K-Distance Non-negative Signed Domination Number of Graphs

R. Padmavathi, S. Chandra Kumar

Department of Mathematics, Sri Meenakshi Government Arts College for Women Madurai 625002, India.

Abstract: Let G be a finite and simple graph with the vertex set \(V = V(G) \) and edge set \(E = E(G) \). If \(v \) is a vertex of a graph \(G \), the open \(k \)-neighborhood of \(v \), denoted by \(N_k(v) \) and \(N_k[v] = N_k(v) \cup \{v\} \) is the closed \(k \)-neighborhood of \(v \). A function \(f: V(G) \rightarrow \{-1, +1\} \) is a distance non-negative signed dominating function (k-DNNSDF) of a graph \(G \), if for every vertex \(v \in V \), \(f(N_k[v]) = \sum_{u \in N_k[v]} f(u) \geq 0 \). The k-distance non-negative signed domination number (k-DNNSDN) of a graph \(G \) equals the minimum weight of a k-DNNSDF of \(G \), denoted by \(\gamma_{k,NN}^N(G) \). This paper contains some properties of k-DNNSDN in graphs and some families of graphs such as cycles, paths, complement of cycles, complete graphs, wheel graphs and friendship graphs which admit 2-DNNSDF.

Index Terms - Signed dominating function, k-distance non-negative signed dominating function.

I. INTRODUCTION

Let \(G \) be a finite and simple graph with the vertex set \(V = V(G) \) and edge set \(E = E(G) \). If \(v \) is a vertex of a graph \(G \), the open \(k \)-neighborhood of \(v \), denoted by \(N_k(v) \) and \(N_k[v] = N_k(v) \cup \{v\} \) is the closed \(k \)-neighborhood of \(v \). A function \(f: V(G) \rightarrow \{-1, +1\} \) is a signed dominating function of \(G \), if for every vertex \(v \in V \), \(f(N[v]) \geq 1 \). The signed domination number, denoted by \(\gamma_s(G) \), is the minimum weight of a signed dominating function on \(G \) [1].

In 2013 [2], Zhongsheng Huang et al. introduced the concept of on non-negative signed domination in graphs. A function \(f: V(G) \rightarrow \{-1, +1\} \) is a non-negative signed dominating function of \(G \), if for every vertex \(v \in V \), \(f(N[v]) \geq 0 \). The non-negative signed domination number, denoted by \(\gamma_{NN}^N(G) \), is the minimum weight of a non-negative signed dominating function on \(G \).

In this paper, we introduced the concept of k-distance non-negative signed dominating function. A function \(f: V(G) \rightarrow \{-1, +1\} \) is a k-distance non-negative signed dominating function (k-DNNSDF) of a graph \(G \), if for every vertex \(v \in V \), \(f(N_k[v]) = \sum_{u \in N_k[v]} f(u) \geq 0 \). The k-distance non-negative signed domination number (k-DNNSDN) of a graph \(G \) equals the minimum weight of a k-DNNSDF of \(G \), denoted by \(\gamma_{k,NN}^N(G) \). This paper contains some properties of k-DNNSDN in graphs and some families of graphs such as cycles, paths, complement of cycles, complete graphs, wheel graphs and friendship graphs which admit 2-DNNSDF.

MAIN RESULTS

In this section, we obtain some properties of k-DNNSDN in graphs.

Lemma 1. Let \(f \) be a k-DNNSDF of \(G \) and let \(S \subseteq V \). Then \(f(S) \equiv |S|(\text{mod} \ 2) \).

Proof. Let \(S^+ = \{v|f(v) = 1, v \in S\} \) and \(S^- = \{v|f(v) = -1, v \in S\} \). Then \(|S^+| + |S^-| = |S| \) and \(|S^+| - |S^-| = f(S) \). Therefore \(f(S) + |S| = 2|S| \).

Theorem 1. Let \(G \) be a graph of order \(n \). If \(\gamma_{k,NN}^N(G) = n \), then \(G \cong \overline{K_n} \).

