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ABSTRACT:  In this paper we first solve a convolution integral equation involving product of the general class of polynomials 

and the H-function of several variables. Due to general nature of the general class of polynomials and the H-function of several 

variables which occur as kernels in our main convolution integral equation, we can obtain from it solutions of a large number of 

convolution integral equations involving products of several useful polynomials and special functions as its special cases. 

INTRODUCTION:  

A general class of polynomials [3, p. 1, eq. (1)] 

    SN
M[x] = ∑

(−N)MkA N,kxk

k!

[N/M]
k=0 ,   (N=0,1,2,…..)                                                                    (1.1) 

where M is an arbitrary positive integer and the coefficient AN,k(N, k ≥ 0) are arbitrary nstants real or complex. On suitably 

specializing the coefficient  AN,k SN
M[x] yields a number of known polynomials as its special cases. These include, among others, 

Laguerre polynomials, Hermite polynomials and several others [7. pp. 1 58-161].  

A special case of the H-function of r variables [6, p. 271, eq. (4.1)]  

𝐻 [

𝑧1

⋮
𝑧𝑟

] = 𝐻𝑝,𝑞:  𝑝1,𝑞1+1;…, 𝑝𝑟,𝑞𝑟+1
𝑜,𝑜∶ 1,𝑛1;…,1,𝑛𝑟  

[

𝑧1

⋮
𝑧𝑟

|

(aj, αj
(1)

, … , αj
(r))

1,p
:

(bj, βj

(1)
, … , β

j

(r))
1,q

:

(cj
(1)

, γ
j

(1)
)
1,p1

; … ; (cj
(r)

, γ
j

(r)
)
1,pr

(0,1), (dj
(1)

, δj
(1)

)
1,q1

; . . ; (0,1), (dj
(r)

, δj
(r)

)
1,qr

] 

=
1

 (2𝜋𝜔)𝑟
∫  
𝐿1

∫  
𝐿𝑟

𝜙1(𝜉1)… 𝜙𝑟(𝜉𝑟)ψ (𝜉1, … , 𝜉2𝑟) 

                                      × Γ(−𝜉1)… Γ(−𝜉𝑟) 𝑧1
𝜉1 …𝑧𝑟

𝜉𝑟𝑑𝜉1 …𝑑𝜉𝑟 ,ω = √−1.                                                 (1.2) 

Or equivalently [5, p. 64, eq. (1.3)] 

                   𝐻 [

𝑧1

⋮
𝑧𝑟

] = ∑ 𝜙1(𝑘1)… 𝜙𝑟(𝑘𝑟)ψ (𝑘1, … , 𝑘𝑟)
∞
k1,…kr=0

(−z1)k1

k1!
…

(−zr)
kr

kr!
                                           (1.3) 

Where 

𝜙𝑖(𝑘𝑖) =
∏  

𝑛𝑖
𝑗=1 Γ(1 − 𝑐𝑗

(𝑖) + 𝛾𝑗
(𝑖)𝑘𝑖)

∏  
𝑞𝑖
𝑗=1

Γ (1 − 𝑑𝑗
(𝑖) + 𝛿𝑗

(𝑖)𝑘𝑖)∏  
𝑝𝑖
𝑗=𝑛𝑖+1

Γ (𝑐𝑗
(𝑖) − 𝛾𝑗

(𝑖)𝑘𝑖)
(𝑖 = 1,… , 𝑟)                            (1.4)

𝜓(𝑘1, … , 𝑘𝑟) = {∏  

𝑝

𝑗=1

Γ(𝑎𝑗 − ∑  

𝑟

𝑖=1

𝛼𝑗
(𝑖)

𝑘𝑖)∏  

𝑞

𝑗=1

Γ(1 − 𝑏𝑗 + ∑  

𝑟

𝑖=1

𝛽𝑗
(𝑖)

𝑘𝑖)}

−1

.                             (1.5)
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For the convergence, existence conditions and other details of the multivariable H-function refer the book [4, pp. 251-253, eqs. 

(C.2)-(C.8)]. 

