
www.ijcrt.org © 2017 IJCRT | Volume 5, Issue 4 December 2017 | ISSN: 2320-2882

IJCRT1704497 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 3720

A Review Paper on SQL Injection and Cross Site

Scripting Vulnerabilities

An enhance Android based application for mobile authentication security

1
Shivani Sukhanand,

2
Priyanka Sharma,

1
Research Scholar,

2
head of Department,

1 & 2
 Department of Information and Technology & Tele-Communication,

1 & 2
Raksha Shakti University, Ahmadabad, India.

__

Abstract—As of late, web remains the favored stage for clients to do their business exercises. The movement of utilizations

to web has been quick extending from applications like E-trade, Public gathering, E-administration, E-saving money,

Shopping Portals or some other applications running on the web. Web Applications have expanded its use on account of

simple availability to various clients around the globe. Be that as it may, as the utilization of the web has expanded, it has

likewise given a bothersome or dull side to the use of html. Cross-webpage scripting (XSS) assaults keep on remaining the

highest risk to web applications, databases and sites far and wide for a lot of time now. A study of around 15 million

digital assaults in the second from last quarter of 2012 has uncovered that the greater part of these assaults are XSS

based. In spite of the fact that assaults like SQL Injection, CSRF and Phishing are likewise normal, XSS still remains the

favored procedure for programmers to complete malevolent exercises on web. This paper examines about XSS assaults,

their operation and distinctive classifications of XSS assaults. The paper additionally features the alleviation situation and

strategies feasible for anticipation. Data enters a Web application through an unauthorized source, most much of the time

a web ask. The information is incorporated into dynamic substance that is sent to a web client without being approved for

malignant substance. The malignant substance sent to the web program regularly appears as a fragment of JavaScript,

however may likewise incorporate HTML, Flash, or some other sort of code that the program may execute. The

assortment of assaults in view of XSS is practically boundless, however they regularly incorporate transmitting private

information, similar to treats or other session data, to the aggressor, diverting the casualty to web content controlled by

the assailant, or performing different vindictive operations on the client's machine under the pretense of the powerless.

Keywords—Cross Site Scripting (XSS), SQL Injection, Phishing, Cyber Attacks, Web Application Security, Security, Software

Security, Security Vulnerability, Black-Box Security Testing, Test Automation, web application, static analysis,

Prevention, Detection, Fault injection.
__

I. INTRODUCTION

Before, big business programming would be situated in trusted regions of a company’s organize. A company’s Application would

stay on single framework in the workplace or on every one of the machines with their own particular programming with some

correspondence between these PCs or no correspondence by any means. Thus these applications were less powerless against

various assaults and programmers. Be that as it may, the world is evolving. Online applications are increasing increasingly

prominence and use step by step. Today Web Applications have turned out to be most critical correspondence channel between the

specialist organization and the clients. Today, Web Applications are increasing increasingly prominence as we can assemble

exceptionally delightful and client intuitive pages by the broad utilization of some customer webpage scripting dialects e:g

JavaScript. What's more, this developing utilization of JavaScript is expanding genuine security vulnerabilities in web application

like SQL infusion and Cross Site Scripting or XSS, later being the highest danger.

, SANS Institute security specialists detailed a noteworthy SQL infusion assault (SQLIA) that influenced roughly 160,000 sites

utilizing Microsoft's Internet Information Services (lIS), ASP.NET, and SQL Server systems. Likewise, cross-webpage scripting

based MySpace Samy worm tainted more than a million records inside the initial 20 hours of contaminating the MySpace person to

person communication site. The as of now conveyed applications, we call inheritance applications, have genuine security issues.