Proof. Proof. Let \(\gamma_{k,NN}^N(G) = n \). If \(\deg(v) \geq 1 \) for some \(v \in V(G) \), then the function \(f: V(G) \rightarrow \{-1, +1\} \) defined by \(f(v) = -1 \) and \(f(x) = +1 \) for all other vertices \(x \), is k-DNNSDF and this implies that \(\gamma_{k,NN}^N(G) \leq n - 2 \), a contradiction. Thus \(\Delta(G) = 0 \) and so \(G \cong \overline{K_n} \).

Observation 2.1. Let \(G \) be a graph of order \(n \) and \(k \) be a positive integer. Then \(\gamma_{k,NN}^N(G) = \gamma_{s}^N(G^k) \).
Proof. Let \(f \) be a k-DNNSDF of \(G \). It is easy to see that for every \(v \in V(G) \), \(N[v] = N_{G^k}[v] \). Hence \(f(N_{G^k}[v]) = f(N_k[v]) \) Therefore \(f \) is a k-DNNSDF of \(G \) if and only if \(f \) is a k-distance non-negative signed dominating set of \(G^k \). Thus \(\gamma^N_{2,k}(G) = \gamma^N_{2,k}(G^k) \).

Lemma 2. Let \(G \) be a graph of order \(n \). Then \(2\gamma(G) - n \leq \gamma^N_{2}(G) \).

Proof. Let \(f \) be a minimum non-negative signed dominating function of \(G \). Let \(V^+ = \{ u \in V : f(u) = +1 \} \) and \(V^- = \{ u \in V : f(u) = -1 \} \). If \(v \in V^- \) since \(f(N_{G^k}[v]) \geq 0 \), then \(v \) has at least one neighbor in \(V^+ \). Therefore \(V^+ \) is a dominating set for \(G \) and \(|V^+| \geq \gamma(G) \). Since \(\gamma^N_{2}(G) = |V^+| - |V^-| \) and \(n = |V^+| + |V^-| \), then \(\gamma^N_{2}(G) = 2|V^+| - n \) and finally we have \(\gamma^N_{2}(G) \geq 2\gamma(G) - n \).

Lemma 3. Let \(n \geq 5 \) be an integer. Then the cycle \(C_n \) admits 2-DNNSDF with

\[
\gamma^N_{2,2}(C_n) \leq k \text{ when } n = 5k.
\]

\[
\gamma^N_{2,2}(C_n) \leq k + 1 \text{ when } n = 5k+1.
\]

\[
\gamma^N_{2,2}(C_n) \leq k + 2 \text{ when } n = 5k + 2 \text{ or } n = 5k + 4.
\]

\[
\gamma^N_{2,2}(C_n) \leq k + 3 \text{ when } n = 5k + 3.
\]

Proof. Let \(n \geq 5 \) be an integer. Let \(V(C_n) = \{ a_i / 1 \leq i \leq n \} \) and \(E(C_n) = \{ a_i a_{i+1} / 1 \leq i \leq n \} \). Define a function \(f : V(C_n) \rightarrow \{-1,+1\} \) such that \(f(a_i) = -1 \) when \(i = 5l \) or \(i = 5l - 1 \), \(l \geq 1 \) and otherwise \(f(a_i) = +1 \).

Consider the vertex \(a_i \) for \(1 \leq i \leq n, N_2[a_i] = \{ a_{i-2}, a_{i-1}, a_i, a_{i+1}, a_{i+2} \} \). From the above labeling, it is easy to observe that at least 3 vertices of any five consecutive vertices must have +1 sign and hence \(f(N_2[a_i]) \geq 1 \) for all \(i, 1 \leq i \leq n \).

Thus from the above labeling the result follows.

Example 1.

![Example Diagram]

From the above graphs we observe that \(\gamma^N_{2,2}(C_5) \leq 1 \neq 3 = n - 2, \gamma^N_{2,2}(C_6) \leq 2 \neq 4 = n - 2 \) and \(\gamma^N_{2,2}(C_7) \leq 3 \neq 5 = n - 2 \). From Lemma 3 and Example 1, we can have following result.

