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I introduce an operationally meaningful measure of correlation for multipartite states. This measure can detect 
entanglement for any multipartite state even if it has no genuine multipartite entanglement and is applicable for 
multipartite systems of arbitrary dimensions. I will provide an information theoretic interpretation of our measure in 
terms of quantum mutual information for pure states. It allows us to find the physical reason behind perfect 
teleportation and superdense coding through W-class states.  I will generalize this concepts to form a hierarchy of 
correlation measures for multipartite states. 

 

PACS numbers:  03.67.Hk, 03.65.Ud, 03.65.Ta. 

Introduction 

Entanglement is one of the most profound inventions of quantum information theory. For bipartite 
systems, it plays key role in different information processing tasks [1,2] as an useful resource. The 
quantification rule [3-7] for entanglement is well defined for bipartite states[8,9] however there are some 
difficulties in calculating different measures of entanglement for mixed states [9-11]. For multipartite 
system the problem is more complex as there are many different ways [12-27] of defining multipartite 
entanglement. It is really difficult to measure quantum correlation responsible for non-local behavior of 
multipartite systems. e.g., there is no unique way to define a maximally entangled states for multipartite 
states. Several attempts were made to investigate the entanglement behavior of multipartite systems 
because of its importance in realizing different aspects like, quantum cryptography, remote information 
concentration, super-activation, capacities of quantum channels, etc. In this letter I introduce a new 
measure for multipartite states. This measure enables us to provide the main physical reason behind 
perfect teleportation and superdense coding through W-class states. It has an information theoretic 
interpretation in terms of mutual information for pure states. We generalize our concepts to form a 
hierarchy of correlation measures for multipartite states. 

Correlation Measure for pure state 

I introduce first a new measure of correlation for pure multipartite states. Consider a multipartite pure 
state |𝜓⟩ shared between 𝑛 number of parties. I define the measure of correlation as 

ℰ = max
{𝑘}

{𝐸(|𝜓⟩𝑘:𝑛−𝑘)}, 

where 1 ≤ 𝑘 ≤ [
𝑛

2
] and 𝐸(|𝜓⟩𝑘:𝑛−𝑘) denotes the bipartite entanglement of the state |𝜓⟩ in the 𝑘: 𝑛 − 𝑘 cut. 

𝐸 can be taken as any bipartite entanglement measure. For mixed states, our correlation measure can be 
extended via convex roof. ℰ vanishes for fully separable states and it is invariant under local unitary(LU). 
Also it does not increase by applying local operation and classical communications. These properties 
simply follows from the properties of its inherent bipartite entanglement measure 𝐸. Our measure can 
detect entanglement even for the states with no genuine multipartite entanglement. For example, we can 
consider three partite bi-separable states. In this case ℰ vanishes iff states are bi-separable w.r.t all three 
bi-partitions, i.e., fully separable. Hence this type of correlation measure can be useful in detecting the 
presence of global entanglement as well as local entanglement (shared between subsystems) in 
multipartite system. I  will explicitly investigate the nature of this correlation for some class of states in 
three and four qubit systems. 
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Three qubit pure states can be divided into six classes. For three qubit fully separable class of states, clearly 
ℰ = 0. In case of three bi-separable classes of states (i.e.𝐴 − 𝐵𝐶, 𝐵 − 𝐶𝐴, 𝐶 − 𝐴𝐵) the maximum value of ℰ 
reaches 1 if any two of the three parties share a two-qubit maximally entangled state. For higher 
dimensional bi-separable system similar conclusion holds. Next, I consider a generic form of three qubit 
pure state as , 

|𝜓⟩ = 𝜆0|000⟩ + 𝜆1𝑒
𝑖𝜃|100⟩ + 𝜆2|101⟩ + 𝜆3|110⟩ + 𝜆4|111⟩, 

where 𝜆𝑖 ≥ 0, ∑𝜆𝑖
2 = 1 and 𝜃 ∈ [0, 𝜋]. This class is referred to as ‘generic’ class, as W-class of states is of 

measure zero and can be easily obtained from this by substituting 𝜆4 = 0. Entanglement of formation for 
pure bipartite state is the Von-Neumann entropy of reduced density matrix. After a little bit of 
simplification I can write, 

