FIXED POINT THEOREMS IN A COMPLETE B-METRIC SPACE FOR TWO SELF MAPS

1Dr. Giniswamy, 2Venkatesh Bhatt, 3Jeyanthi C.
1 Associative Professor and Head, 2Research Scholar, 3Assistant Professor
1Department of Mathematics,
1PES College of Science, Arts and Commerce, Mandya, Karnataka, India-571401

Abstract: In this paper we obtain a common fixed point result for two self maps in a complete b-metric space which improve and generalize the result established by Swati et al.[8] (2016).

Index Terms - fixed point, b-metric space.

I. INTRODUCTION AND PRELIMINARIES

The Banach contraction principle [2] is a fundamental result in the fixed point theory, which has been extended in many different ways. Also, there are several generalizations of usual metric spaces. One of the generalizations of metric spaces is b-metric spaces introduced in 1989 by Bakhtin [1] and proved some fixed point theorems for some contractive mappings in b-metric spaces which are also generalizations of Banach’s contraction principle in metric spaces. After this, many authors presented papers on fixed point theory on a single valued and multi valued operators in b-metric spaces [4, 5, 6, 7]. In the present paper we prove a fixed point theorem in complete b-metric space for two self maps.

Definition 1.1 [1]. Let X be a non empty set, s ≥ 1 be a given real number and d: X × X → R+ be a function. We say d is a b-metric on X if and only if for all x, y and z in X the following conditions are satisfied:
1. d(x, y) = 0 if and only if x = y.
2. d(x, y) = d(y, x)
3. d(x, z) ≤ s[d(x, y) + d(y, z)]

A pair (X, d) is called a b-metric space. If s = 1, b-metric reduces to usual metric.

Definition 1.2 [3]. Let (X, d) be a b-metric space. Then a sequence \{x\}^\infty_{n=1} in X is called a Cauchy sequence if and only if for all ε > 0 there exist n(ε) ∈ N such that for each n, m ≥ n(ε) we have d(x_n, x_m) < ε.

Definition 1.3 [3]. Let (X, d) be a b-metric space. Then a sequence \{x\}^\infty_{n=1} in X is called a convergent sequence if and only if there exists x ∈ X such that for all n ∈ N and n > n(ε) we have d(x_n, x) < ε, then we write \lim_{n→∞} x_n = x.

Definition 1.4 [3]. The b-metric is complete if every Cauchy sequence is convergent.

II MAIN RESULT

Theorem 2.1. Let (X, d) be a complete b-metric space and let S, T: X → X be two self mappings such that

\[d(Sx, Ty) \leq h \max\{d(x, y), d(x, Sx), d(y, Ty), d(x, Ty), d(y, Sx)\} \] (1)

with 0 < h < 1 then S and T have unique common fixed point.

Proof :- Let x_0 ∈ X and \{x\}^\infty_{n=1} be a sequence in X such that

\[x_{2n+1} = Sx_{2n} \text{ and } x_{2n+2} = Tx_{2n+1} \] (2)

for n = 0, 1, 2,

\[d(x_{2n+1}, x_{2n+2}) = d(Sx_{2n}, Tx_{2n+1}) \]
\[\leq h \max\{d(x_{2n}, x_{2n+1}), d(x_{2n}, Sx_{2n}), d(x_{2n+1}, Tx_{2n+1}), d(x_{2n}, Ty_{2n+1}), d(x_{2n+1}, Sx_{2n})\} \]
\[\leq h \max\{d(x_{2n}, x_{2n+1}), d(x_{2n}, Sx_{2n}), d(x_{2n+1}, Sx_{2n+1}), d(x_{2n}, Sx_{2n+2}), d(x_{2n+1}, Sx_{2n+2})\} \]
\[\leq h \max\{d(x_{2n}, x_{2n+1}), d(x_{2n+1}, x_{2n+2}), d(x_{2n}, x_{2n+2})\} \]

Case 1: If \max\{d(x_{2n}, x_{2n+1}), d(x_{2n+1}, x_{2n+2}), d(x_{2n}, x_{2n+2})\} = d(x_{2n}, x_{2n+1}) then

\[d(x_{2n+1}, x_{2n+2}) \leq hs d(x_{2n}, x_{2n+1}) \]

Similarly, \[d(x_{2n}, x_{2n+1}) \leq hs d(x_{2n-1}, x_{2n}). \]
Continuing the process, we get \(d(x_{2n+1}, x_{2n+2}) \leq (hs)^{2n+1} d(x_0, x_1)\).

Case 2: If \(\max\{d(x_{2n}, x_{2n+1}), d(x_{2n+1}, x_{2n+2}), d(x_{2n+2}, x_{2n+3})\} = d(x_{2n}, x_{2n+1})\) then
\[
d(x_{2n+1}, x_{2n+2}) \leq hs d(x_{2n}, x_{2n+2}) \leq hs [d(x_{2n}, x_{2n+2}) + d(x_{2n+2}, x_{2n+3})] \leq \frac{hs}{1-hs} d(x_{2n}, x_{2n+1})
\]
so \(d(x_{2n+1}, x_{2n+2}) \leq k d(x_{2n}, x_{2n+1})\), where \(k = \frac{hs}{1-hs} < 1\).