The following property of the Laplace transform [1, p. 131] 

L{f (n)(x); s} = sn𝑓
−

(s)                                                                                                                                (1.6) 

Where   

𝐿{𝑓(𝑥); 𝑠} = ∫  
∞

0
e−𝑠𝑥𝑓(𝑥)d𝑥 = 𝑓

¯

(𝑠)                                                                                                        (1.7) 

The well-known convolution theorem for Laplace transform 

𝐿{∫  
𝑥

0
𝑓(𝑥 − 𝑢)𝑔(𝑢)d𝑢; 𝑠} = 𝐿{𝑓(𝑥); 𝑠}𝐿{𝑔(𝑥); 𝑠}                                                                                   (1.8) 

holds provided that the various Laplace transforms occurring in (1.8) exist. 

 

MAIN RESULT 

The convolution integral equation 

∫  
𝑥

0
(𝑥 − 𝑢)𝜌−1𝑆𝑁

𝑀[−𝑧𝑟+1(𝑥 − 𝑢)]𝐻 [
𝑧1(𝑥 − 𝑢)

⋮
𝑧𝑟(𝑥 − 𝑢)

] 𝑓(𝑢)d𝑢 = 𝑔(𝑥)                                                            (2.1) 

has the solution given by 

𝑓(𝑥) = ∫  
𝑥

0
(𝑥 − 𝑢)𝑙−𝜌−𝜇−1 ∑  ∞

𝑗=0

𝐸𝑗(𝑥−𝑢)𝑗

Γ(𝑗+𝑙−𝜌−𝜇)
𝑔(𝑙)(𝑢)d𝑢                                                                              (2.2)      

where Re (l − ρ − μ) > 0, Re(ρ) > 0 

𝑔(𝑙)(0) = 0 (i=0,1,... ,l- 1), l being a positive integer and E, is given by the recurrence relation 

𝐸0𝜆𝜇 = 1, ∑ 𝐸𝑡𝜆𝑞+𝜇−𝑡 = 0, q = 1,2,3, … 
q

𝑡=0
                                                                                           (2.3) 

Or by 

𝐸𝑗 = (−1)𝑗(𝜆𝜇)
−𝑗−1

det 

[
 
 
 
 
𝜆𝜇+1 𝜆𝜇 0 0 ⋯ 0

𝜆𝜇+2 𝜆𝜇+1 𝜆𝜇 0 ⋯ 0

⋮ ⋮
𝜆𝜇+𝑗 𝜆𝜇+𝑗−1 ⋯ 𝜆𝜇+1]

 
 
 
 

                                                               (2.4) 

and 𝜇 is least B for which 𝜆𝐵 ≠ 0 

𝜆𝐵 = (−1)𝐵 ∑  𝑘1+⋯+𝑘𝑟+1=𝐵 Δ(𝑘1, … , 𝑘𝑟+1)
𝑧1
𝑘1

𝑘1!
⋯

𝑧𝑟+1
𝑘𝑟+1

𝑘𝑟+1!
                                                                             (2.5) 

Where 

Δ(𝑘1, … , 𝑘𝑟+1) = 𝜙1(𝑘1)⋯𝜙𝑟+1(𝑘𝑟+1)𝜓(𝑘1, … , 𝑘𝑟+1)

𝜓(𝑘1, … , 𝑘𝑟+1) = Γ(𝜌 + 𝑘1 + ⋯ + 𝑘𝑟+1)
                                                                      (2.6) 

× {∏  
𝑝
𝑗=1 Γ(𝑎𝑗 − ∑  𝑟

𝑖=1 𝛼𝑗
(𝑖)

𝑘𝑖) ∏  
𝑞
𝑗=1 Γ(1 − 𝑏𝑗 + ∑  𝑟

𝑖=1 𝛽𝑗
(𝑖)

𝑘𝑖)}
−1

              (2.7) 

𝜙𝑖(𝑘𝑖) =  ∏  

𝑛𝑖

𝑗=1

Γ(1 − 𝑐𝑗
(𝑖)

+ 𝛾𝑗
(𝑖)

𝑘𝑖) { ∏  

𝑝𝑖

𝑗=𝑛𝑖+1

Γ(𝑐𝑗
(𝑖)

− 𝛾𝑗
(𝑖)

𝑘𝑖)∏  

𝑞𝑖

𝑗=1

Γ(1 − 𝑑𝑗
(𝑖)

+ 𝛿𝑗
(𝑖)