𝐸(|𝜓⟩𝐴:𝐵𝐶) = 𝐻(𝜆, 1 − 𝜆),

𝐸(|𝜓⟩𝐵:𝐴𝐶) = 𝐻(𝜇, 1 − 𝜇),

𝐸(|𝜓⟩𝐶:𝐴𝐵) = 𝐻(𝜈, 1 − 𝜈),

 

where     𝜆 =
1

2
(1 + √1 − 4𝜆0

2(1 − 𝜆0
2 − 𝜆1

2)), 

𝜇 =
1

2
(1 + (1 − 4[𝜆0

2(𝜆3
2 + 𝜆4

2) + 𝜆1
2𝜆4

2 + 𝜆2
2𝜆3

2 − 2𝜆1𝜆2𝜆3𝜆4cos𝜃])
1

2), 

𝜈 =
1

2
(1 + (1 − 4[𝜆0

2(𝜆2
2 + 𝜆4

2) + 𝜆1
2𝜆4

2 + 𝜆2
2𝜆3

2 − 2𝜆1𝜆2𝜆3𝜆4cos𝜃])
1
2) 

and 𝐻(∙) denotes the Shannon’s binary Entropy. Hence for a three qubit generic pure state, 

ℰ = max{𝐸(|𝜓⟩𝐴:𝐵𝐶), 𝐸(|𝜓⟩𝐵:𝐶𝐴), 𝐸(|𝜓⟩𝐶:𝐴𝐵)},

= max{𝐻(𝜆, 1 − 𝜆),𝐻(𝜇, 1 − 𝜇), 𝐻(𝜈, 1 − 𝜈)}.
 

Maximum value of ℰ over three qubit generic class occurs for the usual GHZ state. In this case ℰ = 1. For 
three qubit pure symmetric states(ex. generalized GHZ class) the maximization in definition of ℰ is not 
necessary as it will show same value in every bi-partition. So the maximum value of ℰ over three qubit 
symmetric states, can be obtained by considering any one bipartition. For generalized GHZ state 
𝑧0|000⟩ + 𝑧1|111⟩ with |𝑧0|

2 + |𝑧1|
2 = 1 I have ℰ = −𝐻(|𝑧0|

2, 1 − |𝑧0|
2). Clearly, for this class ℰ𝑚𝑎𝑥 = 1 

and this value occurs when |𝑧0| = |𝑧1| =
1

√2
. Similarly for generalized W-state 𝑧0|001⟩ + 𝑧1|010⟩ + 𝑧2|100⟩ 

with |𝑧0|
2 + |𝑧1|

2 + |𝑧2|
2 = 1 I got ℰ = max{𝐻(|𝑧0|

2, 1 − |𝑧0|
2), 𝐻(|𝑧1|

2, 1 − |𝑧1|
2), 𝐻(|𝑧2|

2, 1 − |𝑧2|
2)}. 

Maximum value 1 occurs here when |𝑧0| =
1

√2
 or, |𝑧1| =

1

√2
 or, |𝑧2| =

1

√2
.. This result of generalized W-state 

indicates the possibility of teleporting unknown qubit and superdense coding as it has maximum value of 
ℰ = 1. Agrawal et.al. showed the perfect teleportation and superdense coding with the W-class state of the 
above kind. Since to implement perfect qubit teleportation or superdense coding, one need at least one ebit 
of entanglement, our result shows the main physical reason behind such protocols. 

