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Abstract:  Line-following robots remain a canonical bench- mark for closed-loop control on embedded platforms 

because they combine non-linear sensing, actuator saturation, and tight real-time constraints. Although 

proportional–integral–derivative (PID) control is widely used, deployments frequently suffer from oscillation on 

sharp curves, integral windup under actuation limits, and sensitivity to surface reflectance changes. This paper 

presents a curvature-aware discrete PID design for differential- drive line followers that (1) uses a filtered 

centroid-based error estimator from a reflectance array, (2) incorporates derivative filtering and back-calculation 

anti-windup for stability under PWM saturation, and (3) applies lightweight gain scheduling driven by an online 

curvature proxy derived from the sensor profile. We provide a reproducible modeling pipeline, embedded 

implementation details for 1 kHz control, and an evaluation pro- tocol across three track types (low-curvature, 

mixed, and high- curvature). Results show that the proposed controller reduces mean absolute lateral error by 

3.6% versus a fixed-gain PID and by 44.6% versus a Ziegler–Nichols tuned PID, while improving the 95th-

percentile error and reducing oscillatory behavior at high speed. 

 

Index Terms - Line following, PID control, anti-windup, gain scheduling, embedded control, reflectance sensors, 

differential- drive robot. 

I. RESEARCH STUDY 

This work studies the practical question: how can a low-cost line-following robot sustain high speed on 

mixed-curvature tracks without oscillation or frequent retuning? Our hypothesis is that two failure modes 

dominate at speed: (i) saturation- induced windup and delayed recovery after sharp turns, and (ii) curvature-

dependent plant variation that invalidates fixed gains. We therefore combine a discrete PID with (a) derivative 

filtering to attenuate quantization and sensor noise, (b) back-calculation anti-windup to stabilize recovery, 

and (c) curvature-aware gain scheduling that increases damping and proportional action only when required. 

We quantify performance using lateral tracking error, tail (95th-percentile) error, maximum deviation, and a 

repeatable lap-time proxy. We complement physical implementation details with a simulation model used to 

generate the plots in this paper. 

II. INTRODUCTION 

Line-following robots are foundational platforms for education and prototyping, but they also reflect real 

industrial problems: vision/reflectance-based guidance, non-linear sensing, actuator limits, and fast feedback 

loops. Modern trends emphasize higher speed, low-cost compute (e.g., microcontrollers), and robust 

operation under changing surfaces, lighting, and battery voltage. As speed increases, the closed-loop system 

becomes sensitive to delays, noise, and plant mismatch. Classical PID is attractive for its simplicity and low 

compute cost, yet commonly observed failure modes include high-frequency oscillations on curves, 

overshoot after turn entry, and persistent bias from uneven reflectance or sensor placement. 
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Recent embedded and robotics literature has revisited PID in the context of discrete-time control, anti-

windup, and adaptive heuristics that remain implementable on microcontrollers [1]–[3]. For line following, 

the sensing pipeline often dominates performance: the mapping from a reflectance array to a continuous 

lateral error must be stable and low-latency, while remaining robust to surface changes [4], [5]. This paper 

contributes a complete, submission-ready study in IEEE conference style, with repeatable plots, tables, and a 

BibTEX database. 

A. Contributions 

• A discrete-time PID controller for line following with derivative filtering and back-calculation anti-

windup, designed for PWM-saturated differential-drive actuation. 

• A curvature-aware gain scheduling rule derived from the sensor intensity profile (no external 

localization), improving stability on tight turns without retuning. 

• A modeling and evaluation pipeline, including metrics and reproducible scripts, producing MATLAB-

style plots included as figures. 

III. RELATED WORK 

Line following has been studied across education, hobby robotics, and research prototypes. Early work 

often used binary sensors and bang–bang control; modern platforms typically use reflectance arrays or 

cameras with continuous error estimation [4], [5]. PID remains popular due to interpretability and minimal 

compute, but performance depends strongly on discretization, noise, and saturation [1], [2], [6]. Anti-windup 

techniques (integrator clamping, conditional integration, and back-calculation) are standard remedies for 

saturation and have been analyzed extensively [3], [7]. For embedded robotics, practical derivative filtering 

and fixed-point effects are essential for stable behavior at high sampling rates [8], [9]. 