These applications are regularly composed with deficient information of the conceivable security dangers or utilize lacking intends

to avoid them. In synopsis, a noteworthy dominant part of heritage web applications are defenseless. The fundamental reason of

vulnerabilities is shortcomings show in source codes. These might programmer dialect shortcomings, disgraceful information

approvals or happened because of obliviousness of security rule by engineers. Scientists explored that the cost of recognizing and

amending a product shortcoming increments along the periods of programming improvement life cycle [7]. Thus, it is important to

recognize security shortcomings being developed stage for sparing cash and maintaining a strategic distance from programming

disappointment. This paper proposes an arrangement of different programming security approaches in programming improvement

life cycle. In writing, different review papers [5, 6] examined powerlessness location approaches that recognize vulnerabilities in

testing stage or in organization stage. This paper run down the static investigation approaches that distinguish vulnerabilities in

www.ijcrt.org © 2017 IJCRT | Volume 5, Issue 4 December 2017 | ISSN: 2320-2882

IJCRT1704497 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 3721

coding period of programming improvement life cycle. The point of these methodologies is to recognize shortcomings in source

code before their misuse in real condition.

1) Cross Site Scripting (XSS):-

Cross Site Scripting (XSS) vulnerabilities have been the nightmare of Web applications for considerable amount of time

now. The research carried out at WASC [6] shows that about 100,059 XSS vulnerabilities have been checked by analyzing

31,373 Web sites. Cross Site Scripting (XSS) vulnerabilities attack web applications by inserting client side code or script

into web pages that are accessed by users. A number of popular websites including Face book, Twitter, McAfee,

MySpace, eBay and Google have been the prime targets of XSS exploits. The attack exploits improper coding of your web

applications allowing a hacker to inject malicious script into a web form to allow them to gain access or tamper your

application. ie improper sanitation or filtering of user input. The executable code of XSS is normally written in popular

scripting and programming languages like JavaScript, VBscript, php etc. The pseudo code and the figure 1 below show

little demonstration of an XSS attack.

(Fig. 1 Operation of XSS)

A. Types of XSS:-

There is essentially no standard order of Cross site scripting however for the most part specialists isolate these

assaults in two principle sorts Persistent and non Persistent.

I. Type 0 or DOM based Attack:-

II. Type 1 or Non Persistent Attack:-

III. Type 2 or Persistent Attack:-

2) SQL INJECTION:-

SQL infusion assault is a sort of assault where an assailant sends SQL (Structure Query Language) code to a client input

confine a web type of a web application to increase boundless and unapproved get to. The assailant's info is transmitted

into a SQL inquiry such that it frames a SQL code.

I. Tautology:

II. Logically incorrect queries:

III. Union queries:

IV. Piggy-backed Queries:

V. Stored Procedure:

VI. Blind Injection:

www.ijcrt.org © 2017 IJCRT | Volume 5, Issue 4 December 2017 | ISSN: 2320-2882

IJCRT1704497 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 3722

II. LITRACURE REVIEW:-

a) Cross Site Scripting (XSS): The dark side of HTML:-

An investigation of lion's share of web assaults uncovers that they are caused because of inappropriate coding of web

applications and failure to channel or clean info coming into web. The assaults, for example, XSS and infusion assaults

happen due to non sterilization of client input. The greater part of these web application assaults are alleviated either on

the customer side or server side. The customer side relief regularly includes input approval methods. These systems

typically limit a client from providing malevolent information to the website page. Then again, server side moderation

includes separating the client information or yield sanitation. One arrangement is likewise to obstruct all JavaScript in

your program however that will confine the client from creating or review intelligent web applications .Some scientists

have additionally recommended utilizing program module that will consolidate some sort of fake `intelligence to limit or

channel client input along these lines adding a knowledge factor to program. Examining xss assaults, there are number of

customer side arrangements actualized by the engineers everywhere throughout the world yet to totally secure a web

application is as yet its early stages.