In four qubit system, firstly, I consider the class 𝑋 = {∑ 𝑧𝑗
3
𝑗=0 𝑢𝑗: 𝑧𝑗 ∈ 𝑅}, where 𝑢𝑗  are the tensor product of 

two same type of 2-qubit Bell state. This class is subset of four qubit generic class. Here I have to consider 
four 1:3 types of bipartite cuts and three 2:2 types of bipartite cuts. Surprisingly, 𝐸(|𝜓⟩1:3) = 1 for all four 
1:3 partite cuts and for 2:2 cuts we have, 

𝐸(|𝜓⟩𝐴𝐵:𝐶𝐷) =∑|𝑧𝑖|
2log2|𝑧𝑖|

2

3

𝑖=0

. 
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𝐸(|𝜓⟩𝐴𝐶:𝐵𝐷) = −1/4(|𝑧0 + 𝑧1 + 𝑧2 + 𝑧3|
2log2|𝑧0 + 𝑧1 + 𝑧2 + 𝑧3|

2/4 +

|𝑧0 + 𝑧1 − 𝑧2 − 𝑧3|
2log2|𝑧0 + 𝑧1 − 𝑧2 − 𝑧3|

2/4 +

|𝑧0 − 𝑧1 + 𝑧2 − 𝑧3|
2log2|𝑧0 − 𝑧1 + 𝑧2 − 𝑧3|

2/4

+|𝑧0 − 𝑧1 − 𝑧2 + 𝑧3|
2log2|𝑧0 − 𝑧1 − 𝑧2 + 𝑧3|

2/4),

 

𝐸(|𝜓⟩𝐴𝐷:𝐵𝐶) = −1/4(|𝑧0 + 𝑧1 + 𝑧2 − 𝑧3|
2log2|𝑧0 + 𝑧1 + 𝑧2 − 𝑧3|

2/4 +

|𝑧0 + 𝑧1 − 𝑧2 + 𝑧3|
2log2|𝑧0 + 𝑧1 − 𝑧2 + 𝑧3|

2/4

|𝑧0 − 𝑧1 + 𝑧2 + 𝑧3|
2log2|𝑧0 − 𝑧1 + 𝑧2 + 𝑧3|

2/4

+|𝑧0 − 𝑧1 − 𝑧2 − 𝑧3|
2log2|𝑧0 − 𝑧1 − 𝑧2 − 𝑧3|

2/4).

 

Hence one is a lower bound of ℰ and the maximum value of this correlation for the above class of states is 

2. Maximum value of ℰ for this class is attained when 𝑧𝑖 =
1

2
 ∀𝑖 or 𝑧𝑖 = 1 for any one 𝑖 ∈ {0,1,2,3}. I have 

found that maximum value of ℰ for this class of states occurs for ‘Cluster States’ (ex. 
1

2
[|0000⟩ +|0011⟩ +

|1100⟩ +|1111⟩] and its LU equivalent states). Whereas maximum value of ℰ for both 4-qubit generalized 
GHZ and W class states is 1.  
 

Another New Correlation Measure  

Now, I define another new measure of correlation in terms of mutual information as 

ℐ = max
𝑘

{𝐼(|𝜓⟩𝑘:𝑛−𝑘)}, 

where 1 ≤ 𝑘 ≤ [
𝑛

2
] and |𝜓⟩𝑘:𝑛−𝑘 denotes all possible 𝑘: 𝑛 − 𝑘 partite cuts and 𝐼(|𝜓⟩𝑘:𝑛−𝑘) denotes the 

quantum mutual information. Thus 𝐼 is a detector of correlation (classical or quantum) in any state. Clearly 
this definition has a close relation with our previous quanity ℰ. 

 

Theorem: Two measures of correlations ℰ = max𝑘{𝐸(|𝜓⟩𝑘:𝑛−𝑘): 1 ≤ 𝑘 ≤ [
𝑛

2
]} and ℐ =

max𝑘{𝐼(|𝜓⟩𝑘:𝑛−𝑘): 1 ≤ 𝑘 ≤ [
𝑛

2
]} satisfies the relation ℰ =

1

2
ℐ holds. Here, 𝐸(∙), is any entanglement measure 

of bipartite states, 𝐼(∙) is quantum mutual information and |𝜓⟩ is any 𝑛-partite pure state. 
 