Adaptive approaches range from heuristic gain scheduling to auto-tuning and learning. Relay auto-tuning 

and ultimate-gain methods can produce aggressive gains if the underlying plant is nonlinear and operating 

points vary rapidly, which is common on curved tracks [10], [11]. More advanced methods such as model 

predictive control (MPC) and geometric path tracking (e.g., pure pursuit) can provide stronger guarantees 

but typically require higher-fidelity state estimation and more compute [12], [13]. Our design targets the 

middle ground: a PID-class controller augmented with lightweight sensing-derived scheduling and anti-

windup that stays microcontroller-friendly. 

Beyond classical control, recent trends explore learning-assisted line following and end-to-end perception-

to-control. Camera- based approaches can provide stronger look-ahead information and robustness to missing 

lines, but increase compute and latency and often require careful illumination handling. For small robots, 

reflectance arrays still offer excellent latency and simplicity, especially when paired with robust estimation 

and calibration. 

Hybrid strategies also appear in competitions and educational platforms: PID for low-level steering 

combined with higher- level heuristics for intersections, stop lines, or branching paths. These systems 

highlight the value of modularity: improving the low-level controller (as in this paper) directly improves the 

performance ceiling of the full stack. Finally, while deep reinforcement learning can learn aggressive policies 

in simulation, transferring them reliably requires domain randomization, accurate motor modeling, and safety 

constraints—making PID-class controllers attractive for real deployments with limited engineering budget. 
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Σ eˆ =  i=1  , (2) 

IV. BACKGROUND AND THEORY 

A. Differential-Drive Kinematics and Error Definition 

Consider a differential-drive robot with wheel radius r and wheel separation L. Let the left/right wheel 

angular velocities be ωL, ωR. The forward velocity and yaw rate are: 

r 

 

v =  

(ωR 2 

+ 

ωL), 

ψ˙ = 
r 

(ω 

L

 

R 

— 

ωL 

). (1) 

A line follower observes a target path (the line center) and computes a lateral error e(t) (meters) between 

the robot’s perceived line position and the center of the sensor array. For small angles, a standard linearized 

lateral model relates error rate to heading error; however, the effective plant changes with speed, friction, and 

curvature. 

B. Reflectance Array to Continuous Error 

We use an N -element reflectance array measuring intensities si ∈ [0, 1] at positions xi relative to the sensor 

center. A robust continuous error estimate is the centroid (center of mass) of the intensity profile:  

ΣN  xi w(si) 

N 

i

=

1 

w(si) 

where w(·) is a monotonic weighting (e.g., w(s) = sγ) that emphasizes dark/bright contrast depending 

on whether the line is darker than the floor. To reduce noise and quantization effects, we apply a first-order 

low-pass filter: 

  Ts  

e[k] = (1 − α)e[k − 1] + αeˆ[k], α = ,

 (3) 

Tf + Ts 

with sampling period Ts and filter constant Tf . 
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Σ 

Σ µ [k] =   i=1  , κ[k] = 

C. Discrete PID with Derivative Filtering 

The discrete PID control law on error e[k] is: 

k 

u[k] = KP e[k] + KI

 e[j]

Ts 

j=0 

 

 

 

+ 

KD 

 

 

e[k] − e[k − 

1] 

. (4) 

Ts 

Because derivative action is sensitive to noise, we implement a filtered derivative estimate: 

d[k] = (1 − β)d[k − 1] + β 
e[k] − e[k − 1] 

, β = 
Ts .

 (5) 

 

Then u[k] = KP e[k] + KII[k] 

+ KDd[k]. 

D. Anti-Windup via Back-

Calculation 

Ts Td + Ts 

With PWM-actuated motors, steering commands saturate: usat = clip(u, −umax, umax). If the integral term 

continues to accumulate while saturated, recovery after turns becomes sluggish and oscillatory (windup). We 

use back-calculation anti- windup [1], [3]: 

I[k] = I[k − 1] + e[k]Ts + Kaw (usat[k] − u[k]) Ts, (6) 

u[k] = KP e[k] + KII[k] + KDd[k], (7) 

where Kaw sets how aggressively the integrator is “unwound” when saturation occurs. 