A broad review about cross site scripting assault and talked about various sorts of XSS assaults. The data contained in this

paper could be exceptionally helpful for new application/web designers for creating more intelligent and secure

applications running over the web. The paper likewise records a portion of the moderation situations. Despite the fact that

an entire secure application isn't ensured in the cutting edge world, yet at the same time a lot of work and research has

been done around there. Totally securing a web application is by all accounts an overwhelming errand for designers today.

b) Cross Site Scripting: Detection Approaches in Web Application:-

We examined the general methodologies used to identify XSS vulnerabilities and separate their strategies in recognizing

XSS vulnerabilities in Table 1. [6, 2] utilized hereditary calculation with static examination in an approach to diminish the

false positive rate in their outcomes. [20] Recognized one kind of reflected XSS defenselessness in PHP web applications

utilizing static investigation and GA. Nonetheless, their approach will be contended in light of the fact that a few ways in

the source code can't be executed. To identify XSS vulnerabilities with no false positive outcomes, they have to expel the

infeasible ways from the control stream chart. When they evacuate the infeasible ways, they will recognize the genuine

XSS weakness from the source code with no false positive in their outcomes. [18] Distinguished the three sorts of XSS

weakness. While they recognized all XSS vulnerabilities in Java source code, their approach still uncovers false positive

outcomes. In this manner, the evacuation of the infeasible ways help to limit the false positive outcomes, since when the

GA generator runs just on the achievable ways, it will be all the more quick and exact to discover the outcomes. Along

these lines, to finish the approach of utilizing GA with static examination, the scientists should expel the infeasible ways

from the control stream diagram, in an approach to limit the false positive rate in their outcomes.

Web applications have been sent to the general population with startling security gaps. The explanation behind these

security gaps is primarily the brief span edge of this present program's advancement. Despite the fact that exploration on

security programs is present day, powerful arrangements are profoundly requested due to the significance of making

programs that are secure and less helpless against assaults. Cross-Site Scripting (XSS) helplessness is a standout amongst

the most widely recognized security issues in web applications. It can prompt the taking of treats and client accounts and

to the exchanging of private information if the information isn't approved. While there are many investigations have been

directed to deliver issues identified with XSS helplessness, yet their outcomes is by all accounts not productive to address

the issue also. Static examination still contains numerous false positive and the dynamic investigation still need to enhance

the precision of the outcomes. Nonetheless, the mixture approach isn't proficient as the completely static or dynamic

methodologies. Then again, hereditary calculation used to recognize XSS powerlessness. Hereditary calculation victories

to identify all XSS defenselessness in JAVA web application with no false positive outcomes. In any case, when the

scientists actualize it in PHP, their outcomes still contain numerous false positive outcomes, since they didn't expel the

infeasible ways from the Control Flow Graph.

c) XSS Vulnerability Detection Using Model Inference Assisted Evolutionary Fuzzing:-

Being a mix of two procedures viz. induction and hereditary calculation, our approach identifies with a few existing

discovery testing works. In [8], the assignment of advancing vindictive contents is likened to producing pernicious

information sources additionally utilizing an assault language structure. Nonetheless, the nonappearance of a SUT display

(i.e. state change to accomplish the objective) may have some unfriendly impacts, particularly on account of complex

objectives. The fitness work defined in [9], however being comparable in objective, may not be powerful in distinguishing

profoundly established vulnerabilities. KiF [10] utilizes show surmising with physically made contributions for state

changes, though we endeavored to automatize this progression utilizing GA and the assault syntax. [11] is like our

proposition: a dynamic SUT demonstrate is gathered and concrete fluffed input arrangements are sent to the SUT.

Contrasts incorporate their utilization of aloof deduction and their criteria for making new info arrangements is to build the

state scope, most likely in light of the fact that their focused on blame is SUT crash.

