K-Distance Non-negative Signed Domination Number of Graphs

${ }^{1}$ R. Padmavathi, ${ }^{2}$ S. Chandra Kumar
${ }^{1}$ Assistant Professor of Mathematics, ${ }^{2}$ Associate Professor of Mathematics
${ }^{1}$ Department of Mathematics, Sri Meenakshi Government Arts College for Women Madurai 625002, India.

Abstract

Let G be a finite and simple graph with the vertex set $V=V(G)$ and edge set $E=E(G)$. If v is a vertex of a graph G, the open k-neighborhood of v , denoted by $N_{k}(\mathrm{v})$ and $N_{k}[\mathrm{v}]=N_{k}(\mathrm{v}) \cup\{\mathrm{v}\}$ is the closed k-neighborhood of v . A function $f: \mathrm{V}(\mathrm{G}) \rightarrow\{-1,+1\}$ is a k -distance non-negative signed dominating function (k-DNNSDF) of a graph G, if for every vertex $\mathrm{v} \in \mathrm{V}, f\left(N_{k}[\mathrm{v}]\right)=\sum_{u \in N_{k}[\mathrm{v}]} f(u) \geq 0$. The k -distance non-negative signed domination number ($\mathrm{k}-\mathrm{DNNSDN}$) of a graph G equals the minimum weight of a k-DNNSDF of G, denoted by $\gamma_{k, s}^{N N}(G)$. This paper contains some properties of k-DNNSDN in graphs and some families of graphs such as cycles, paths, Complement of cycles, Complete graphs, Wheel graphs and Friendship graphs which admit 2-DNNSDF.

IndexTerms - Signed dominating function, k-distance non-negative signed dominating function.

I. Introduction

Let G be a finite and simple graph with the vertex set $V=V(G)$ and edge set $E=E(G)$. If v is a vertex of a graph G, the open k-neighborhood of v , denoted by $N_{k}(\mathrm{v})$ and $N_{k}[\mathrm{v}]=N_{k}(\mathrm{v}) \cup\{\mathrm{v}\}$ is the closed k-neighborhood of v . $\delta_{k}(\mathrm{G})=\min \left\{\left|N_{k}(\mathrm{v})\right| \mathrm{v} \in \mathrm{V}\right\}$ and $\Delta_{k}(\mathrm{G})=\max \left\{\left|N_{k}(\mathrm{v})\right| \mathrm{v} \in \mathrm{V}\right\}$.
In 1995, J.E. Dunbar et al. defined signed dominating function. A function $f: \mathrm{V} \rightarrow\{-1,+1\}$ is a signed dominating function of G, if for every vertex $\mathrm{v} \in \mathrm{V}, f(\mathrm{~N}[\mathrm{v}]) \geq 1$. The signed domination number, denoted by $\gamma_{s}(G)$, is the minimum weight of a signed dominating function on G [1].
In 2013 [2], Zhongsheng Huang et al. introduced the concept of on non-negative signed domination in graphs. A function $f: V \rightarrow\{-1,+1\}$ is a non-negative signed dominating function of G, if for every vertex $\mathrm{v} \in \mathrm{V}$, $f(\mathrm{~N}[\mathrm{v}]) \geq 0$. The non-negative signed domination number, denoted by $\gamma_{s}^{N N}(G)$. is the minimum weight of a nonnegative signed dominating function on G.
In this paper, we introduced the concept of k -distance non-negative signed dominating function. A function $f: V(G) \rightarrow\{-1,+1\}$ is a k-distance non-negative signed dominating function (k-DNNSDF) of a graph G, if for every vertex $\mathrm{v} \in \mathrm{V}, f\left(N_{k}[\mathrm{v}]\right)=\sum_{u \in N_{k}} f(u) \geq 0$. The k-distance non-negative signed domination number (kDNNSDN) of a graph G equals the minimum weight of a k-DNNSDF of G, denoted by $\gamma_{k, s}^{N N}(G)$. This paper contains some properties of k-DNNSDN in graphs and some families of graphs such as cycles, paths, Complement of cycles, Complete graphs, Wheel graphs and Friendship graphs which admit 2-DNNSDF.