Remark 1. For \(n \geq 8 \), \(\gamma^N_{2,2}(C_n) \leq [n/5] + 3 < n - 2 \).

Lemma 4. Let \(n \geq 5 \) be an integer. Then the path \(P_n \) admits 2-DNNSDF with
The graphs $\gamma_{2,5}(P_5)$ is given by $V(P_5) \rightarrow \{-1,+1\}$ define by $f(a_i) = -1$, when $i = 5l$ or $i = 5l - 4, 1 \leq l \leq k$ and other wise $f(a_i) = +1$.

Proof. Let $V(P_n) = \{a_i/1 \leq i \leq n\}$ and $E(P_n) = \{a_i a_{i+1}/1 \leq i \leq n - 1\}.

Case 1: Suppose $n = 5k$ or $n = 5k + 3$ or $n = 5k + 4$ for $k \geq 1$. A 2-DNNSDF f on P_n is given by $V(P_n) \rightarrow \{-1,+1\}$. Define $f(a_i) = -1$, when $i = 5l$ or $i = 5l - 4, 1 \leq l \leq k$ and otherwise $f(a_i) = +1$.

Case 2: Suppose $n = 5k + 1$ or $5k + 2$ for $k \geq 1$. A 2-DNNSDF f on P_n is given by $V(P_n) \rightarrow \{-1,+1\}$ define by $f(a_i) = -1$, when $i = 5l$ or $i = 5l - 4, 1 \leq l \leq k$.

From the above labeling, it is easy to observe that at least 3 vertices of $N_3[a_i]$ must have +1 sign and hence $f(N_3[a_i]) \geq 1$ for all $i, 3 \leq i \leq n - 2$. Also the first and last four vertices have at least two vertices of +1 sign. Hence $f(N_3[a_i]) \geq 0$ when $i = 2, n - 2$. Also the first and last three vertices have at least two vertices of +1 sign. Hence $f(N_3[a_i]) \geq 1$ when $i = 1, n$.

Thus from the above labeling the result follows.

Example 2.

![Graph](https://via.placeholder.com/150)

From the above graphs we observe that $\gamma_{2,5}(P_5) \leq 1 \neq 3 = n - 2$. Therefore $\gamma_{2,5}(P_5) = 2 \neq 4 = n - 2$.

From Lemma 3 and Example 2, we can have following result.

Remark 2. For $n \geq 7$, $\gamma_{2,5}(P_n) \leq \lfloor n/5 \rfloor + 32 < n - 2$.

Lemma 5. Let G be a connected graph of order n. Then $\gamma_{2,5}(G) = n - 2$ if and only if $G \cong P_2, P_3$ or C_3.

Proof. Let $\gamma_{2,5}(G) = n - 2$. We claim that $\Delta(G) \leq 2$. Assume, to the contrary, that $\Delta(G) \geq 3$. Let v be a vertex of maximum degree and let $N_2(v) = \{v_1, \ldots, v_\lambda\}$. If $N_2[v_i] \cap N_2[v_j] = \{v\}$ for some $i = j$, then define $f : V(G) \rightarrow \{-1,+1\}$ by $f(v_i) = f(v_j) = -1$ and $f(x) = 1$ for all other vertices x. Clearly, f is a 2-DNNSDF of G with weight $n - 4$ which leads to a contradiction. Assume that $N_2[v_i] \cap N_2[v_j] = \{v\}$ for every pair $i,j, 1 \leq i = j \leq \lambda$. It is easy to see that the function $f : V(G) \rightarrow \{-1,+1\}$ defined by $f(v) = f(v_1) = -1$ and $f(x) = 1$ for all other vertices x, is a 2-DNNSDF of G of weight $n - 4$ which leads to a contradiction. Therefore $\Delta(G) \leq 2$ and so G is a path or cycle. By Remark 1 and 2, that is not possible to $\gamma_{2,5}(G) = n - 2$.

