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ABSTRACT: 

 

Dimensional Analysis can make a contribution to model formation when some of the measurements in 

the problem are of physical factors. The analysis constructs the set of independent dimensionless factors 

that should be used as the major variables. The Dimensional Analysis technique has been used in various 

applications in most experimentally based areas of physical sciences and engineering. The basic theme 

of Dimensional Analysis is the Buckingham – л Theorem. The Dimensional Analysis actually follows 

the fundamental units of relevant quantities. The number of dimensional product is the difference 

between number of variables and the rank of matrix. 

 

Dimensional analysis is most useful when a mathematical model is not known. The first and crucial step 

of dimensional analysis is to define a suitably idealized representation of a phenomenon by listing the 

relevant variables, called the physical model. The second step is to learn the consequences of the 

physical model and the general principle that complete equations are independent of the choice of units. 

The calculation that follows yields a basis set of non-dimensional variables. The final step is to interpret 

the non-dimensional basis set in the light of observations or existing theory, and if necessary to modify 

the basis set to maximize its utility. 
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1. INTRODUCTION: 

1.1 AMBAR CHARKHA: 

 

Mahatma Gandhiji believed that Charkha as a tool can make people self-sufficient. Charkha is a unique 

device to spin yarn. Originally, designed as the “Ambar charkha” (meaning "sky wheel"), about 40 years 

ago, had increased the productivity of user spinners and enabled them to earn up to Rs. 50 per day. 

Ambar Charkha designed by Ekambarnath, a Gandhian worker from Tamil Nadu, following an appeal by 

Mahatma Gandhiji for a more productive version of the charkha. It may not look like the typical charkha 

made of wood and a wheel attached to it. But it is still a simple device and can be operated even by a 

child.[6] 

 

There are two types of Ambar Charkha used at Gram Seva Mandal, Wardha, 6 spindle and 8 spindle. 

Machine i.e. charkha’s specifications are shown in tabulated form as follows: 
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Fig.1. Ambar Charkha                      Table1.Specification of Ambar Charkha 

 

1.2 DIMENSIONAL ANALYSIS: 

Dimensional analysis is a widely applicable and sometimes very powerful technique. The first and 

crucial step of dimensional analysis is to define a suitably idealized representation of a phenomenon by 

listing the relevant variables, called the physical model. The second step is to learn the consequences of 

the physical model and the general principle that complete equations are independent of the choice of 

units. The calculation that follows yields a basis set of non-dimensional variables. The final step is to 

interpret the non-dimensional basis set in the light of observations or existing theory, and if necessary to 

modify the basis set to maximize its utility. One strategy is to non-dimesionalise the dependent variable 

by a scaling estimate. The remaining non-dimensional variables can then be formed in ways that define 

aspect ratios or that corresponds to the ratio of terms in a governing equation.[8] 

 

Dimensional analysis is based on the fact that physically based phenomenon do not depend on the units 

chosen to describe their variables. It is one of the most effective tools for the analysis of industrial 

processes and often provides substantial insight with very little effort.[2] 

 

This paper is an introduction to dimensional analysis that aims to make the method and the results as 

accessible as possible. 

 

1.2.1The steps of dimensional analysis and Buckingham's л –theorem: 

 

The premise of dimensional analysis is that the form of any physically significant equation must be such 

that the relationship between the actual physical quantities remains valid independent the magnitudes of 

the base units. Dimensional analysis derives the logical consequences of this premise. 

 

Suppose we are interested in some particular physical quantity Q0 that is a "dependent variable" in a 

well-defined physical process or event. By this we mean that, once all the quantities that define the 

particular process or event are specified, the value of Q0 follows uniquely. [2] 

 

Step 1: The independent variables: 

 

The first and most important step in dimensional analysis is to identify a complete set of independent 

quantities Q2...Qn that determine the value of Q0, 

 

Q0 = f (Q1, Q2, Qn)         (1.2.1) 

 

A set Q1.....Qn is complete if, once the values of the members are specified, no other quantity can affect 

the value of Q0, and independent if the value of each member can be adjusted arbitrarily without 

affecting the value of any other member. 

 

Starting with a correct set Q1.....Qn is as important in dimensional analysis as it is in mathematical 

physics to start with the correct fundamental equations and boundary conditions.  

