
www.ijcrt.org © 2017 IJCRT | Volume 5, Issue 4 December 2017 | ISSN: 2320-2882

IJCRT1704472 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 3540

A Result of Model Based Testing using Predictive

Range Framework
1
Abhijit Kadam,

2
Mrs. Bhagyashree Dhakulkar

1,2
Department of Computer Engineering,

1,2
Dr. D. Y. PatilSchool of Engineering and Technology, Pune

__

Abstract:Model based mostly Testing is one amongst the foremost crucial areas to be addressed with efficiency to make sure

effective testing of the given project. The system enforced combines UML with FSM to hide all situations with all doable

methods. As Finite Machine additionally works on the trigger wherever conditions are framed and if these conditions are glad

then next action is executed; this development motivates to create a framework for generating the take a look at cases

mechanically covering all methods (activity diagram in UML helps to hide all paths) and conditions (Finite State Machine helps

to border set of conditions). Model based mostly Testing designed considering all methods and conditions to ascertain all

situations to come up with elaborated take a look at cases for given project or application.

IndexTerms: Model Based Testing, Extended File System, Finite State machine, Activity Diagram, Coverage of paths and

conditions.

__

I. INTRODUCTION

Software Testing is undividable section of life cycle used for the event of code. Code testing field is advancing day by day. We

will see recent frameworks like check weight unit, works for knowledge driven testing wherever application processes

relatively great deal of information. chemical element tool is one in every of the popular tool currently a day; chemical element

internet Driver works for check cases and functionalities of all browsers, chemical element Grid works on distributed

Computing, chemical element RC works on device. QTP is windows based mostly testing tool wont to check applications on

Microsoft OS (windows). Trade standards demand bespoke agile approach. All this motivates for the approach wherever each

unit are often tested for the practicality as per the specifications. As automation within the field of physical science, mechanical

and civil and bio information processing has hyperbolic hugely. This demands quality check of code altogether these fields

mentioned on top of.

Unit and practicality testing with all eventualities is that the crux of code testing section. The standard of the code depends

upon the rigorous testing and therefore the approach adopted for acting the code testing. this kind of quality testing are often

performed in coordination with UML diagram which can explore completely different dimensions and practicality of code,

wise choice and standardization of the check cases with respect to the inputs collected from these diagrams can result in the

standard product.

II. LITERATURE REVIEW

Number of research papers analyzed to select the papers focusing on Model Based Testing. Few important approaches are

discussed here to decide the problem statement and guideline for the approach to solve the existing problems.

Andr´e Takeshi Endo et. al. [1] the approach combines Model Based Testing and structural testing for a web services.

Technique used is based on the events, known as ESG4WS. Structural testing [10] [11] [12] [14] is used to meet the quality of

software intended in software requirement document. This helps to stop the process of testing after getting the satisfactory

results. Event Sequence Graph of the application to be tested is plotted to understand the functioning of the software in detail,

especially coverage and scope of application becomes clear. Authors have focused on the data flow and control flow. Control

flow [13] is used analyze coverage of all nodes and edges. Data flow [7] deals with the use and potential use. Limitation of the

system could be enhancement for the detection of faults in the system to be tested.

Decision of the condition could be made by using or analyzing Finite State Machine (FSM) [2]. In this case at every stage

condition is checked and the further path to be traversed is calculated with this decision. Rules are designed for the effective

functioning of the utility and it is forced on the traversal to make sure that system will check [6][9] all possible condition in

the form of Boolean values. Limitation of this system is there are only two options for the condition because of Boolean

values. This may not work, if we want to process the data where there are more than two conditions.

Finite State Machine (EFSM) works on multiple conditions at every node and based on the desired values of the results of

every parameter the further path to be traversed is decided.

www.ijcrt.org © 2017 IJCRT | Volume 5, Issue 4 December 2017 | ISSN: 2320-2882

IJCRT1704472 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 3541

 The process of FSM could be categorized in three parts as

 E-block- To evaluate trigger for all conditions.

 FSM-block – To compute state next to current state & signals, which controls A-block?

 A-block - To perform the required data operations and movements of a data.[5]

There is scope for the improvement as system is based on the web services and it supports only the utilities designed using

java [3].