![Graph](https://via.placeholder.com/150)

Note that for the graphs C_4 and P_4, we have $\gamma_{2,5}(C_4) = \gamma_{2,5}(P_4) = 0 \neq n - 2$. Therefore P_2, P_3 and C_3 are the only graphs in which $\gamma_{2,5}(G) = n - 2$. The graphs P_2, P_3 and C_3 admit k-DNNSDF with $\gamma_{2,5}(P_2) = 0$, $\gamma_{2,5}(P_3) = 1$ and $\gamma_{2,5}(C_3) = 1$.

Lemma 6. Let $n \geq 5$ be an integer. Then the graph C_n^+ admits 2-DNNSDF with $\gamma_{2,5}(C_n^+) \leq 0$.

IJCRT1801014 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | 97
Proof. Let $V(C_n^+) = \{a_i, b_i / 1 \leq i \leq n\}$ and $E(C_n^+) = \{a_i, a_{i+1} / 1 \leq i \leq n - 1\} \cup \{a_1, a_n\} \cup \{a_i, b_i / 1 \leq i \leq n\}$. Define a function $f : V(C_n^+) \to \{-1, +1\}$, $f(a_i) = +1$ and $f(b_i) = -1$ for $1 \leq i \leq n$. Now we consider the vertices a_i, $N_2[a_i] = \{a_{i-2}, a_{i-1}, a_i, a_{i+1}, a_{i+2}, b_{i-1}, b_i, b_{i+1}\}$, by the above labeling $f(N_2[a_i]) = 2$ for $1 \leq i \leq n$. Next, we consider the vertices b_i, $N_2[b_i] = \{b_i, a_{i-1}, a_i, a_{i+1}\}$, by the above labeling $f(N_2[b_i]) = 2$ for $1 \leq i \leq n$. Thus f is 2-DNNSDF with $\gamma_{2, s}(C_n^+) \leq 1$.

Theorem 2. Let $n \geq 5$ be an integer. Then the graph C_n admits 2-DNNSDF with $\gamma_{2, s}(C_n) \leq 0$ when n is even and $\gamma_{2, s}(C_n) \leq 1$ when n is odd.

Proof. Let $V(C_n^-) = \{a_i / 1 \leq i \leq n\}$. Define a function $f : V(C_n^-) \to \{-1, +1\}$ by $f(a_i) = +1$ when n is odd and $f(a_i) = -1$ when n is even for $1 \leq i \leq n$. Note that $N_2[a_i] = V(C_n^-)$ for $1 \leq i \leq n$. Suppose n is odd, then by the above labeling $f(N_2[a_i]) = \frac{n+1}{2} + \frac{n-1}{2} = 1$. Thus f is 2-DNNSDF with $\gamma_{2, s}(C_n^-) \leq 1$. Suppose n is even, then by the above labeling $f(N_2[a_i]) = \frac{n+1}{2} + \frac{n-1}{2} = 1$. Thus f is 2-DNNSDF with $\gamma_{2, s}(C_n^-) \leq 0$.

After studying the above results, we find the following more general result:

Theorem 3. If $\text{diam}(G) \geq k$, then G admits k-DNNSDF.

Proof. Since $\text{diam}(G) \geq k$, for every vertex $v \in V(G)$, we have $N_k[v] = V(G)$. Suppose $n = 2p$. Then we can label p vertices with +1 signs and p vertices with -1 signs. In this case, $f(N_k[v]) = p(1) + p(-1) = 0$.

Suppose $n = 2p + 1$. Then we can label $p + 1$ vertices with +1 signs and p vertices with -1 signs. In this case, $f(N_k[v]) = (p + 1)(1) + p(-1) = 1$. Thus G admits k-DNNSDF.

The next result follows immediately from the above theorem.

Lemma 7. The complete graph K_n admits 2-DNNSDF for $n \geq 1$.

For the integers $m, n \geq 1$, the complete bipartite graph $K_{m,n}$ admits 2 DNNSDF.

The wheel graph W_n admits 2-DNNSDF for $n \geq 3$.

The graph $G = P_m + P_n$ admits 2-DNNSDF for $m, n \geq 1$.

The friendship graph T_n admits 2-DNNSDF.

REFERENCES