 

Sr. No. SPECIFICATION 6 SPINDLE 8 SPINDLE 

1. Speed 40-45 rpm 30-35 rpm 

2. Handle Length 381 mm 400 mm 

3. Handle Diameter 0.5 cm 1 cm 

4. Weight of Machine 35 Kg 45 Kg 

5. Height of Machine 508 mm 660 mm 

6. Width of Machine 762 mm 914 mm 

Fig.1 - AMBAR CHARKHA 
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The relationship expressed symbolically in equation (1.2.1) is the result of the physical laws that govern 

the phenomenon of interest. It is our premise that its form must be such that, once the values Q1...Qn are 

specified, the equality holds regardless of the sizes of the base units in terms of which the quantities are 

measured. The steps that follow derive the consequences of this premise.[2] 

 

Step 2: Dimensional considerations 

 

Next we list the dimensions of the dependent variable Q0 and the independent variables Q1...Qn. As we 

have discussed, the dimension of a quantity depends on the type of system of units, and we must specify 

at least the type the system of units before we do this. For example, if we use a system which is dealing 

with a purely mechanical problem, all quantities have dimensions of the form 

 

[Qi]=Ll
iM

m
iT

τ
i        (1.2.2) 

 

Where, the exponent li, mi and τi are dimensionless numbers that follow from each quantity’s 

definition.We now pick from the complete set of physically independent variables Q1...Qn a complete, 

dimensionally independent subset Q1...Qk(k≤n), and express the dimension of each of the remaining 

independent variables Qk+1...Qn and the dependent variable Q0 as a product of powers of Q1...Qk. All 

physical quantities have dimensions which can be expressed as products of powers of the set of base 

dimensions. Alternatively, it is possible to express the dimension of one quantity as a product of powers 

of the dimensions of other quantities which are not necessarily base quantities. A subset Q1...Qk of the 

set Q1...Qn is dimensionally independent if none of its members has a dimension that can be expressed in 

terms of the dimensions of the remaining members. And complete if the dimensions of all the remaining 

quantities Qk+1...Qn of the full set can be expressed in terms of the dimensions of the subset Q1...Qk. 

Since equation (1.2.1) is dimensionally homogeneous, the dimension of the dependent variable Q0 is also 

expressible in terms of the dimensions of Q1....Qk.[2] 

 

The dimensionally independent subset Q1...Qk is picked by trial and error. Its members may be picked in 

different ways (see section 1.2.3), but the number k of dimensionally independent quantities in the full 

set Q1...Qn is unique to the set, and cannot exceed the number of base dimensions which appear in the 

dimensions the quantities in that set. For example, if the dimensions of Q1...Qn involve only length, 

mass, and time, then k≤3. 

 

Having chosen a complete, dimensionally independent subset Q1...Qk, we express the dimensions of Q0 

and the remaining quantities Qk+1...Qn in terms of the dimensions of Q1...Qk. These will have the form 

 

[Qi]=[Q1
N

i1Q2
N

i2.........Qk
N

ik]       (1.2.3) 

 

If i>k or i=0. The exponents Nij are dimensionless real numbers and can in most cases be found quickly 

by inspection (see section 1.2.2), although a formal algebraic method can be used. 

 

The formal procedure can be illustrated with an example where length, mass and time are the only base 

quantities, in which case all dimensions have the form of equation (1.2.2). Let us take Q1, Q2, and Q3 as 

the complete dimensionally independent subset. Equating the dimension given by equation (1.2.2) with 

that of equation (1.2.3), we obtain three equations 

 

𝑙𝑖 = ∑ 𝑁𝑖𝑗𝑙𝑗
3
𝑗=1  𝑚𝑖 = ∑ 𝑁𝑖𝑗𝑚𝑗

3
𝑗=1  𝑡𝑖 = ∑ 𝑁𝑖𝑗𝑡𝑗

3
𝑗=1     (1.2.4) 

 

This can be solved for the three unknowns Ni1, Ni2, and Ni3. 