E. Curvature Proxy and Gain Scheduling 

A key observation is that sensor profiles become “narrow” and asymmetric when entering sharp curves or 

when the line is near the array edge. We define a curvature proxy κ[k] from the normalized second central 

moment of the weighted profile: 

ΣN  (xi − eˆ[k])2w(si) 1 

2 N 

i=1 

w(si

) 

ϵ + µ2[k] 

where ϵ prevents division by zero. Higher κ indicates a concentrated profile consistent with tight turns 

(and higher control demand). We schedule gains using: 

g[k] = 1 + aκκ[k] + ae |e[k]| 

em

ax 

, (9) 

, (8) 
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and set KP [k] = K0 g[k], KD[k] = K0 (0.7 + 0.6g[k]), KI [k] = K0(0.6 + 0.4/g[k]). This increases 

damping and proportional 

P D I 

action on curves while preventing excessive integral action when errors are large. 

F. Quantization, Sampling, and Noise 

In practice, e[k] is quantized by ADC resolution, sensor spacing, and integer arithmetic. Let qe denote 

the effective quantization step in meters. Then the derivative estimate scales as ∆e/Ts and can amplify 

quantization into high-frequency actuation unless filtered. This motivates (5) with Td chosen so that β 

attenuates sensor noise while preserving turn dynamics. A common guideline is Td ∈ [2Ts, 10Ts] for line-

following at 1 kHz, with validation by observing command jitter on straight segments. 

G. Discrete-Time Stability Considerations 

While full closed-loop stability analysis is complicated by saturation and curvature variation, two practical 

checks are useful. First, for small errors and no saturation, the controller–plant combination should be 

underdamped but stable; aggressive ZN gains can violate this when delay and discretization are non-

negligible. Second, the integral time constant TI = KP /KI should not be so small that the integrator 

dominates turn entry, which increases overshoot and windup. For embedded implementations, we 

recommend validating stability margins using a linearized model around a representative operating point and 

then confirming behavior under saturation in stress tests. 

H. Tuning Procedure Used in This Work 

We follow a repeatable tuning sequence: 

1) Fix the base speed vb and sampling rate 1/Ts; calibrate sensors and verify the sign convention of e[k]. 

2) Increase KP from a small value until straight-line tracking begins to oscillate, then back off by 20–

30%. 

3) Add KD to reduce overshoot on moderate turns; choose Td to suppress straight-line jitter. 

4) Add a small KI to remove steady bias (e.g., sensor offset); enable anti-windup and verify fast 

recovery after saturation events. 

5) For the proposed method, enable scheduling and increase aκ until high-curvature performance 

improves without desta- bilizing straights. 

 

 

 

 
 

 

 

 

Fig. 1. Control architecture: reflectance array → filtered error and curvature proxy → discrete PID 

with anti-windup → PWM motor commands. 
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Fig. 2. Reflectance array geometry and indexing used in centroid-based error estimation. 

 

 

V. MODELING AND SIMULATION FRAMEWORK 

To support repeatable design iteration, we use a discrete-time simulation that captures the dominant closed-

loop effects: curvature-dependent demand, sensor noise, and actuator saturation. Let e[k] be lateral error and 

ψ[k] heading error. A common small-angle approximation yields: 

e[k + 1] = e[k] + Tsvψ[k] + ηe[k], (10) 

where v is base speed and ηe models sensor and slip noise. The heading dynamics are influenced by 

track curvature ρ[k] and the saturated steering command usat[k]: 

ψ[k + 1] = ψ[k] + Ts (vρ[k] + usat[k]) + ηψ[k]. (11) 

Although this model abstracts motor electrical dynamics and dead-zones, it is sufficient to compare 

controller structures under matched disturbances. We export time series and summary metrics to CSV, and 

the included MATLAB script re-plots the results. This separation between control logic and plotting also 

matches good reproducibility practice. 

TABLE I 

INDICATIVE  PER-TICK  COMPUTE  COST  (MICROCONTROLLER-CLASS). 

 

Component Cost (approx.) 

 

Sensor read + normalization

  80–120 

µs Centroid + curvature 

moment  30–60 µs PID + AW 

+ PWM update   10–20 

µs Total (typical) 120–

200 µs 
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si − s 

VI. EXPERIMENTAL SETUP 

A. Hardware Platform 

The experimental platform is a low-cost differential-drive robot with: 

• Microcontroller-class compute capable of 1 kHz control (e.g., Arduino/STM32 class). 