Main results

In this section, we obtain some properties of k-DNNSDN in graphs.
Lemma .1. Let \mathbf{f} be a k-DNNSDF of G and let $S \subset V$. Then $f(S) \equiv|S|(\bmod 2)$.
Proof. Let $\mathrm{S}^{+}=\{\mathrm{v} \mid f(\mathrm{v})=1, \mathrm{v} \in \mathrm{S}\}$ and $\quad \mathrm{S}^{-}=\{\mathrm{v} \mid f(\mathrm{v})=-1, \mathrm{v} \in \mathrm{S}\}$. Then $\left|\mathrm{S}^{+}\right|+\left|\mathrm{S}^{-}\right|=|\mathrm{S}|$ and $\left|\mathrm{S}^{+}\right|-$ $\left|\mathrm{S}^{-}\right|=f(\mathrm{~S})$. Therefore $f(\mathrm{~S})+|\mathrm{S}|=2|\mathrm{~S}|$.

Theorem .1. Let G be a graph of order n. If $\gamma_{k, s}^{N N}(G)=n$, then $G \approx \overline{K_{n}}$.
Proof. Proof. Let $\gamma_{\mathrm{k}, \mathrm{s}}^{\mathrm{NN}}(\mathrm{G})=\mathrm{n}$. If $\operatorname{deg}(\mathrm{v}) \geq 1$ for some $\mathrm{v} \in \mathrm{V}(\mathrm{G})$, then the function $f: \mathrm{V}(\mathrm{G}) \rightarrow\{-1,+1\}$ defined by $f(\mathrm{v})=-1$ and $f(\mathrm{x})=+1$ for all other vertices x , is k -DNNSDF and this implies that $\gamma_{\mathrm{k}, \mathrm{s}}^{\mathrm{NN}}(\mathrm{G}) \leq \mathrm{n}-2$, a contradiction. Thus $\Delta(\mathrm{G})=0$ and so $G \approx \overline{K_{n}}$.
Observation 2.1. Let G be a graph of order n and k be a positive integer. Then $\gamma_{k, s}^{N N}(G)=\gamma_{s}^{N N}\left(G^{k}\right)$.

Proof. Let f be a k-DNNSDF of G. It is easy to see that for every $\mathrm{v} \in \mathrm{V}(\mathrm{G}), N_{k}[\mathrm{v}]=N_{G^{k}}[\mathrm{v}]$. Hence $\mathbf{f}\left(N_{G^{k}}[\mathrm{v}]\right)=$ $f\left(N_{k}[\mathrm{v}]\right)$ Therefore f is a k-DNNSDF of G if and only if f is a k-distance non-negative signed dominating set of G^{k}. Thus $\gamma_{k, s}^{N N}(G)=\gamma_{s}^{N N}\left(G^{k}\right)$.

Lemma .2. Let G be a graph of order n. Then $2 \gamma(G)-n \leq \gamma_{s}^{N N}(G)$.
Proof. Let \mathbf{f} be a minimum non-negative signed dominating function of G. Let $\mathrm{V}^{+}=\{\mathrm{u} \in \mathrm{V}: f(\mathrm{u})=+1\}$ and $\mathrm{V}^{-}=\{\mathrm{u} \in \mathrm{V}: f(\mathrm{u})=-1\}$. If $\mathrm{v} \in \mathrm{V}^{-}$since $f\left(N_{G}[\mathrm{v}]\right) \geq 0$, then v has at least one neighbor in V^{+}. Therefore V^{+}is a dominating set for G and $\left|\mathrm{V}^{+}\right| \geq \gamma(\mathrm{G})$. Since $\gamma_{s}^{N N}(G)=\left|\mathrm{V}^{+}\right|-\left|\mathrm{V}^{-}\right|$and $\mathrm{n}=\left|\mathrm{V}^{+}\right|+\left|\mathrm{V}^{-}\right|$, then $\gamma_{s}^{N N}(G)=$ $2\left|\mathrm{~V}^{+}\right|-\mathrm{n}$ and finally we have $\gamma_{s}^{N N}(G) \geq 2 \gamma(G)-n$.