 

Step 3: Dimensionless variables 

 

We now define dimensionless forms of the n-k remaining independent variables by dividing each one 

with the product of powers of Q1...Qkwhich has the same dimension, 

 

𝜋𝑖 =
𝑄𝑘+1

𝑄1
𝑁

(𝑘+1)1
𝑄2

𝑁
(𝑘+1)2

…𝑄𝑘

𝑁
(𝑘+1)𝑘

         (1.2.5) 
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Where,i=1, 2,...,, n-k, and a dimensionless form of the dependent variableQ0, 

 

𝜋𝑜 =
𝑄0

𝑄1
𝑁01𝑄2

𝑁02…𝑄𝑘
𝑁0𝑘

          (1.2.6) 

 

Step 4: The end game and Buckingham’s -theorem 

 

An alternative form of equation (1.2.1) is 

 

𝜋0 = 𝑓(𝑄1, 𝑄2, … . , 𝑄𝑘;  𝜋1, 𝜋2, … , 𝜋𝑛−𝑘)        (1.2.7) 

 

In which all quantities are dimensionless except Q1...Qk. The values of the dimensionless quantities are 

independent of the sizes of the base units. The values of Q1...Qk, on the other hand, do depend on base 

unit size. They cannot be put into dimensionless form since they are (by definition) dimensionally 

independent of each other. From the principle that any physically meaningful equation must be 

dimensionally homogeneous, that is, valid independent of the sizes of the base units, it follows that 

Q1...Qkmust in fact be absent from equation (1.2.7), that is, 

 

π = f(π1, π2, ...,πn-k)       (1.2.8) 
 

This equation is the final result of the dimensional analysis, and contains Buckingham's -theorem: 

 

When a complete relationship between dimensional physical quantities is expressed in dimensionless 

form, the number of independent quantities that appear in it is reduced from the original n to n-k, where 

k is the maximum number of the original n that are dimensionally independent. The theorem derives its 

name from Buckingham's use of the symbol for the dimensionless variables in his original 1914 paper. 

The π-theorem tells us that, because all complete physical equations must be dimensionally 

homogeneous, a restatement of any such equation in an appropriate dimensionless form will reduce the 

number of independent quantities in the problem by k. This can simplify the problem enormously, as will 

be evident from the example that follows. 

 

The π−theorem itself merely tells us the number of dimensionless quantities that affect the value of a 

particular dimensionless dependent variable. It does not tell us the forms of the dimensionless variables. 

That has to be discovered in the third and fourth steps described above. Nor does the π-theorem, or for 

that matter dimensional analysis as such, say anything about the form of the functional relationship 

expressed by equation (1.2.7). That form has to be discovered by experimentation or by solving the 

problem theoretically.[2] 

 

Example: Deformation of an elastic ball striking a wall: 

 

Suppose we wish to investigate the deformation that occurs in elastic balls when they impact on a wall. 

We might be interested, for example, in finding out what determines the diameter d of the circular 

imprint left onthe wall after a freshly dyed ball has rebounded from it (figure 2). 

 

Step 1: The independent variables: 

 

The first step is to identify a complete set of independent quantities that determine the imprint radius d. 

We begin by specifying the problem more clearly. We agree to restrict our attention to (initially) 

spherical, homogeneous balls made of perfectly elastic material, to impacts at perpendicular to the wall, 

and to walls that are perfectly smooth and flatand so stiff and heavy that they do not deform or move 

during the impact process. 
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The numerical value of a dependent variable like d will be depend on the values of all quantities that 

distinguish one impact event from another. Experience suggests that these should include at least the 

following: the ball's diameter D and velocity V just prior to contact (the initial conditions) and its mass 

m. The ball’s intrinsic material properties will also play a role. Our theoretical understanding of solid 

mechanics tells us that the quasi-static response of a perfectly elastic material is characterized by two 

material properties, the modulus of elasticity E and Poisson's ratio, and that the inertial effects which 

inevitably come into play during collision and rebound will also depend on the material’s density. The 

properties of the wall are irrelevant if it is indeed perfectly rigid, as we assumed. We know, however, by 

thinking of how the problem would have to be set up as a theoretical one that the answer for the 

numerical value d will also depend on the values of all universal constants that appear in the physical 

laws that control the ball's impact dynamics. In this case the process is governed by Newton's law of 

motion and the law of mass conservation. We know that Newton's law has the form F=ma and contains 

no universalconstants. Nor are there any physical constants in the law of mass conservation. 