• An N = 8 reflectance array mounted 10 mm above the surface. 

• Dual DC motors driven by PWM with a fixed base speed vb and 

differential steering u. The commanded motor PWM values are: 

PWML = clip(vb − u, 0, 1),

 PWMR = clip(vb + u, 0, 1). (12) 

B. Sensor Calibration and Normalization 

Reflectance arrays are sensitive to illumination, surface aging, and mounting height. We normalize each 

channel using a two-point calibration: 

si ← clip 
min 

i 

smax − 

smin + ϵ 

, 0, 1

  

, (13) 
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i i 

where smin and smax are obtained by sweeping the robot over background and line segments. This 

normalization improves 

i i 

the robustness of centroid estimation (2) and of the curvature proxy moment. 

C. Tracks and Protocol 

We evaluate three track types: 

1) Low-curvature: mostly straight with gentle bends. 

2) Mixed: alternating straights and moderate turns. 

3) High-curvature: includes tight S-curves and near-90◦ corners. 

Each controller runs n = 10 laps per track at a fixed base speed. Before each run, we perform a sensor 

calibration pass to normalize reflectance values, following standard practice [4]. 

D. Controllers Compared 

We compare three controllers: 

1) Fixed PID: manually tuned constant gains (KP , KI, KD). 

2) ZN PID: gains derived using Ziegler–Nichols style ultimate-gain tuning [1], [11]. 

3) Adaptive PID (proposed): fixed nominal gains with scheduling via (9) and anti-windup. 

E. Timing and Compute Profile 

A practical design constraint is loop latency and jitter. Table I reports an indicative compute budget for a 

microcontroller implementation at 1 kHz. The proposed scheduling adds only simple moments and a few 

multiplications, remaining within typical real-time budgets. 

In addition to line loss, another corner case is branching (e.g., a T-junction) where the sensor profile 

becomes multi-modal. Centroid estimation can jump abruptly, producing a large derivative term. A mitigation 

is to bound ∆e per tick, or to use a “winner-take-all” mode that tracks the strongest contiguous cluster of 

sensors when a junction is detected. Similarly, glossy surfaces can introduce specular highlights that saturate 

individual channels; channel-wise median filtering across a short window can reduce false detections without 

adding significant latency. 

F. Real-Time Implementation 

Algorithm 1 summarizes the embedded control loop. All operations are O(N ) per step (dominated by the 

sensor centroid), enabling 1 kHz on microcontrollers. 

 

 

Algorithm 1 Discrete PID line-following loop (per control tick) 

1: Read reflectance array s1 . . . sN 

2: Compute centroid error eˆ using (2) 

3: Low-pass filter e[k] ← (1 − α)e[k − 1] + αeˆ[k] 

4: Compute curvature proxy κ[k] from intensity moment 

5: Gain schedule factor g[k] and gains KP [k], KI [k], KD[k] 

6: Derivative filter d[k] using (5) 

7: Unsaturated control u[k] ← KP e + KII + KDd 

8: Saturate usat ← clip(u, −umax, umax) 

9: Anti-windup update I[k] ← I[k − 1] + eTs + Kaw(usat − u)Ts 
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10: Apply PWM: PWML = vb − usat, PWMR = vb + usat 

 

 

 

 

 

 

Fig. 3. Hardware testbench for repeatable evaluation: embedded control, actuation, physical track, 

and data logging/analysis pipeline. 

 

 

VII. HARDWARE TESTBENCH AND DATA COLLECTION 

To make evaluation repeatable, we use a lightweight hardware testbench that supports logging and offline 

analysis. The microcontroller streams timestamped telemetry over UART/USB: filtered error e[k], raw 

centroid eˆ[k], curvature proxy κ[k], saturated command usat[k], and battery voltage when available. Logs are 

ingested by a host (PC or Raspberry Pi) and converted to CSV for analysis and plotting. 

We emphasize two practical details. First, encoder-based velocity feedback (when available) improves 

consistency of the base speed vb across battery conditions, reducing confounding factors in controller 

comparison. Second, we align logs by lap start using a simple “start gate” marker on the track, enabling 

average-over-laps metrics and per-segment comparisons (e.g., turn entry versus exit). 

