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I. INTRODUCTION 

 

let   denote the class of normalized meromorphic functions f of the form 

   
1

1
( ) n

n

n

f z f z
z





         (1.1)  

defined on the punctured unit disk * : { : 0 | | 1}.z C z      A function f   is meromorphic starlike of order (0 1)    if 

 *( )
,      ( : {0}).

( )

zf z
z

f z


 
      

 
 

The  class of all such functions is denoted by  
*

( ).  Similarly the class of convex functions of order     is defined. Let p  be 

the class of functions f   with 0.nf   The subclass of p  consisting of starlike functions of order   is denoted by  
*

( ).
p



The following class ( )pMR    is related to the class of functions with positive real part : 

2( ) : { : { ( )} ,      (0 1)}.pMR f z f z         

In Definition 1.1 below, we unify these classes by using convolution.  

The Hadamard product or convolution of two functions  f(z) given by (1.1) and 
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1
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n

g z g z
z





         (1.2) 

is defined by 

   
1

1
( * )( ) .n

n n

n
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Definition 1.1. Let 0 1   and pf   be given by (1.1) and   pg z   be given by (1.2) and 

1

1
( ) .n
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n

h z h z
z





   

Let ,n nh g  be real and  

[ (1 2 ){ (1 ) }] 0 [ { (1 ) ]n n n n n ng g h g h g              . 
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The class ( , , , )Mp g h   is defined by  

( * )( )
( , , , )   .

( * )( ) (1 )( * )( )p

f g z
Mp g h f Re

f g z f h z
  

 

   
    

    
  

Of course, one can consider a more general class of functions satisfying the subordination: 

( * )( )
( )      ( )

( * )( ) (1 )( * )( )

f g z
h z z

f g z f h z 

 
 

  
 . 

By specialzing the parameters in the class ( , , , )Mp g h   , we obtain the following known subclassses studied earlier by various 

researchers. 

1. ( , , ,0) ( , , )Mp g h Mp g h   studied by Kumar et al. [1]. 

2. 
*

2

1 1
, , ,0 ( )

(1 ) (1 ) p

z
Mp

z z z z
 

 
  

  
  studied by Ravichardran [4]. 

3. 
*

2

1 1
, , ,0 ( )

(1 ) (1 ) p

z
Mp

z z z z
 

 
  

  
 studied by Ravichardran [4]. 

In the present paper, motivating with the above mentioned work and work of ([2], [3], [5])coefficient inequalities, growth and 

distortion inequalities, convolution, convex combination, integral operator for functions of the class ( , , , )Mp g h   . 

2. Coefficients Inequalities    

First, we give a necessary and sufficient condition for the function f  to be the class ( , , , )Mp g h   . 

Theorem 2.1. Let pf   be given by (1.1). Then ( , , , )f Mp g h    if and only if 

1

[ { (1 ) } ] 1 .n n n n

n

g h g f   




      

Proof. If ( , , , )f Mp g h   , then 
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By letting 1z  , we have 
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1 (1 ) 1
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. 

This show that(2.1) 

Conversely, assume that (2.1) holds.  Since    w   ,  

if and only if | 1 | | 1 2 |w w     , it is sufficient to show that 

( * )( ) [ ( * )( ) (1 )( * )( )]

( * )( ) (1 2 )[ ( * )( ) (1 )( * )( )]

f g z f g z f h z
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1 . 

Thus we have ( , , , )f Mp g h   . 

If we put 0   in Theorem 2.1 then we obtain the following result of Kumar  et al. [1]. 

Corollary 2.2. Let pf   be given by (1.1). The ( , , )f Mp g h  , if and only if 
1

( ) 1 .n n n

n

h g f 




    

Theorem 2.3. If ( , , , )f Mp g h   . Then  
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(1 )
,    1,2,3

[ { (1 ) } ]
n

n n n

f n
g h g



  


 

  
,… 

The result is sharp for the function ( )nF z  given by  

1 (1 )
( ) ,    1,2,3,...
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Proof. If ( , , , )f Mp g h   , then we have for each n, 

1

[ { (1 ) } ] [ { (1 ) } ] 1 .n n n n n n n n

n
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Therefore we have 

1
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1 1
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satisfies the condition of Theorem 2.1, ( ) ( , , , )nF z Mp g h    and the inequality is attained for 

this function. 

Theorem 2.4. Let 
1 1 1{ (1 ) } [ { (1 ) }n ng h g g h           , if ( , , , )f Mp g h   . Then  

1 1 1 1 1 1

1 (1 ) 1 (1 )
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The result is sharp for 

1 1 1
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( ) .