Continuing this process, we get \(d(x_{2n+1}, x_{2n+2}) \leq k^{2n+1} d(x_0, x_1)\).

Case 3: If \(\max\{d(x_{2n}, x_{2n+1}), d(x_{2n+1}, x_{2n+2}), d(x_{2n+2}, x_{2n+3})\} = d(x_{2n+1}, x_{2n+2})\) then
\[
d(x_{2n+1}, x_{2n+2}) \leq hs [d(x_{2n}, x_{2n+1}) + d(x_{2n+1}, x_{2n+2})] \leq \frac{hs}{1-hs} d(x_{2n}, x_{2n+1})
\]
Thus \(S\) and \(T\) are contractive mappings.

Now we show that \(\{x_n\}\) is a Cauchy sequence in \(X\). Let \(m, n \in \mathbb{N}, m > n\)
\[
d(x_m, x_n) \leq s [d(x_0, x_n) + d(x_{n+1}, x_m)] \leq s [d(x_0, x_n) + s^2 (d(x_{n+1}, x_{n+2}) + d(x_{n+2}, x_{n+3})] \leq s (hs)^n [d(x_0, x_1) + s^2 (hs)^n d(x_0, x_1) + \ldots] \leq s (hs)^n [d(x_0, x_1) + (1+s^5h^2)^n] = d(x_0, x_1)
\]
Then, as \(m, n \to \infty\), \(\lim_{n \to \infty} s (hs)^n [1 - \frac{(hs)^{n-m}}{1-hs}] = 0\)
Hence \(\{x_n\}\) is Cauchy sequence in \(X\). So \(\{x_n\}\) converges to \(x^* \in X\).

Now we show that \(x^*\) is a fixed point of \(T\).
\[
d(x^*, Tx^*) \leq d(x^*, x_{2n+1}) + s d(x_{2n+1}, x_{2n+2}) + sh d(x_0, x^*)
\]
as \(n \to \infty\), \(d(x^*, Tx^*) = 0\). Hence \(x^*\) is the fixed point of \(T\).

Case 1: If \(\max\{d(x_{2n}, x^*), d(x_{2n+1}, x^*), d(x_{2n+2}, x^*), d(x_{2n+3}, x^*)\} = d(x_{2n}, x^*)\) then
\[
d(x^*, Tx^*) \leq s d(x^*, x_{2n+1}) + sh d(x_0, x^*)
\]
as \(n \to \infty\), \(d(x^*, Tx^*) = 0\). Hence \(x^*\) is the fixed point of \(T\).

Case 2: If \(\max\{d(x_{2n}, x^*), d(x_{2n+1}, x^*), d(x_{2n+2}, x^*), d(x_{2n+3}, x^*)\} = d(x_{2n+1}, x^*)\) then
\[
d(x^*, Tx^*) \leq s d(x^*, x_{2n+1}) + sh d(x_0, x^*)
\]
as \(n \to \infty\), \(d(x^*, Tx^*) = 0\). Hence \(x^*\) is the fixed point of \(T\).

Case 4: If \(\max\{d(x_{2n}, x^*), d(x_{2n+1}, x^*), d(x_{2n+2}, x^*), d(x_{2n+3}, x^*)\} = d(x_{2n+2}, x^*)\) then
\[
d(x^*, Tx^*) \leq s d(x^*, x_{2n+1}) + sh d(x_0, x^*)
\]
as \(n \to \infty\), \(d(x^*, Tx^*) = 0\). Hence \(x^*\) is the fixed point of \(T\).

Case 5: If \(\max\{d(x_{2n}, x^*), d(x_{2n+1}, x^*), d(x_{2n+2}, x^*), d(x_{2n+3}, x^*)\} = d(x_{2n+3}, x^*)\) then
\[
d(x^*, Tx^*) \leq s d(x^*, x_{2n+1}) + sh d(x_0, x^*)
\]
as \(n \to \infty\), \(d(x^*, Tx^*) = 0\). Hence \(x^*\) is the fixed point of \(T\).
Now we show x^* is fixed point of S.

$$d(x^*, Sx^*) \leq s[d(x^*, x_{2n+2}) + d(x_{2n+2}, Sx^*)]$$

$$\leq s[d(x^*, x_{2n+2}) + d(Sx^*, T_{2n+1})]$$

$$\leq s[d(x^*, x_{2n+2}) + s h \max\{d(x^*, x_{2n+1}), d(x^*, Sx^*), d(x_{2n+1}, T x_{2n+1}), d(x^*, T x_{2n+1}), d(x_{2n+1}, Sx^*)\}]$$

$$\leq s[d(x^*, x_{2n+2}) + s h \max\{d(x^*, x_{2n+1}), d(x^*, Sx^*), d(x_{2n+1}, x_{2n+2}), d(x^*, x_{2n+2}), d(x_{2n+1}, Sx^*)\}]$$

Now different cases arise,

Case 1: If $\max\{d(x^*, x_{2n+1}), d(x^*, Sx^*), d(x_{2n+1}, x_{2n+2}), d(x^*, x_{2n+2}), d(x_{2n+1}, Sx^*)\} = d(x^*, x_{2n+1})$ then

$$d(x^*, Sx^*) \leq s d(x^*, x_{2n+2}) + s h d(x^*, x_{2n+1})$$

as $n \to \infty$, $d(x^*, Sx^*) = 0$. Hence x^* is the fixed point of S.