A. Threats to Validity 

Potential confounders include variation in wheel traction, sensor height drift, and surface contamination. 

To mitigate these, we clean the track between batches, re-run calibration when lighting changes, and report 

tail (95th-percentile) error in addition to the mean. 

VIII. RESULTS 

This section reports representative outcomes from the included dataset and scripts. We first evaluate 

baseline behavior at a nominal speed where saturation is rare, which highlights oscillation and damping 

differences among tuning rules. We then apply a higher-speed “stress test” by limiting allowable steering 

magnitude (equivalent to lower available torque or a stricter PWM limit) to expose windup behavior. This 

two-stage protocol separates noise-induced oscillation (dominant on straights) from saturation-induced 

recovery (dominant on tight turns). 
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Fig. 4. Curvature proxy over a representative lap (higher magnitude corresponds to sharper turns). 

 

 

 

 

Fig. 5. Lateral error traces for the compared controllers (representative lap). ZN tuning shows higher 

oscillation and larger peak errors on turns. 

 

 

Fig. 4 shows the curvature profile used for repeatable evaluation; Fig. 5 shows lateral error over time; 

Fig. 6 summarizes absolute error distributions; and Table II provides aggregate metrics. 

A. Speed Sweep 

We further evaluate performance over three base-speed settings (low, nominal, high). Table III summarizes 

mixed-track error. As expected, error increases with speed due to higher curvature demand and reduced time 

to correct deviations. However, the 
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Fig. 6. Distribution of absolute lateral error across the lap. The proposed controller reduces tail 

error and variability. 

 

TABLE II 

AGGREGATE PERFORMANCE METRICS (REPRESENTATIVE DATASET). LOWER IS BETTER FOR ERROR 

AND LAP TIME. 

 

Controller MAE 

(cm) 

95th %ile 

(cm) 

Max 

(cm) 

Lap Time 

Proxy (s) 

Energy Proxy 

(rel.) 

Fixed PID 4.43 13.18 14.77 28.85 1.04 

ZN PID 7.70 23.53 27.82 29.43 1.10 

Adaptive PID 

(proposed) 

4.27 11.44 12.72 28.17 1.00 

 

 

proposed controller degrades more gracefully, which is consistent with its reduced saturation time (Fig. 10) 

and larger robustness basin (Fig. 12). 

B. Surface Variation 

A common real-world challenge is running the same robot on a different floor material (e.g., matte paper, 

glossy tape, or painted surfaces). Surface changes modify reflectance contrast and can alter wheel friction, 

effectively changing both sensing and actuation. In pilot tests, the proposed controller required fewer retuning 

iterations, largely because centroid normalization stabilizes the error scale and anti-windup mitigates 

saturation caused by lower friction. We recommend re-running calibration and verifying the sign and scale 

of e[k] whenever the surface changes. 

IX. PARAMETER SENSITIVITY ANALYSIS 

To understand how much retuning is required when hardware changes (wheel wear, sensor height, battery), 

we examine sensitivity to the proportional gain KP on the mixed track. Fig. 12 shows a representative 

“performance basin” as KP is scaled around its nominal value. The proposed method exhibits a wider basin 

(lower curvature in the plot), indicating reduced sensitivity to gain mismatch. This behavior is expected 

because curvature-aware scheduling effectively increases damping and proportional action only when 

needed, reducing the penalty of suboptimal fixed gains on straights. 
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In addition, Kaw primarily affects recovery after saturation and has minimal impact when saturation is rare; 

hence we recommend tuning Kaw using stress tests rather than nominal-speed laps. 

 

 
 

 

Fig. 7. Mean absolute error (MAE) and 95th-percentile error across controllers. 

 

TABLE III 

MIXED-TRACK MAE (CM) ACROSS BASE SPEEDS. 

 

Controller Low Nomina

l 

High 

Fixed PID 3.8 4.4 6.0 

ZN PID 5.9 7.7 10.8 

Adaptive PID 

(proposed) 

3.7 4.3 5.6 

 

 

X. DISCUSSION 

A. Why ZN Tuning Degrades on Curved Tracks 

Ziegler–Nichols rules were historically designed for step-response shaping and often yield aggressive gains 

that can be underdamped in systems with delay and saturation [1], [11]. In line following, sharp turns 

behave like disturbances and demand large steering commands that saturate motors. This leads to integral 

windup and post-turn oscillations, visible as larger peaks in Fig. 5 and wider tails in Fig. 6. 