𝑘𝑖)}

−1

 

(𝑖 = 1,… , 𝑟)                                                                                                                                                   (2.8) 

and  

𝜙𝑟+1(𝑘𝑟+1) = {
(−𝑁)𝑀𝑘𝑟+1+1𝐴𝑁,𝑘𝑟+1

, 0 ⩽ 𝑘𝑟+1 ⩽ [
𝑁

𝑀
]

0 𝑘𝑟+1 > [
𝑁

𝑀
]

                                                                            (2.9) 
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Proof. To solve the convolution integral equation (2.1) we first take the Laplace transform of its both sides, We easily obtain by the 

definition of Laplace transform and its convolution property stated in (1.8), the following result 

[∫  
∞

0
e−𝑠𝑥𝑥𝜌−1𝑆𝑁

𝑀[(−𝑧𝑟+1)𝑥]𝐻 [

𝑧1𝑥
⋮

𝑧𝑟𝑥
] d𝑥𝑓

−

(𝑠) = 𝑔
−
(𝑠).                                                                               (2.10)   

Now expressing the SN
M[(−zr+1)x] and 𝐻 [

𝑧1𝑥
⋮

𝑧𝑟𝑥
] nvolved in (2.10) in series using (1.1)  and (1.3), changing the order of series and 

integration and evaluating the x-integral. We obtain 

[∑∞
𝑘1+⋯+𝑘𝑟+1=𝐵 Δ(𝑘1, … , 𝑘𝑟+1)

(−𝑧1)𝑘1

𝑘1!
⋯

(−𝑧𝑟+1)𝑘𝑟+1

𝑘𝑟+1!
× 𝑠−𝜌−(𝑘1+⋯+𝑘𝑟+1)] 𝑓

−

(𝑠) = 𝑔
−
(𝑠)                           (2.11) 

where Δ(k1, … , kr+1)  is defined by (2.6). Now making use of the known formula [5, p. 67. eq. (2.3)]. we easily obtain from (2.11) 

[∑  ∞
B=0 λBs−B] s−ρ f

−

(s) = g
−
(s)                                                                                                                   (2.12) 

where λB is defined by (2.5).  

    Again. (2.12) is equivalent to 

f
−

(s) = s−ρ[∑  ∞
B=0 λBs−B] 

−1

g
−
(s)                                                                                                               (2.13) 

If  μ denotes the least B for which λB ≠ 0 the series given by (2.13) can be reciprocated. Writing 

[∑  ∞
𝐵=0 𝜆𝐵+𝜇𝑠−𝐵]

−1
= ∑  ∞

𝑗=0 𝐸𝑗𝑠
−𝑗                                                                                                              (2.14) 

eq. (2.13) takes the following form: 

f
−

(s) = sρ−l+u ∑  ∞
j=0 Ejs

−j[s𝑙g
−
(s)]                                                                                                            (2.15) 

(2.15) can be written as 

L{f(x); s} = L{∑  ∞
j=0

(Ejx
j+l−ρ−μ−1)

Γ(j+l−ρ−μ)
; s} L{g(l)(x); s}                                                                                (2.16) 

[on using (1.6)]. 

Now using the convolution theorem in the RHS of (2.16) we get 

L{f(x); s} = L{∫  
x

0
∑  ∞

j=0

Ej(x−u)j+l−ρ−μ−1

Γ(j+l−ρ−μ)
g(l)(u)du;s}                                                                             (2.17) 

Finally, on taking the inverse of the Laplace transform of both sides of (2.17) we arrive at the desired result (2.2). 

Special Cases: 

In the main result if we take N =0 (the polynomial 𝑆0
𝑀 will reduce to Ao,o Which can be taken to be unity without loss of 

generality), we arrive at a result given by Srivastava et al [5, p. 64, eq. (1.1)].  

Again, if we put r = 1, p = q = 0, 𝑧2 = -1 in the main result, and further reduce the Fox's H-function obtained to exp (−𝑧1 )[9. p. 18, 

eq. (2.6.2)] and let 𝑧1 → 0,the Fox's H-function reduces to unity and we arrive at a result which in essence is the same as that given 

by Rashmi Jain [2, pp. 102-103, eqs (3.5). (3.6)]. 
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