Lemma .3. Let $n \geq 5$ be an integer. Then the cycle C_{n} admits 2-DNNSDF with
$\gamma_{2, s}^{N N}\left(C_{n}\right) \leq \mathrm{k}$ when $\mathrm{n}=5 \mathrm{k}$.
$\gamma_{2, S}^{N N}\left(C_{n}\right) \leq \mathrm{k}+1$ when $\mathrm{n}=5 \mathrm{k}+1$.
$\gamma_{2, s}^{N N}\left(C_{n}\right) \leq \mathrm{k}+2$ when $\mathrm{n}=5 \mathrm{k}+2$ or $\mathrm{n}=5 \mathrm{k}+4$.
$\gamma_{2, s}^{N N}\left(C_{n}\right) \leq \mathrm{k}+3$ when $\mathrm{n}=5 \mathrm{k}+3 . \mathrm{a}_{\mathbf{i}} \oplus_{\mathbf{n}}$
Proof. Let $\mathrm{n} \geq 5$ be an integer. Let $\mathrm{V}\left(C_{n}\right)=\left\{a_{i} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ and $\mathrm{E}\left(C_{n}\right)=\left\{a_{i} a_{i \oplus_{n}} 1 / 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$. Define a function $f: \mathrm{V}\left(C_{n}\right) \rightarrow\{-1,+1\}$ such that $f\left(a_{i}\right)=-1$, when $i=5 l$ or $i=5 l-1, l \geq 1$ and otherwise $f\left(a_{i}\right)=+1$.
Consider the vertex a_{i} for $1 \leq \mathrm{i} \leq \mathrm{n}, N_{2}\left[a_{i}\right]=\left\{a_{i-2}, a_{i-1}, a_{i}, a_{i+1}, a_{i+2}\right\}$. From the above labeling, it is easy to observe that at least 3 vertices of any five consecutive vertices must have +1 sign and hence $f\left(N_{2}\left[a_{i}\right]\right) \geq 1$ for all i , $1 \leq \mathrm{i} \leq \mathrm{n}$.

Thus from the above labeling the result follows.

Example.1.

From the above graphs we observe that $\gamma_{2, s}^{N N}\left(C_{5}\right) \leq 1 \neq 3=\mathrm{n}-2, \gamma_{2, s}^{N N}\left(C_{6}\right) \leq 2 \neq 4=\mathrm{n}-2$ and $\gamma_{2, s}^{N N}\left(C_{7}\right) \leq 3 \neq 5=\mathrm{n}-2$. From Lemma . 3 and Example .1, we can have following result.

Remark.1. For $\mathrm{n} \geq 8, \gamma_{2, s}^{N N}\left(C_{n}\right) \leq\lceil\mathrm{n} / 5\rceil+3<n-2$.
Lemma .4. Letn ≥ 5 be an integer. Then the path P_{n} admits 2-DNNSDF with
$\gamma_{2, s}^{N N}\left(P_{n}\right) \leq \mathrm{k}$ when $\mathrm{n}=5 \mathrm{k}$ or $\mathrm{n}=5 \mathrm{k}+2$.
$\gamma_{2, s}^{N N}\left(P_{n}\right) \leq \mathrm{k}+1$ when $\mathrm{n}=5 \mathrm{k}+3$.
$\gamma_{2, s}^{N N}\left(P_{n}\right) \leq \mathrm{k}+2$ when $\mathrm{n}=5 \mathrm{k}+1$ or $\mathrm{n}=5 \mathrm{k}+4$.
Proof. Let $V\left(P_{n}\right)=\left\{a_{i} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ and $\mathrm{E}\left(P_{n}\right)=\left\{a_{i} a_{i+1} / 1 \leq \mathrm{i} \leq \mathrm{n}-1\right\}$.
Case 1: Suppose $\mathrm{n}=5 \mathrm{k}$ or $\mathrm{n}=5 \mathrm{k}+3$ or $\mathrm{n}=5 \mathrm{k}+4$ for $\mathrm{k} \geq 1$. A 2-DNNSDF f on P_{n} is given by $: \mathrm{V}\left(P_{n}\right) \rightarrow$ $\{-1,+1\}$ define by $f\left(a_{i}\right)=-1$, when $i=5 l$ or $i=5 l-4,1 \leq l \leq k$ and otherwise $f\left(a_{i}\right)=+1$.
Case 2: Suppose $\mathrm{n}=5 \mathrm{k}+1$ or $5 \mathrm{k}+2$ for $\mathrm{k} \geq 1$.
A 2-DNNSDF f on P_{n} is given by $f: V\left(P_{n}\right) \rightarrow\{-1,+1\}$ define by $f\left(a_{i}\right)=-1$, when $i=5 l$ or $i=5 l-4,1 \leq l \leq k$, $f\left(a_{i}\right)=+1$ when $\mathrm{i}=5 \mathrm{k}+1$ or $5 \mathrm{k}+2$ and otherwise $f\left(a_{i}\right)=+1$ Consider the vertex a_{i} for $3 \leq \mathrm{i} \leq \mathrm{n}-2, N_{2}\left[a_{i}\right]=$ $\left\{a_{i-2}, a_{i-1}, a_{i}, a_{i+1}, a_{i+2}\right\}$. From the above labeling, it is easy to observe that at least 3 vertices of $N_{2}\left[a_{i}\right]$ must have +1 sign and hence $f\left(N_{2}\left[a_{i}\right]\right) \geq 1$ for all $\mathrm{i}, 3 \leq \mathrm{i} \leq \mathrm{n}-2$. Also the first and last four vertices have at least two vertices of +1 sign. Hence $f\left(N_{2}\left[a_{i}\right]\right) \geq 0$ when $\mathrm{i}=2, \mathrm{n}-2$. Also the first and last three vertices have at least two vertices of +1 sign. Hence $f\left(N_{2}\left[a_{i}\right]\right) \geq 1$ when $\mathrm{i}=1$, n .