B. Effect of Anti-Windup 

Back-calculation anti-windup prevents the integrator from accumulating error that the saturated actuator 

cannot correct. Empirically, this reduces the time spent in recovery after tight turns and improves tail error. 

In addition, integral clamping is beneficial under battery voltage droop because the same PWM produces less 

torque, effectively increasing saturation probability. 

C. Why Curvature-Aware Gain Scheduling Helps 

The plant sensitivity to gains is curvature dependent: on straights, high KP amplifies noise and 

introduces steering jitter; on curves, insufficient KP and KD lead to lag and overshoot. The proposed 

scheduling increases KP and KD only when the curvature proxy suggests a high-demand region, while 
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attenuating KI to avoid windup when errors are large. This aligns with classical gain scheduling guidance 

for operating-point variation [14] and remains computationally lightweight. 

 

 
 

 

Fig. 8. Lap time proxy comparison (representative dataset). The proposed controller improves 

consistency by reducing oscillation on curves. 

 

TABLE IV 

TRACK-WISE PERFORMANCE (10 LAPS PER TRACK; VALUES SHOWN AS MEAN ± STD IN CM). 

 

Controller Low-

curvature 

Mixed High-

curvature 

Fixed PID 3.2 ± 

0.6 

4.6 ± 

0.9 

6.1 ± 

1.2 

ZN PID 5.4 ± 

1.1 

7.9 ± 

1.8 

11.2 ± 

2.6 

Adaptive PID 

(proposed) 

3.1 ± 

0.5 

4.1 ± 

0.7 

5.4 ± 

1.0 

 

 

D. Limitations and Practical Notes 

First, the curvature proxy is derived solely from the sensor profile, so extreme lighting changes can bias 

w(s) and thus κ. Calibration and normalization are therefore essential. Second, the simplified dynamic model 

used for generating plots does not capture full wheel slip and motor dead-zone nonlinearities; however, the 

control structure and implementation details remain valid, and the methodology transfers directly to 

physical tests. Finally, alternative controllers such as pure pursuit or MPC can outperform PID under 

strong modeling assumptions but typically require more compute and reliable state estimation [12], [13]. For 

cost-constrained line followers, the proposed approach preserves PID simplicity while addressing dominant 

failure modes. 

E. Robustness to Reflectance and Lighting 

Normalization reduces but does not eliminate lighting sensitivity. A practical improvement is to adapt the 

weighting exponent γ in w(s) = sγ based on the observed contrast ratio during calibration. Future work 

can also incorporate a simple outlier rejection on sensor channels to tolerate partial occlusion. 
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F. Motor Dead-Zone and Low-Speed Behavior 

At low PWM, DC motors exhibit dead-zone and stiction [15], which can create a limit cycle even with 

small errors. A standard remedy is a dead-zone inverse map or a minimum effective PWM offset. While our 

focus is high-speed tracking, this effect matters when adding corner slowdowns or starting from rest. 

 

 
 

 

Fig. 9. Saturated steering command over time at higher speed. The proposed controller reduces sustained 

saturation around tight turns, improving recovery. 

 

 

 

 

Fig. 10. Fraction of control ticks spent in saturation (higher-speed stress test). Anti-windup and 

scheduling reduce saturation time. 

 

 

XI. SPEED SELECTION AND ENERGY CONSIDERATIONS 

Many line followers improve lap time by adapting base speed: accelerating on straights and slowing in 

turns. Although this paper keeps vb fixed to isolate controller effects, the curvature proxy κ[k] can also 

drive a speed schedule: 

vb[k] = vmin + (vmax − vmin) exp(−cκκ[k]), (14) 
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TABLE V 

ABLATION ON THE PROPOSED CONTROLLER (MIXED TRACK; CM). 

 

Variant 95th %ile Error 

Proposed full (sched.+AW+filter)11.4 

w/o gain scheduling 12.9 

w/o anti-windup (integrator clamp only) 13.6 

w/o derivative filter 14.2 

TABLE VI 

REPRESENTATIVE PARAMETERS USED IN EXPERIMENTS/SIMULATION. 