I propose a robotized sort 1 XSS seek approach that depends on display induction and developmental fluffing to create test

cases. Kameleon-Fuzz is a work in advance implement action of our described approach. Our future work involves

www.ijcrt.org © 2017 IJCRT | Volume 5, Issue 4 December 2017 | ISSN: 2320-2882

IJCRT1704497 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 3723

investigating genuine applications, watching the influence of different GA parameters (elitism, pools, weights). We

additionally plan to broaden this approach for distinguishing sort 2 XSS since current best in class scanners recognition

capacity is low [12]. Additionally, by considering the DOM and webserver as the SUT, it is conceivable to identify sort 0

XSS and no-conformant XSS. The HTML language structure. In that procedure, we will likewise tune our fitness work.

d) Static Analysis Approaches to Detect SQL Injection and Cross Site Scripting Vulnerabilities in Web Applications:

A Survey:-

The ubiquity of web applications for social interchanges, medical issue, and money related exchange are expanding

quickly. Lamentably, programming vulnerabilities are ending up exceptionally basic issues in these web applications. As

indicated by latest site security insights report, 63 percent of evaluated sites are helpless, each having a normal of six

unsolved blemishes [19]. In 20 I 3, Open Web Application Security Project (OWASP) [2] and Common Vulnerabilities

and Exposures (CWE) [1] revealed cross website scripting (XSS) and SQL infusion (SQLI) are in top 10 most genuine

vulnerabilities in online framework. In December 2011, SANS Institute security specialists detailed a noteworthy SQL

infusion assault (SQLIA) that influenced around 160,000 sites utilizing Microsoft's Internet Information Services (lIS),

ASP.NET, and SQL Server structures. Moreover, cross-webpage scripting based MySpace Samy worm contaminated

more than a million records inside the initial 20 hours of tainting the MySpace interpersonal interaction site. The as of now

conveyed applications, we call heritage applications, have genuine security issues. These applications are frequently

composed with deficient learning of the conceivable security dangers or utilize lacking intends to counteract them. In

synopsis, a critical lion's share of heritage web applications are powerless. The fundamental reason of vulnerabilities is

shortcomings exhibit in source codes. These might programme dialect shortcomings, shameful information approvals or

happened because of obliviousness of security rule by engineers. Scientists examined that the cost of identifying and

amending a product shortcoming increments along the periods of programming advancement life cycle [7]. Consequently,

it is important to distinguish security shortcomings being developed stage for sparing cash and evading programming

disappointment. This paper proposes an arrangement of different programming security approaches in programming

improvement life cycle. In writing, different review papers [5, 21] talked about defenselessness identification approaches

that identify vulnerabilities in testing stage or in organization stage. This paper outline the static examination approaches

that distinguish vulnerabilities in coding period of programming improvement life cycle. The point of these methodologies

is to distinguish shortcomings in source code before their abuse in real condition.

Whatever remains of paper is sorted out as takes after. Area II gives an outline of SQL Injection and Cross Site Scripting

in web applications. Area III proposes an arrangement of different methodologies utilized as a part of advancement of

secure web application. Segment IV a review of static examination based methodologies for location of defenselessness in

coding period of programming advancement life cycle. At long last, Section V finishes up the paper taking note of and

notices future research bearings.

III. CONCLUSION

Analysts have proposed different ways to deal with distinguish cross-website scripting and SQL infusion vulnerabilities, however

these vulnerabilities keep on existing in many web applications. In this paper, we have proposed a characterization of programming

security approaches used to create secure programming in different period of programming improvement life cycle. This paper

additionally condensed different static investigation approaches that distinguish vulnerabilities in coding period of programming

advancement life cycle. The point of these methodologies is to distinguish the shortcomings in source code before their abuse in

real condition. Static examination approaches can discover the fundamental reason for a security issue and can discover mistakes

ahead of schedule being developed, even before the program is keep running out of the blue, Finding a blunder early not just

lessens the cost of settling the mistake, yet the speedy criticism cycle enhances the engineer coding approach, But, static

investigation approaches still experience the ill effects of false positive and false negative outcomes, In future, more research is

expected to enhance investigation system for giving exact identification comes about.

www.ijcrt.org © 2017 IJCRT | Volume 5, Issue 4 December 2017 | ISSN: 2320-2882

IJCRT1704497 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 3724

REFERENCES

[1]http://www.acunetix.com/websitesecurity/sql-injection/

[2]http://www.computerweekly.com/news/2240168930/XSS-attacks-remain-top-threat-to-web-applications

[3]https://www.owasp.org/index.php

[4]http:// blindsqlinjection.com/

[5]web Application Security Statistics,06(WASC) (http://www.webappsec.org/projects/statistics/)

[6]Y. Xie and A. Aiken, “Static Detection of Security Vulner-abilities in Scripting Languages,” Proc. 15th Use nix Security

Symp. (Use nix-SS 06), vol. 15, Use nix, 2006, pp.179-192.