Metamodel Transformation [4] proposed there are five transformations are mentioned about five different metamodel.

Metamodel gives information about the functionality, especially first two metamodel describe functional requirement and the

third one specifies the test scenarios to be tested and fourth deals with the values associated. Fifth metamodel combines, [7][8]

all inputs into segregated test cases format.

After analyzing all these approaches a system with coverage of all paths and capable to check all conditions at every node

rigorously can be a challenge to be addressed.

III. MATHEMATICAL MODELLING

Input: EFSM, Sequence diagram in the form of XML

Process EFSM⊕ SEQUENCE

Output: test cases with all path, prioritization and removal of redundancy

Data Structure:

Serial Number Variable Meaning

1. F Functionalities

2. S States

3. C Conditions

4. E Edges

5. N nodes

6. T test cases

7. S serial number

8. Se sender

9. Re receiver

SN- 0

For (i=0; i<=#F;i++)

{

 For (j=0; j<=#C;j++)

{

 For (k=0; k<=#E;k<=#N;k++)

{

 T – (SN, condition, Cs, Se, Re)

 SN++; T++;

 Display T;

}

}

}

IV. SYSTEM ARCHITECTURE

4.1 Modules

1. Input Activity Diagram:

The planned work accepts activity diagram as input. each activity diagram square measure acquainted for making its

ADT technically, meaning to possess all needed details which is able to modify the model to seem at capabilities and

functionalities of all activity diagrams. The ADT will then produce the ADG technically. ADG square measure access by

victimization DFS for all necessary accessible take a look at ways. Thus, the complete small print square measure

additional in each checked path victimization the ADT to possess the last word takes a look at cases. Each activity

diagram ought to be probing every of the four modules for creating high assortment of very economical take a look at

cases.

www.ijcrt.org © 2017 IJCRT | Volume 5, Issue 4 December 2017 | ISSN: 2320-2882

IJCRT1704472 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 3542

2. ADT Generation

ADT (Activity Dependency Table) and loops, synchronization and ways showing the activities of the task square

measure created technically utilizing every activity diagram. This attempt to indicating the activities can move to totally

different entities which can be ancillary for system, integration and regression testing. Additionally, it contains the input

with the specified worth of output for each activity of the system. Activity Dependency Table shows each activity

dependency on one another terribly clearly. Each activity has its special image for simply referencing it among

determinant dependencies additionally victimization it among numerous involved units of the system. To scale back the

searches of the created ADG (that square measure attending to be make a case for subsequently throughout this section),

activity that square measure permanent square measure distributed among one image completely instead of having

several symbols for a connected activity

Figure 1: System Architecture of MBT using ADT and FSM

3. DFSM Graph Generator

DFSM generator deals with the development wherever one single output is created, this module elaborates the main

points of criteria used for dominant the criterion that square measure wont to management generation of take a look at

cases.

4. Action at law Generation

Test suit generation covers numerous paths to be evaluated below testing, it contains following sorts of testing the

coverage:

 Round Trip – Total spherical journeys within the path square measure coated and reportable

 Sequence – Total variety of sequences of inputs square measure coated during this sequence.

 Action – All actions square measure to be visited a minimum of once within the path.

 Event – All events square measure to be visited within the path of the take a look at cases.

 State – All states ought to be dealt a minimum of once in a very life cycle.

 Transition- This deals with the whole variety of transitions gift within the coverage.

V. IMPLEMENTATION AND RESULT

Experiment is performed by considering the example of PIN change functionality of ATM. Experiment is performed by using

individual approach where path is calculated using Activity diagram and FSM separately (Figure 2: Individual Approach); in

combined approach (Figure 3: Combined Approach) results are combined then redundancy is removed before generating the

test case. The generated test cases are again checked for duplication. Final outcome of the MBT using combined approach is

to generate test cases with more test cases as we can see that number is 83 and removal of unnecessary, redundant test cases.

www.ijcrt.org © 2017 IJCRT | Volume 5, Issue 4 December 2017 | ISSN: 2320-2882

IJCRT1704472 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 3543

Figure 2: Individual Approach

Figure 3: Combined Approach

www.ijcrt.org © 2017 IJCRT | Volume 5, Issue 4 December 2017 | ISSN: 2320-2882

IJCRT1704472 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 3544

Figure 4: MBT for log change

Figure 5: Graphical Representation of Results

VI. CONCLUSION

The system is capable to deliver the satisfactory result as we can see number of steps needed to check all conditions and cover all

paths is reduced considerably from 83 to 63, because of removing the redundancy; Because of it time complexity is improved

significantly.