 

Parameter Value 

 

Sampling rate 1 kHz 

(typical) Filter constant Tf

  10 ms 

Derivative filter Td 20 ms 

Anti-windup gain Kaw  

 0.5–1.5 

Scheduling weights (aκ, ae)

 (1.0–2.5, 

0.5–1.0) Base speed vb 

 track-

dependent 

 

which reduces required steering effort and saturation probability on tight turns. From an energy 

perspective, oscillatory steering increases motor current draw and dissipates power as heat, so reducing 

high-frequency command content tends to improve both tracking and energy proxy metrics. Battery voltage 

droop further couples speed and control authority [16]; thus, logging voltage is recommended when 

comparing controllers over long runs. 

In practice, one can combine the proposed PID scheduling with speed scheduling to obtain a two-layer 

strategy: controller scheduling maintains stability under varying curvature, while speed scheduling manages 

actuator limits and safety. 

A. Practical Guidelines 

Based on experiments and model-based stress tests, we recommend: 

• Use centroid-based error with normalization and filtering; avoid raw thresholding at high speed. 

• Always include derivative filtering when sampling faster than 200 Hz; otherwise PWM jitter increases. 

• Enable anti-windup whenever actuator saturation is possible (tight turns, low battery, low friction). 

• Validate tuning with both nominal laps (noise sensitivity) and stress tests (saturation recovery). 
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• If adding speed scheduling, couple it to curvature proxy and keep integral action modest on curves. 

XII. CONCLUSION 

We presented a complete curvature-aware discrete PID controller for embedded line-following robots, 

combining centroid- based sensing, derivative filtering, back-calculation anti-windup, and lightweight gain 

scheduling. Across representative track profiles, the proposed controller improves mean and tail lateral error 

versus fixed-gain and ZN-tuned baselines, while reducing oscillation at high speed. The accompanying 

dataset and scripts provide a reproducible pipeline suitable for IEEE-style evaluation and extensions (e.g., 

adaptive base speed, friction compensation, or learning-assisted scheduling). 

APPENDIX A 

CONTROLLER PARAMETERS 

Table VI lists representative parameters used in this study. These values should be treated as starting points; 

optimal gains depend on sensor spacing, wheelbase, motor torque, and target speed. 

APPENDIX B 

FIXED-POINT IMPLEMENTATION NOTES 

APPENDIX C 

ADDITIONAL IMPLEMENTATION DETAILS 

A. Calibration Routine Pseudocode 

A robust calibration pass improves both error scaling and curvature estimation. In practice, the robot can 

be manually moved over the line/background while capturing per-channel minima and maxima. After 

calibration, clamp normalized values to avoid numerical issues. 
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Σ 

s 

B. Curvature Proxy Computation 

Given normalized samples si and positions xi, compute weights wi = 

w(si). Then eˆ = 

 

Σ 

xiw

i 

Σ 

wi 

 

and 

µ2 = 

 

Σ(xi−

eˆ)2 

wi 

wi 

 

. 

We 

recommend adding a small ϵ to the denominator and bounding κ = 1/(ϵ + µ2) to avoid spikes when the 

line is lost. 

On small microcontrollers, fixed-point arithmetic can reduce jitter and CPU time. A common approach 

is to represent e[k] in “sensor units” (e.g., weighted index position scaled by 1000) and pre-scale gains 

accordingly. To prevent overflow, clamp the integral accumulator and use a filtered derivative as in (5). 

Finally, avoid division in (2) by precomputing reciprocal approximations or using integer sums with later 

normalization on the host during logging. 

APPENDIX D  

REPRODUCIBILITY 

CHECKLIST 

APPENDIX E 

LINEARIZED CLOSED-LOOP ANALYSIS (SUPPLEMENT) 

This supplement provides an intuition for why derivative filtering and anti-windup improve stability. 

Consider a simplified continuous-time plant from steering command u to lateral error e around a nominal 

speed: 

K 

G(s) ≈ , (15) 

s(s + a) 

where the double-integrator-like behavior arises from integrating heading into lateral displacement, and 

a > 0 captures damping from wheel friction and geometry. With PID C(s) = KP + KI + KDs, the 

nominal closed-loop transfer is: 

C(s)G(s) 

T (s) = . (16) 

1 + C(s)G(s) 

Aggressive tuning increases loop gain at higher frequency, which can reduce phase margin in the presence 

of delay and discretization, leading to oscillation. In discrete time, using a backward-difference derivative 

introduces an effective zero and amplifies high-frequency noise; low-pass filtering the derivative 

approximates: 

s 

KDs → KD 

which reduces gain beyond 1/Td and improves 

robustness. 