 

We seem to arrive at the conclusion that d depends on six quantities: D, V, m, E, γ, ρ. This is a complete 

set, as required, but not an independent set: once the ball's mass and diameter are specified, its density 

follows.We must therefore exclude either the density or the mass. (Other quantities like V2, DE1/2, etc, all 

involving quantities that affect the value of d, are excluded for the same reason: they are not independent 

of the quantities already included.) We conclude that the following relationship expresses the impact 

diameter in terms of a complete set of independent variables: 

 

d = d(V, ρ, D, E,γ)      (1.2.9) 

 

Note that the choice of a complete, independent set for a specified problem is not unique except for the 

number n of its members (n=5 in this case). One could just as well have chosen V2, ρ, D, E, γ and say, or 

V, m, D, E, γ —see section 1.2.3. It should also be noted that further assumptions have been taken for 

granted in equation (1.2.9). We have presumed, for example, that the ball’s motion is unaffected by the 

properties of the fluid through which it approaches the wall, and that gravitational effects play a 

negligible role. 

 

Step 2: Dimensional considerations 

 

In the type of system of units we have adopted in step 1, the dimensions of the quantities in equation 

(1.2.9) are: 

 

Independent: [V]=Lt-1, [ρ]=ML-3, [D]=L, [E]=ML-1t-2,  [γ]=1 

Dependent: [d]=L          (1.2.10) 

 

Inspection of the above shows that the three quantities V, and D, for example, comprise a complete, 

dimensionally independent subset of the five independent variables. The dimension of any one of these 

three cannot be made up of the dimensions of the other two. The dimensions of the remaining 

independent variables E and the dependent variable d can, however, be made up of those of V, and D as 

follows: 

 

Fig.2. A freshly dyed elastic ball leaving imprint after impact with rigid wall. 
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Independent:  [E]= ML−1t−2= (ML−3)(Lt)2=[ρ V2],  [γ ]=1   

Dependent: [d]= L=[D]         (1.2.11) 

 

We have written down these results very simply by inspection. Accomplished practitioners seldom use 

the formal algebraic method of section (1.2.1). Note again that the dimension of a dimensionless quantity 

like is unity, the factor by which dimensionless numbers change when the sizes of the base units are 

changed. 

 

Step 3: Dimensionless similarity parameters 

 

We non-dimensionalise the remaining independent variables E and γ,the dependent variable d by 

dividing them by ρV2, D and unity, respectively, as suggested by equation (1.2.11): 

 

Independent: 𝜋1 =
𝐸𝐷3

𝑚𝑉2, 𝜋2 = 𝛾 

Dependent:𝜋0 =
𝑑

𝐷
         (1.2.12)  

 

 

Step 4: The end game 

 

Using the logic that led to Buckingham's π−theorem, we now conclude that 

 

  𝜋0 = 𝑓(𝜋1, 𝜋2) Or 
𝑑

𝐷
= 𝑓 (

𝐸

𝜌𝑉2 , 𝛾)     (1.2.13) 

 

The number of independent variables has been reduced from the original n=5 that define the problem to 

n-k =2. 

 

 

1.2.2On the utility of dimensional analysis, some difficulties arise in its application: 

 

A) Similarity: 

 

Dimensional analysis provides a similarity law for the phenomenon under consideration. Similarity in 

this context implies certain equivalence between two physical phenomena that are actually different. The 

collision of two different elastic spheres 1 and 2 with a rigid wall, each with its own values of V, ρ, D, E 

and γ may appear to be quite different. However, under particular conditions where the parameters of the 

two events are such that 1 and 2 have the same values, that is, where 

 

   
𝐸2

𝜌2𝑉2
2 =

𝐸1

𝜌1𝑉1
2;   𝛾2 = 𝛾1     (1.2.14) 

 

Equation (1.2.13) informs us that 0 has the same value in both cases, that is, 

𝑑2

𝐷2
=

𝑑1

𝐷1
         (1.2.15) 

When the relationships in equation (1.2.14) apply, the two dynamic events are similar in the sense of 

equation (1.2.15).[2] 
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B) Out-of-scale modelling: 

Scale modelling deals with the following question: If we want to learn something about the performance 

of a full-scale system 1 by testing a geometrically similar small-scale system model 2 (or vice versa, if 

the system of interest inaccessibly small), at what conditions should we test the model, and how should 

we obtain the full-scale performance from measurements at the small scale? Dimensional analysis 

provides the answer. 