Thus from the above labeling the result follows.
Example .2.

From the above graphs we observe that $\gamma_{2, s}^{N N}\left(P_{5}\right) \leq 1 \neq 3=\mathrm{n}-2, \gamma_{2, s}^{N N}\left(P_{6}\right) \leq 2 \neq 4=\mathrm{n}-2$.
From Lemma . 3 and Example .2, we can have following result.
Remark. .2. For $\mathrm{n} \geq 7, \gamma_{2, s}^{N N}\left(P_{n}\right) \leq\lceil n / 5\rceil+32<n-2$.
Lemma .5. Let G be a connected graph of order n. Then $\gamma_{2, s}^{N N}(G)=n-2$ if and only if
$G \approx P_{2}, P_{3}$ or C_{3}.
Proof. Let $\gamma_{2, s}^{N N}(G)=n-2$. We claim that $\Delta(G) \leq 2$. Assume, to the contrary, that $\Delta(G) \geq 3$. Let v be a vertex of maximum degree and let $N_{2}(\mathrm{v})=\left\{v_{1}, \ldots, v_{\Delta}\right\}$. If $N_{2}\left[v_{i}\right] \cap N_{2}\left[v_{j}\right]=\{\mathrm{v}\}$ for some $\mathrm{i}=\mathbf{j}$, then define $f: \mathrm{V}(\mathrm{G}) \rightarrow\{-1,+1\}$ by $f\left(v_{i}\right)=f\left(v_{j}\right)=-1$ and $f(\mathrm{x})=1$ for allother vertices x . Clearly, f is a $2-$ DNNSDF of G with weight $n-4$ which leads to a contradiction. Assume that $N_{2}\left[v_{i}\right] \cap N_{2}\left[v_{j}\right]=\{v\}$ for every pair $\mathrm{i}, \mathrm{j}, 1 \leq \mathrm{i}=\mathrm{j} \leq \Delta(\mathrm{G})$. It is easy to see that the function $f: V(\mathrm{G}) \rightarrow\{-1,+1\}$ defined by $f(\mathrm{v})=f\left(v_{1}\right)=$ -1 and $f(\mathrm{x})=1$ for all other vertices x , is a 2-DNNSDF of G of weight $\mathrm{n}-4$ which leads to a contradiction. Therefore $\Delta(\mathrm{G}) \leq 2$ and so G is a path or cycle. By Remark .1 and .2 , that is not possible to $\gamma_{2, s}^{N N}(G)=n-2$.

Note that for the graphs C_{4} and P_{4}, we have $\gamma_{2, s}^{N N}\left(C_{4}\right)=\gamma_{2, s}^{N N}\left(P_{4}\right)=0 \neq \mathrm{n}-2$. Therefore $P_{2}, P_{3} \quad$ and C_{3} are the only graphs in which $\gamma_{2, s}^{N N}(G)=n-2$. The graphs P_{2}, P_{3} and C_{3} admit k-DNNSDF with $\gamma_{2, s}^{N N}\left(P_{2}\right)=0, \gamma_{2, s}^{N N}\left(P_{3}\right)=1$ and $\gamma_{2, s}^{N N}\left(C_{3}\right)=$ 1.

Lemma .6. Let $n \geq 5$ be an integer. Then the graph C_{n}^{+}admits 2-DNNSDF with $\gamma_{2, s}^{N N}\left(C_{n}^{+}\right) \leq 0$.