[7]Rohit Dhamankar,MikeDausin,Marc Eisenbarth, and James King. The top cyber security risks http://www.sans.org/top-

cyber-security-risks/,2009

[8]http://cwe.mitre.org/top25/(2010).

[9]Rao,T."DEFENDING AGAINSTWEBVULNERABILITIES AND CROSS-SITE SCRIPTING." Journal of Global

Research in Computer Science 3.5 (2012): 61-64.

[10]O. Hallaraker and G. Vigna. “ Detecting Malicious JavaScript Code in Mozilla”, In proceedings of the IEEE

International Conference on Engineering of Complex Computer Systems (ICECCS), 2005

[11] Bingchang, L. Shi, L. and Cai, Z. “Software Vulnerability Discovery Techniques: A Survey,” Fourth Int. Conf. on Multimedia

Information Networking and Security, pp 152-156, 2012.

[12] Kumar, R. “Mitigating the authentication vulnerabilities in Web applications through security requirements,” Information and

Communication Technologies (WICT), vol. 60, pp 651–663, 2011.

[13] Thankachan, A. Ramakrishnan, R. and Kalaiarasi, M. “Web application security vulnerabilities detection approaches: A

systematic mapping study,” Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD),

pp 1-6, 2015.

[14] Thankachan, A. Ramakrishnan, R. and Kalaiarasi, M. “A Survey and Vital Analysis of Various State of the Art Solutions for

Web Application,” Security Information Communication and Embedded Systems, pp 1-9, 2014.

[15] Gupta, M. K. Govil, M. C. and Singh, G. “Static Analysis Approaches to Detect SQL Injection and Cross Site Scripting

Vulnerabilities in Web Applications: A Survey,” IEEE Int. Conf. on Recent Advances and Innovations in Engineering (ICRAIE-

2014), pp 1-5, 2014.

[16] Veracode 2015b Application Security Vulnerability: Code Flaws, Insecure Code [Online] Available:

http://www.veracode.com/security/application-vulnerability. [Accessed : 13/4/2016]

[17] Shanmugasundaram, G. “A study on removal techniques of Cross-Site Scripting from web applications,” Proc. Int. Conf. on

Computation of Power, Energy, Information and Communication, pp 0436-0442, 2015.

[18] Gupta, B. “Cross-Site Scripting (XSS) attacks and defense mechanisms: classification and state-of-the-art,” National Institute

of Technology Kurukshetra (Kurukshetra, India), pp 1-19, 2015.

[19] Malviya, V. K. Saurav, S. and Gupta, A. “On Security Issues in Web Applications through Cross Site Scripting (XSS),” Asia-

Pacific Software Engineering Conf., pp 583-588, 2013.

[20] Li, Y. Wang, Z. and Guo, T. “Program Slicing Stored XSS Bugs in Web Application,” Fifth IEEE Int. Conf. on Theoretical

Aspects of Software Engineering, pp 191-194, 2011.

[21] Li, Y. Wang, Z. and Guo, T. “Reflected XSS Vulnerability Analysis,” International Research Journal of Computer Science and

Information Systems (IRJCSIS),vol. 2, pp 25-33, 2013.

[22] Fonseca, J. and Vieira, M. “A Practical Experience on the Impact of Plugins in Web Security,” IEEE 33rd Int. Symposium on

Reliable Distributed Systems, pp 21-30, 2014.

https://www.owasp.org/index.php
http://www.webappsec.org/projects/statistics/
http://cwe.mitre.org/top25/(2010)