[ { (1 ) } ]

z
f z

z g h g



  


 

  
        (2.2) 

Proof. Since 
1

1
( ) n

n

n

f z f z
z





  we have 
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Using this, we have 

1 1 1

1 (1 )
| ( ) | .

[ { (1 ) } ]

r
f z

r g h g



  


 

  
 

Similarly 

1 1 1

1 (1 )
| ( ) | .

[ { (1 ) } ]

r
f z

r g h g



  


 

  
 

The result is sharp for  
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Similarly we have the following: 

Theorem 2.5. Let  

1 1 1
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If ( , , , )f Mp g h   , then 
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The result is sharp for the function given by (2.2). 

3. Closure Theorems 

Let the functions ( )kF z be given by 

,

1

1
( ) ( ) ,       1,2,3,.,n

k n k

n

F z f z z k m
z





   .      (3.1) 
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We shall prove the following closure theorems for the class ( , , , )Mp g h   . 

Theorem 3.1. Let the function ( )kF z  defined by (3.1) be in the class ( , , , )Mp g h    for every k=1,2,3,...m. Then the function f(z) 

defined by 

1

1
( )       ( 0)n

n n

n

f z a z a
z





    

belongs to the class ( , , , )Mp g h   , where ,

1

1
   ( 1,2,3,....).n n k

k

a f n
m





   

Proof. Since ( ) ( , , , )nF z Mp g h   , it follows from Theorem 2.1 that 

,

1

[ { (1 ) } ] 1n n n n k

n

g h g f   




     for every k=1,2,...,m. Hence 

,

1 1 1

1
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,

1 1

1
[ { (1 ) } ]

m

n n n n k

k n

g h g f
m

  


 

 
    

 
   

1   . 

By Theorem 2.1, it follows that ( ) ( , , , )f z Mp g h   . 

Theorem 3.2.  The class ( , , , )Mp g h    is closed under convex linear combination. 

Proof. Let the function ( )kF z  given by (3.1) be in the class ( , , , )Mp g h   , then it is enough to show that the function 

1 2( ) ( ) (1 ) ( ),      (0 1)H z F z F z       is also the class ( , , , )Mp g h   . Since for 0 1   ,1 ,2

1

1
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n

H z f f z
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we observe that 

,1 ,2
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,1 ,2

1 1

[ { (1 ) } ] (1 ) [ { (1 ) } ]n n n n n n n n

n k

g h g f g h g f       
 

 

           

1   . 

By Theorem 2.1, we have ( ) ( , , , ).H z Mp g h    

Theorem 3.3. Let  
0

1
( )F z

z
  and 

1 1
( ) ,    for n=1,2,3,....

[ { (1 ) } ]
n n

n n n

F z
z g h g z



  


 

  
 

Then ( ) ( , , , )f z Mp g h   , if and only if f(z) can be expressed in the form  
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01 1.    

By Theorem 2.1, we have ( ) ( , , , )f z Mp g h   . 

Conversely, let ( ) ( , , , )f z Mp g h   . From Theorem 2.3 we have 

1
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Then 
1

( ) ( ).n n

n

f z F z




  

4. Integral Operators 

In this section, we consider integral transform of functions in the class ( , , , )Mp g h   . 

Theorem 4.1. Let the function f(z) given by (1.1) be in ( , , , )Mp g h   . Then the integral operator 
1

0
( ) ( )       (0 1, 0 )cF z c u f uz du u c       

is in ( , , , )Mp g h   , where 
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1 1 1 1

1 1 1 1

( 2)[ { (1 ) } ] (1 )
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The result is sharp for the function 
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Proof. Let ( ) ( , , , ).f z Mp g h    Then 
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It is sufficient to show that 
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 .         (4.1) 

Since ( ) ( , , , )f z Mp g h   , we have 
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Note that (4.1) satisfied if 
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Re writing the inequality, we have 
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A computation show that  
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>0 

for all n. This means that F(n) is increasing and ( ) (1).F n F  Using this, the result follows. 

If we put 0   in Theorem 4.1 then we obtain the following result of Kumar et al. [1]. 

Corollary 4.2. Let the function f(z) defined by (1.1) be in * ( ).p   Then the integral operator  

1

0
( ) ( ) ,      (0, 1,  0 )cF z c u f uz du u c        

is in * ( ).p  , where 
1

.
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 The result is sharp for the function 
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Also, we have the following. 

Corollary 4.3. Let the function f(z) defined by (1.1) be in ( ).pMR   Then the integral operator  
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Then F(z) is in ( , , , )Mp g h   for | | ( , )z r   , where 
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The results is sharp the function 
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A computation shows that this is satisfied if 
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Since ( , , , )f Mp g h   , by Theorem 2.1, we have 
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The equation (4.2) is satisfies if 
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Solving for |z|, we get the result. 
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