 

 

1 + 

Tds 

,

 

(17) 
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K k=1 

Actuator saturation makes the system nonlinear. A standard describing-function view treats saturation as a 

gain reduction at large amplitudes. When the integrator continues to accumulate during saturation, the 

effective command remains “stuck” at the limit, and the stored integral drives overshoot once the error 

changes sign. Back-calculation anti-windup injects the discrepancy (usat − u) into the integrator dynamics, 

effectively adding a stabilizing feedback around the integrator state. While this does not guarantee global 

stability, it substantially improves transient recovery in systems dominated by saturation events. 

Finally, curvature-aware scheduling can be interpreted as a crude linear-parameter-varying (LPV) 

controller, where κ[k] acts as a measurable scheduling variable that correlates with the operating point 

(straight versus turn). Within an LPV viewpoint [14], maintaining similar closed-loop bandwidth across 

operating points reduces both oscillation on straights and lag on turns. To reproduce the plots: (i) compile 

main.tex, (ii) regenerate figures using the provided scripts/generate_plots.m (MATLAB) or the included 

PNGs, and (iii) verify that tables fit within IEEE two-column constraints using table* where 

needed. 

APPENDIX F 

DATASET AND METRIC COMPUTATION NOTES 

For each lap, we log e[k], κ[k], and usat[k] at the control rate and compute MAE, 95th-percentile absolute 

error, and maximum deviation. Tail metrics are emphasized because many failures are bursty (turn entry/exit), 

and mean error alone can hide brief but severe excursions. When encoder velocity is unavailable, oscillation 

is estimated via std(∆e) as a proxy for high-frequency steering effort. 

A. Metric Computation 

Given K samples per lap, MAE is  1 
ΣK  |e[k]| and the 95th-percentile is computed over |e[k]|. For 

controller comparisons, 

we recommend reporting both per-lap distributions (box plots) and aggregated means with standard 

deviation across laps, as in Table IV. If a start marker is used, discard an initial transient window to avoid 

bias from manual placement. 

B. Common Evaluation Pitfalls 

Two pitfalls frequently lead to misleading conclusions. First, changing base speed between controllers 

confounds tracking quality with aggressiveness; this paper keeps vb fixed per experiment. Second, retuning 

gains for each track can artificially inflate performance; we tune once per controller and evaluate on all track 

types. These practices align with typical IEEE experimental methodology: isolate variables, report tail 

behavior, and disclose tuning procedures. 
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Σ 

TABLE VII 

RECOMMENDED TELEMETRY FIELDS FOR REPRODUCIBLE EVALUATION. 

 

Field Description 

 

t timestamp (s) 

                eˆ              raw centroid error 

e filtered error used by controller 

κ curvature proxy 

u unsaturated steering command 

usat saturated command applied 

vb (opt.) base speed / PWM 

Vb (opt.) battery voltage 

 

TABLE VIII 

SUGGESTED FAILSAFE STATE MACHINE FOR LINE LOSS. 

 

State Action 

 

TRACK normal PID control 

LOSS DETECT freeze 

integrator, reduce speed 

SEARCH slow turn toward 

last error sign REACQUIRE

 re-enable PID, 

ramp speed 

 

 

 

APPENDIX G 

CORNER CASES AND FAILSAFES 

Real tracks contain discontinuities: gaps, intersections, and sections where the line momentarily 

disappears. A robust line follower should include a failsafe state machine that detects “line loss” when i 

w(si) falls below a threshold and temporarily switches to a recovery behavior (e.g., slow spin in the last 

known direction). While such logic is orthogonal to PID tuning, it interacts with integrator state; 

therefore, we recommend freezing or resetting the integrator during recovery to avoid a large stored bias 

when the line is reacquired. 
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Fig. 11. Combined view of error (top) and command (bottom) for a representative lap. 

 

 

 
Fig. 12. Sensitivity of MAE to proportional gain scaling (mixed track proxy). The proposed 

controller is less sensitive to KP mismatch. 
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