Case 2: If $\max\{d(x^*, x_{2n+1}), d(x^*, Sx^*), d(x_{2n+1}, x_{2n+2}), d(x^*, x_{2n+2}), d(x_{2n+1}, Sx^*)\} = d(x^*, x_{2n+2})$ then

$$d(x^*, Sx^*) \leq s d(x^*, x_{2n+2}) + s h d(x^*, x_{2n+1})$$

as $n \to \infty$, $d(x^*, Sx^*) = 0$. Hence x^* is the fixed point of S.

Case 3: If $\max\{d(x^*, x_{2n+1}), d(x^*, Sx^*), d(x_{2n+1}, x_{2n+2}), d(x^*, x_{2n+2}), d(x_{2n+1}, Sx^*)\} = d(x_{2n+1}, Sx^*)$ then

$$d(x^*, Sx^*) \leq s d(x^*, x_{2n+2}) + s h d(x_{2n+1}, Sx^*)$$

$$(1-s) d(x^*, Sx^*) \leq d(x^*, x_{2n+2})$$

as $n \to \infty$, $d(x^*, Sx^*) = 0$. Hence x^* is the fixed point of S.

Case 4: If $\max\{d(x^*, x_{2n+1}), d(x^*, Sx^*), d(x_{2n+1}, x_{2n+2}), d(x^*, x_{2n+2}), d(x_{2n+1}, Sx^*)\} = d(x^*, x_{2n+2})$ then

$$d(x^*, Sx^*) \leq s d(x^*, x_{2n+2}) + s h d(x^*, x_{2n+2})$$

as $n \to \infty$, $d(x^*, Sx^*) = 0$. Hence x^* is the fixed point of S.

Case 5: If $\max\{d(x^*, x_{2n+1}), d(x^*, Sx^*), d(x_{2n+1}, x_{2n+2}), d(x^*, x_{2n+2}), d(x_{2n+1}, Sx^*)\} = d(x^*, Sx^*)$ then

$$d(x^*, Sx^*) \leq s d(x^*, x_{2n+2}) + s h d(x^*, x_{2n+2})$$

$$(1-s) d(x^*, Sx^*) \leq d(x^*, x_{2n+2})$$

as $n \to \infty$, $d(x^*, Sx^*) = 0$. Hence x^* is the fixed point of S.

Therefore x^* is a common fixed point of S and T.

Uniqueness:

Now we show that x^* is unique fixed point of S and T.

Assume x^{**} is another fixed point of S and T then we have, $Sx^{**} = x^{**}$ and $Tx^{**} = x^{**}$

$$d(x^{**}, x^*) = d(Sx^{**}, T x^{**})$$

$$\leq s \max\{d(x^{**}, x^{**}), d(x^*, Sx^{**}), d(x^{**}, T x^{**}), d(x^*, Sx^{**})\}$$

$$\leq s \max\{d(x^{**}, x^{**}), d(x^{**}, x^{**}), d(x^{**}, x^{**})\}$$

$$(1-s) d(x^{**}, x^*) \leq 0$$

Therefore $d(x^*, x^{**}) = 0$. Implies $x^* = x^{**}$. Hence x^* is the unique fixed point of S and T.

Example :- Let $X = [0, 1]$ and $d:X \times X \to X$ defined by $d(x, y) = |x-y|$ for all $x, y \in X$ then (X, d) is s-metric space with $s=2$. Now we define two self maps $S, T: X \to X$ such that $Sx = \frac{x}{4}$ and $Ty = \frac{y}{2}$. S and T satisfies the contractive conditions of theorem 2.1 and $x = 0$ is unique common fixed point of S and T.

Corollary :- Let (X, d) be a complete s-metric space and let $T: X \to X$ be a self mapping such that $d(Tx, Ty) \leq h \max\{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)\}$, with $0 < h < 1$ then T has unique common fixed point.

Proof : By putting $S = T$ in theorem 2.1 we get the corollary.

Example :- Let $X = [0, 1]$ and $d:X \times X \to X$ defined by $d(x, y) = |x-y|$ for all $x, y \in X$ then (X, d) is s-metric space with $s=2$. Now we define a self map $T: X \to X$ such that $Tx = \frac{x}{4}$ which satisfies the contractive conditions of theorem 2.1 and $x = 0$ is unique common fixed point of T.

Note: The document appears to be a mathematical paper discussing fixed point theorems in metric spaces, specifically focusing on proving the existence and uniqueness of fixed points for self-maps S and T. The content includes detailed calculations and proofs for different cases, with examples and corollaries to illustrate the general theory. The notation and terminology are consistent with standard mathematical literature on fixed point theory.
References