Suppose we need to know the deformation diameter of a huge, soft rubber ball with a diameter D1 of 5 

meters and properties E1, ρ1, and γ1, as it hits the pavement with a speed V2 of 10 m/s, but are unable to 

compute it from basic principles. In that case, we need only perform one small-scale test with a model 2 

of diameter D2, selecting its properties and test conditions such that equations (1.2.14) are satisfied, and 

measure its imprint diameter d2. The full-scale value d1 of the big ball’s imprint diameter at its "design 

conditions" can then be obtained from equation (1.2.15).[2] 

 

C) An incomplete set of independent quantities may destroy the analysis 

 

Assuming competence on the part of the analyst, the correctness of the dimensional analysis will depend 

entirely on whether a complete set of independent quantities Q1...Qn is in fact properly identified in step 

1. Any complete set will yield correct results. If, however, the analysis is based on a set which omits 

even one independent quantity that affects the value ofQ0, dimensional analysis will give erroneous 

results. 

 

Suppose that in our example we had omitted the sphere’s modulus of elasticity E in equation (1.2.9). 

Instead of equation (1.2.13), we would then have obtained the absurd result 

 
𝑑

𝐷
= 𝑓(𝛾)        (1.2.16) 

Which implies that the maximum deformation depends on the ball’s Poisson ratio, but is independent of 

its elasticity, mass and approach velocity! This single error of omission is clearly fatal to the analysis.[2] 

 

D) Superfluous independent quantities complicate the result unnecessarily: 

 

Errors on the side of excess have a less traumatic effect. Over specification of independent variables 

does not destroy the analysis, but robs it of its power. For every superfluous independent quantity 

included in the set, there will be in the final dimensionless relationship a superfluous dimensionless 

similarity parameter. 

 

Suppose we argue that the ball’s deformation upon impact will in general also depend on the local 

gravitational acceleration g (which we assume to be in the direction into the wall on which the impact 

occurs). This would change equation (1.2.13) to 

 

  
𝑑

𝐷
= 𝑓 (

𝐸

𝜌𝑉2 , 𝛾,
𝑔𝐷

𝑉2 )        (1.2.17) 

 

Where,gD/V2is a dimensionless gravity. Under conditions where the deformation is in fact insensitive to 

gravity, as we implicitly assumed earlier, equation (1.2.17) is “wrong” only in the sense that it suggests a 

dependence on g that is not noticeably there, and thus unnecessarily complicates our thinking. If by 

experimentation or computation we eventually discover that there exists a broad range of conditions 

where the similarity parameter involving g has in fact no measurable effect on d/D, and that the 

conditions of interest fall into this range, we omit the parameter involving g and arrive at the same 

simpler conclusion as before, but only after due payment in effort for our lack of insight.[2] 
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1.2.3Advantage in its applications: Dimensional analysis reduces the number of variables and 

minimizes work: 

 

Dimensional analysis reduces the number of variables that must be specified to describe an event. This 

often leads to an enormous simplification. In our example of the impacting ball the answer depends on 

five independent variables (equation 1.2.9), that is, a particular event may be represented as a 

distribution of d defined in a five-dimensional space of independent variables. Suppose we set out to 

obtain the answer in a certain region (a certain volume) of this variable-space, by either computation or 

experimentation, and decide that 10 data points will be required in each variable, with the other four 

being held constant. This would require obtaining 105 data points. Dimensional analysis, however, 

shows us that in dimensionless form the answer depends only on two similarity parameters. This two-

dimensional space can be explored with similar resolution with only 102 data points, that is, with 0.1% 

of the effort.[2] 

 

1.3 MATHEMATICAL MODELING 

The Dimensional Analysis technique has been used in various applications in most experimentally based 

areas of physical sciences and engineering. The basic theme of Dimensional Analysis is the Buckingham 

– л Theorem. The Dimensional Analysis actually follows the fundamental units of relevant quantities. 

The number of dimensional product is the difference between number of variables and the rank of 

matrix.[1] 

 

Dimensional analysis is most useful when a mathematical model is not known. Mathematical models of 

the simple pendulum are well known, and we will use them to generate numerical data and to show how 

dimensional analysis can be applied to a mathematical model.[8] 

 

CONCLUSION 

 

Dimensional analysis is a simplest and most appropriate tool to make the mathematical modelling of 

man machine system. By identifying the dependant and independent parameters of the Ambar Charkha, 

Dimensional Analysis will give us the relationship between them and very easily we can study the effect 

of the parameters on the system by varying one by one. 
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