Proof: If I take Entanglement of formation (𝐸𝑓) as a measure of bipartite entanglement then, 

ℰ =max𝑘{𝐸(|𝜓⟩𝑘:𝑛−𝑘) : 1 ≤ 𝑘 ≤ [
𝑛

2
]}, 

=max𝑘{𝐸𝑓(|𝜓⟩𝑘:𝑛−𝑘) : 1 ≤ 𝑘 ≤ [
𝑛

2
]} 

Now, let us denote 𝜌𝑋 = 𝑡𝑟1(|𝜓⟩𝑘:𝑛−𝑘⟨𝜓|), 𝜌𝑌 = 𝑡𝑟2(|𝜓⟩𝑘:𝑛−𝑘⟨𝜓|) and 𝜌 = |𝜓⟩𝑘:𝑛−𝑘⟨𝜓| where 𝑡𝑟𝑖(. ) denotes 

trace over 𝑖 th part, 𝑖 = 1,2(i.e. trace over first 𝑘 or last 𝑛 − 𝑘 parties of the n-partite state |𝜓⟩𝑛⟨𝜓|). Also 

denote 𝑆(. ) as Von-Neumann entropy. Then, 
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ℐ = max
𝑘

{𝐼(|𝜓⟩𝑘:𝑛−𝑘): 1 ≤ 𝑘 ≤ [
𝑛

2
]}

= max
𝑘

{𝑆(𝜌𝑋) + 𝑆(𝜌𝑌) − 𝑆(𝜌): 1 ≤ 𝑘 ≤ [
𝑛

2
]}

= max
𝑘

{𝑆(𝜌𝑋) + 𝑆(𝜌𝑌): 1 ≤ 𝑘 ≤ [
𝑛

2
]}

= max
𝑘

{2𝑆(𝜌𝑋): 1 ≤ 𝑘 ≤ [
𝑛

2
]}

= max
𝑘

{2𝐸𝑓(𝜌): 1 ≤ 𝑘 ≤ [
𝑛

2
]}

= 2ℰ

 

 

Here, I have used the fact that von-Neumaan entropy of a pure state is zero and for a bipartite pure state 
any good measure of entanglement reduces to Von-Neumann entropy of the reduced density matrices. 
Here I have taken entanglement of formation but any other measure would do. Hence the maximum value 
of ℐ for different qubit system behaves like Von-Neumann entropy. ℐ attains maximum (global) value 2 for 

GHZ state (
1

2
(|000⟩ +|111⟩)) and generalized W state(𝑧0|001⟩ + 𝑧1|010⟩ + 𝑧2|100⟩;  for  |𝑧0|

2 + |𝑧1|
2 =

1

2
  and  |𝑧2|

2 =
1

2
) in three qubit system. For four qubit generalized GHZ and W class of states, maximum 

value for ℐ reaches 2 and ℐ attains the maximum value 4 (global maximum for four qubit system) for cluster 
states.  

The above construction could be further generalized to find other measures of correlation. We first denote 
ℰ in equation ([1]) by ℰ2. Let us consider a 𝑛-partite pure state. We now define 

ℰ3(|𝜓⟩) = max
tri-partite entanglement

{ℰ2(|𝜓⟩)} 

i.e. we introduce two cuts among the parties who share the state and treat it as tripartite state. The 
maximum is taken over the correlation values ℰ3 of all such tripartite states. For an 𝑛-partite state we can 
introduce upto 𝑛 − 1 cuts. So we can recursively define 

ℰ𝑛−1(|𝜓⟩) = max
(𝑛−1)-partite entanglement

{ℰ𝑛−2|𝜓⟩} 

Therefore we can have a hierarchy of correlation measures for a 𝑛-partite state upto ℰ𝑛−1. 
Examples: We consider 4-qubit GHZ-state |𝜓4

𝐺𝐻𝑍⟩. This state is symmetric under exchange of any two or 
more parties. Therefore it is enough to consider one state each from 1: 3 and 2: 2 cut. It turns out that for 
all such bipartite cuts ℰ2 = 1. There can be 6 types of tripartite cuts. But again due to symmetry, it is enough 
to consider only one type of tripartite cut i.e. A:B:CD. and it is easily found that ℰ3 = 1. Now we consider 4-
qubit W-state |𝜓4

