\}$  for every pair i, j,  $1 \leq i = j \leq \Delta(G)$ . It is easy to see that the function  $f: V(G) \rightarrow \{-1, +1\}$  defined by  $f(v) = f(v_1) = -1$  and f(x) = 1 for all other vertices x, is a 2-DNNSDF of G of weight n - 4 which leads to a contradiction. Therefore  $\Delta(G) \leq 2$  and so G is a path or cycle. By Remark .1 and .2, that is not possible to  $\gamma_{2,s}^{NN}(G) = n - 2$ .



Note that for the graphs  $C_4$  and  $P_4$ , we have  $\gamma_{2,s}^{NN}(C_4) = \gamma_{2,s}^{NN}(P_4) = 0 \neq n-2$ . Therefore  $P_2$ ,  $P_3$  and  $C_3$  are the only graphs in which  $\gamma_{2,s}^{NN}(G) = n-2$ . The graphs  $P_2$ ,  $P_3$  and  $C_3$  admit k-DNNSDF with  $\gamma_{2,s}^{NN}(P_2) = 0$ ,  $\gamma_{2,s}^{NN}(P_3) = 1$  and  $\gamma_{2,s}^{NN}(C_3) = 1$ .

**Lemma .6.** Let  $n \ge 5$  be an integer. Then the graph  $C_n^+$  admits 2-DNNSDF with  $\gamma_{2s}^{NN}(C_n^+) \le 0$ .

Proof. Let  $V(C_n^+) = \{a_{i,b_i} / 1 \le i \le n\}$  and  $E(C_n^+) = \{a_i a_{i+1} / 1 \le i \le n-1\} \cup \{a_1 a_n\} \cup \{a_i b_i / 1 \le i \le n\}$ . Define a function  $f : V(C_n^+) \to \{-1, +1\}$ .  $f(a_i) = +1$  and  $f(b_i) = -1$  for  $1 \le i \le n$ . Now we consider the vertices  $a_i . N_2[a_i] = \{a_{i-2}, a_{i-1}, a_i, a_{i+1}, a_{i+2}, b_{i-1}, b_i, b_{i+1}\}$ , by the above labeling  $f(N_2[a_i]) = 2$  for  $1 \le i \le n$ . Next, we consider the vertices  $b_i . N_2[b_i] = \{b_i, a_{i-1}, a_i, a_{i+1}\}$ , by the above labeling  $f(N_2[b_i]) = 2$  for  $1 \le i \le n$ . Thus f is 2-DNNSDF with  $\gamma_{2,s}^{NN}(C_n^+) \le 0$ .

**Theorem .2.** Let  $n \ge 5$  be an integer. Then the graph  $\overline{C_n}$  admits 2-DNNSDF with  $\gamma_{2,s}^{NN}(\overline{C_n}) \le 0$  when n is even and  $\gamma_{2,s}^{NN}(\overline{C_n}) \le 1$  when is n odd.

Proof. Let  $V(\overline{C_n}) = \{a_i / 1 \le i \le n\}$ . Define a function  $f : V(\overline{C_n}) \to \{-1, +1\}$  by  $f(a_i) = +1$  when is n odd and  $f(a_i) = -1$  when n is even for  $1 \le i \le n$ . Note that  $N_2[a_i] = V(\overline{C_n})$  for  $1 \le i \le n$ . Suppose n is odd, then by the above labeling  $f(N_2[a_i]) = \frac{n+1}{2}(+1) + \frac{n-1}{2}(-1) = 1$ . Thus f is 2-DNNSDF with  $\gamma_{2,s}^{NN}(\overline{C_n}) \le 1$ . Suppose n is even, then by the above labeling  $f(N_2[a_i]) = \frac{n}{2}(+1) + \frac{n}{2}(-1) = 0$ . Thus f is 2-DNNSDF with  $\gamma_{2,s}^{NN}(\overline{C_n}) \le 0$ .

After studying the above results, we find the following more general result:

**Theorem .3.** If  $diam(G) \ge k$ , then G admits k-DNNSDF.

Proof. Since diam(G)  $\geq k$ , for every vertex  $y \in V(G)$ , we have  $N_k[v] = V(G)$ . Suppose n = 2p. Then we can label p vertices with +1 signs and p vertices with -1 signs. In this case,  $f(N_k[v]) = p(+1) + p(-1) = 0$ . Suppose n = 2p + 1. Then we can label p + 1 vertices with +1 signs and p vertices with -1 signs. In this case,

 $f(N_k[v]) = (p + 1)(+1) + p(-1) = 1$ . Thus G admits k-DNNSDF.

The next result follows immediately from the above theorem.

**Lemma .7.** The complete graph  $K_n$  admits 2-DNNSDF for  $n \ge 1$ .

For the integers m, n( $\geq 1$ ), the complete bipartite graph  $K_{m,n}$  admits 2 DNNSDF. The wheel graph  $W_n$  admits 2-DNNSDF for  $n \geq 3$ . The graph  $G = P_m + P_n$  admits 2-DNNSDF for m,  $n \geq 1$ . The friendship graph  $T_n$  admit 2-DNNSDF.

## REFERENCES

[1] J.E. Dunbar, S.T. Hedetniemi, M. A. Henning and P. J. Slater, Signed domination in graphs. In: Graph Theory, Combinatorics and Applications. Proc. 7th Internat. conf. Combinatorics, Graph Theory, Applications, (Y. Alavi, A. J. Schwenk, eds.). John Wiley & Sons, Inc., 1 (1995) 311-322.

[2] Zhongsheng Huang, Wensheng Li, Zhifang Feng and Huaming Xing, On Nonnegative Signed Domination in Graphs and its Algorithmic Complexity, Journal of networks, Vol. No. 2, February 2013.