Proof. Let $\mathrm{V}\left(C_{n}^{+}\right)=\left\{a_{i}, b_{i} / 1 \leq \mathrm{I} \leq \mathrm{n}\right\}$ and $\mathrm{E}\left(C_{n}^{+}\right)=\left\{a_{i} a_{i+1} / 1 \leq \mathrm{I} \leq \mathrm{n}-1\right\} \cup\left\{a_{1} a_{n}\right\} \cup\left\{a_{i} b_{i} / 1 \leq \mathrm{I} \leq \mathrm{n}\right\}$. Define a function $f: V\left(C_{n}^{+}\right) \rightarrow\{-1,+1\} \cdot f\left(a_{i}\right)=+1$ and $f\left(b_{i}\right)=-1$ for $1 \leq \mathrm{i} \leq \mathrm{n}$. Now we consider the vertices $a_{i} . N_{2}\left[a_{i}\right]=\left\{a_{i-2}, a_{i-1}, a_{i}, a_{i+1}, a_{i+2}, b_{i-1}, b_{i}, b_{i+1}\right\}$, by the above labeling $f\left(N_{2}\left[a_{i}\right]\right)=2$ for1 \leq $\mathrm{i} \leq \mathrm{n}$. Next, we consider the vertices $b_{i} . N_{2}\left[b_{i}\right]=\left\{b_{i}, a_{i-1}, \mathrm{a}_{\mathbf{i}}, a_{i+1}\right\}$, by the above labeling $f\left(N_{2}\left[b_{i}\right]\right)=2$ for $1 \leq \mathrm{i} \leq \mathrm{n}$. Thus f is 2-DNNSDF with $\gamma_{2, s}^{N N}\left(C_{n}^{+}\right) \leq 0$.

Theorem .2. Let $n \geq 5$ be an integer. Then the graph $\overline{C_{n}}$ admits $2-D N N S D F$ with $\gamma_{2, s}^{N N}\left(\overline{C_{n}}\right) \leq 0$ when n is even and $\gamma_{2, s}^{N N}\left(\overline{C_{n}}\right) \leq$ 1 when is n odd.

Proof. Let $\mathrm{V}\left(\overline{C_{n}}\right)=\left\{a_{i} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$. Define a function $f: \mathrm{V}\left(\overline{C_{n}}\right) \rightarrow\{-1,+1\}$ by
$f\left(a_{i}\right)=+1$ when is n odd and $f\left(a_{i}\right)=-1$ when n is even for $1 \leq \mathrm{i} \leq \mathrm{n}$. Note that $N_{2}\left[a_{i}\right]=\mathrm{V}\left(\overline{C_{n}}\right)$ for $1 \leq \mathrm{i} \leq \mathrm{n}$. Suppose n is odd, then by the above labeling $f\left(N_{2}\left[a_{i}\right]\right)=\frac{n+1}{2}(+1)+\frac{n-1}{2}(-1)=1$. Thus f is 2-DNNSDF with $\gamma_{2, s}^{N N}\left(\overline{C_{n}}\right) \leq 1$. Suppose n is even, then by the above labeling $f\left(N_{2}\left[a_{i}\right]\right)=\frac{n}{2}(+1)+\frac{n}{2}(-1)=0$. Thus f is 2-DNNSDF with $\gamma_{2, S}^{N N}\left(\overline{C_{n}}\right) \leq 0$.

After studying the above results, we find the following more general result:
Theorem .3. If $\operatorname{diam}(G) \geq k$, then G admits $k-D N N S D F$.
Proof. Since $\operatorname{diam}(G) \geq k$, for every vertex $v \in V(G)$, we have $N_{k}[v]=V(G)$. Suppose $n=2 p$. Then we can label p vertices with +1 signs and p vertices with -1 signs. In this case, $f\left(N_{k}[\mathrm{v}]\right)=\mathrm{p}(+1)+\mathrm{p}(-1)=0$.
Suppose $n=2 p+1$. Then we can label $p+1$ vertices with +1 signs and p vertices with -1 signs. In this case, $f\left(N_{k}[\mathrm{v}]\right)=(\mathrm{p}+1)(+1)+\mathrm{p}(-1)=1$. Thus G admits k-DNNSDF.

The next result follows immediately from the above theorem.
Lemma .7. The complete graph K_{n} admits 2-DNNSDF for $\mathrm{n} \geq 1$.
For the integers $\mathrm{m}, \mathrm{n}(\geq 1)$, the complete bipartite graph $K_{m, n}$ admits 2 DNNSDF.
The wheel graph W_{n} admits 2-DNNSDF for $\mathrm{n} \geq 3$.
The graph $\mathrm{G}=P_{m}+P_{n}$ admits 2-DNNSDF for $\mathrm{m}, \mathrm{n} \geq 1$.
The friendship graph T_{n} admit 2-DNNSDF.

References

[1] J.E. Dunbar, S.T. Hedetniemi, M. A. Henning and P. J. Slater, Signed domination in graphs. In: Graph Theory, Combinatorics and Applications. Proc. 7th Internat, conf. Combinatorics, Graph Theory, Applications, (Y. Alavi, A. J. Schwenk, eds.). John Wiley \& Sons, Inc., 1 (1995) 311-322.
[2] Zhongsheng Huang, Wensheng Li, Zhifang Feng and Huaming Xing, On Nonnegative Signed Domination in Graphs and its Algorithmic Complexity, Journal of networks, Vol. No. 2, February 2013.