𝑊⟩. This state also shows similar symmetry like GHZ-state. In this case ℰ2 =

max1≤𝑘≤4𝐻 (
𝑘

4
,
4−𝑘

4
). Maximum value is attained for 𝑘 = 2 and maximum value is 1. Among all tripartite 

cuts maximum value of the correlation is 1 i.e. ℰ3 = 1. However for 4-qubit case we get ℰ2 = 1, ℰ3 = 2 for 
cluster states. 
Further, we consider an important multipartite state from qubit system. 

|𝑆(𝑛, 𝑘)⟩ =
1

√(𝑛
𝑘
)

∑

permutations

|0. . .0
⏟

𝑛−𝑘

1. . .1
⏟

𝑘

⟩ 

This is Dicke state of 𝑛 particles with 𝑘 excitations. Clearly |𝑆(𝑛, 1)⟩ =|𝜓𝑛
𝑊⟩. Also |𝑆(𝑛, 𝑛 − 𝑘)⟩ =

𝜎𝑥
⊗𝑛|𝑆(𝑛, 𝑘)⟩ i.e. they are local unitarily equivalent hence they both have similar entanglement hierarchy. 

For 𝑛 = 4 we consider 

http://www.ijcrt.org/


www.ijcrt.org                                                               © 2017 IJCRT | Volume 5, Issue 1 March 2017 | ISSN: 2320-2882 

IJCRT1135256 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 715 
 

|𝑆(4,2)⟩ =
1

√6
[|0011⟩ + |1001⟩ +|0101⟩ +

|1100⟩ +|1010⟩ + |0110⟩]

 

This is also a symmetric state. Introducing bipartite cut the form of the state reduces to the form 

1

√6
|𝛼⟩|𝑎⟩ + √

2

3
|𝛽⟩|𝑏⟩ +

1

√6
|𝛾⟩|𝑐⟩ 

where {|𝛼⟩, |𝛽⟩,   |𝛾⟩} is a orthonormal set and {|𝑎⟩, |𝑏⟩,   |𝑐⟩} is another orthonormal set. Hence 
ℰ2(|𝑆(4,2)⟩) ≈ 1.25 and it is higher than both GHZ- and W-state. Also for this state, ℰ3(|𝑆(4,2)⟩) ≈ 1.25. 
fully separable state of 𝑛-qubit has ℰ2 = ℰ3 =. . . = ℰ𝑛−1 = 0. Hence according to the hierarchy in 4-qubit 

 
Fully Separable < GHZ or W ≤ Dicke state 

≤ Cluster state. 

For mixed states we use the convex roof extension of the corresponding quantities i.e. we define 

ℰ2(𝜌) = min
{𝑝𝑖,|𝜓𝑖⟩}

{∑𝑝𝑖
𝑖

ℰ2(|𝜓𝑖⟩)} 

An evident lower bound of this quantity can be defined as 
 

min
{𝑝𝑖,|𝜓𝑖⟩}

{ max
𝑘:𝑛−𝑘,1≤𝑘≤[

𝑛
2
]
∑𝑝𝑖
𝑖

ℰ𝑓(|𝜓𝑖⟩𝑘:𝑛−𝑘)} 

The minimum is over all pure state decomposition of 𝜌 = ∑ 𝑝𝑖𝑖 |𝜓𝑖⟩⟨𝜓𝑖|. This construction for mixed state 
can be further extended to ℰ(𝑛−1)(𝜌) for a 𝑛-partite mixed state in similar way like pure state. 

The construction of other correlation measure is similar to the above. We denote ℐ in equation ([8]) by ℐ2 
and then for a 𝑛-partite state we can define ℐ3, ⋯ , ℐ𝑛−1 similarly. 

Conclusion 

In conclusion, we have introduced a new measure of correlation for multipartite systems which is able to 
detect entanglement of a multipartite state in arbitrary dimensions. We have explicitly checked its behavior 
for pure three qubit and four qubit states. We find an information theoretic interpretation of our newly 
introduced measure. This measure could be used to explain the teleportation and superdense coding 
through W-class states. Analyzing the behavior of our correlation measures, we hope this work will help 
us to formulate a general paradigm of understanding multipartite systems in future and will provide us to 
find new information theoretic tasks. 
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