Another important contribution in the system is to improve the number of test cases to test each and every minute functionality;

while doing so redundancy in test cases is removed to remove unnecessary functionality testing.

ACKNOWLEDEGMENT

I would prefer to give thanks the researchers likewise publishers for creating their resources available. I’m conjointly grateful to

guide, reviewer for their valuable suggestions and also thank the college authorities for providing the required infrastructure and

support.

www.ijcrt.org © 2017 IJCRT | Volume 5, Issue 4 December 2017 | ISSN: 2320-2882

IJCRT1704472 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 3545

REFERENCES

[1] AritraBandyopadhyay, Sudipto Ghosh, “Test Input Generation using UML Sequence and State Machines Models”

[2] VikasPanthi, Durga Prasad Mohapatra, “Automatic Test Case Generation using Sequence Diagram”, International Journal of Applied

Information Systems (IJAIS) – ISSN : 2249-0868 Foundation of Computer Science FCS, New York, USA Volume 2– No.4, May 2012 –

www.ijais.org

[3] MdAzaharuddin Ali et.al. “Test Case Generation using UML State Diagram and OCL Expression”, International Journal of Computer

Applications (0975 – 8887) Volume 95– No. 12, June 2014

[4] S. ShanmugaPriya et.al, “ Test Path Generation Using UML Sequence Diagram”, Volume 3, Issue 4, April 2013 ISSN: 2277 128X

International Journal of Advanced Research in Computer Science and Software Engineering

[5] Ching-Seh Wu , Chi-Hsin Huang," The Web Services Composition Testing Based onExtended Finite State Machine and UML Model",

2013 Fifth International Conference on service Science and Innovation

[6] M. Benjamin, D. Geist, A. Hartman, Y. Wolfsthal, G. Mas and R. Smeets, "A study in coverage-driven test generation", In Proc. of the 36

th Conference on Design Automation Conference, pp. 970-975, 1999.

[7] M. Born, I. Schieferdecker, H.-G. Gross, and P. Santos. “Model-Driven Development and Testing – A Case Study”. In Proc. of the 1st

European Workshop on Model Driven Architecture with Emphasis on Industrial Application, pp. 97-104, 2004

[8] F. Bouquet, C. Grandpierre, B. Legeard, and F. Peureux, ”A Test Generation Solution to Automate Software Testing”, In Proc. of the 3rd

international workshop on Automation of software test, pp. 45-48, 2008.

[9] F. Bouquet, C. Grandpierre, B. Legeard, F. Peureux, N. Vacelet, and M. Utting, “A subset of precise UML for Model-based Testing”, In

Proc. of the 3rd International Workshop Advances in Model Based Testing (AMOST), pp. 95-104, 2007.

[10] Q. Farooq, M. Z. Z. Iqbal, Z. I. Malik and A. Nadeem, "An approach for selective state machine based regression testing", In Proc. of 3rd

International Workshop Advances in Model Based Testing (AMOST), pp. 44-52, 2007.

[11] C. Crichton, A. Cavarra, and J. Davies, “Using UML for Automatic Test Generation”, In Proc. of the Automation of Software Testing,

2007.

[12] S. R. Ganov, C. Killmar, S. Khurshid, and D. E. Perry. “Test Generation for Graphical User Interfaces Based on Symbolic Execution”. In

Proc. Proc. of the 3rd International Workshop on Automation of Software Test, pp. 33-40, 2008.

[13] H. Garavel, F. Lang, R. Mateescu, and W. Serwe, "CADP 2006: A Toolbox for the Construction and Analysis of Distributed Processes",

In Proc. of the 19th International Conference on Computer Aided Verification, pp. 158-163, 2007.

[14] J. R. Calame, “Specification-based Test Generation with TGV”, Technical Report SEN-R0508, Centrum voorWiskundeenInformatica,

2005.

http://www.ijais.org/

