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ABSTRACT 

 The paper presents the problem of three-dimensional free convection flow past a vertical porous plate in a rotating system when the 

whole system is in a state of solid body rotating with a constant angular velocity about an axis normal to the plate. The applied magnetic 

field has considerable strength so that the Hall effect on the flow could not be neglected. The plate is subjected to constant heat flux. The 

coupled non-linear equations of velocity and temperature are solved by series method. The effect of Hall parameter, magnetic parameter 

and heat flux are show on velocity and temperature fields, skin-friction and Nusselt number graphically or tabular from and are 

discussed. It is being observed that the increase in Hall parameter decrease both primary as well as secondary velocity. On the other hand 

the increase in magnetic number increase secondary velocity and decrease primary velocity.  

Keyword: Free Convection, Rotating system, Heat flux, Magnetic field. 

1. INTRODUCTION 

The Problems of free Convection heat temperature occupy an important place in heat transfer studies and hence attracted the attention of 

many research worker. Free convection flow is encountered in Aeronautics, Chemical Engineering, Nuclear Reactors etc. Eckert and 

Drack (1) have solved the free convection flow past a vertical plate. Sparrow and cess (2) investigated the effect of suction free 

convection. Soundalgekar and Gupta (3) have considered free convection effect past a moving vertical porous plate. Greespan for have 

studies the flow in rotating system. Devnath and Mukerjee (5) solved the problems in rotating system with uniform suction/injection at 

the plate unsteady flow problems in rotating system in electrically conducting fluid have been considered by Devnath (6-7) and 

Mukherajee (8) have solved a problem of free convection with mass transfer in rotating liquid.  

where the strength of magnetic field is very strong Hall effect on the flow are to be considered. This is due to fact that the Ohm’s law is 

modified [crawling (a)]. Hall effect on the hydromagnetic flow of a viscous fluid through a horizontal channel have been studied by sato 

(10).Datta and Jana (11) have discussed Hall currents on a fully developed laminar free convection in a vertical parallel plate channel. 

An exact solution for unsteady flow past an accelerated plate with Hall effects has been presented by Soundalgekar et.al. (12) and found 

that at high values of the Hall parameter, the velocity is found to be oscillatory near the plate.   

  Despite all these studies the influence of Hall current in rotating flows could not receive much attraction. Agrawal et. al. (13) 

considered a problem of this nature. 

  Brinkman (14) and Yamamato (15) have proposed the equation of motion for a class of flows in a highly store have proposed to the 

equations of motion for a class of flow in a highly porous medium. Yamamato and Iwamura (16) have generalized the Darcy’s law when 

the flow velocity in porous medium is not small. Raptis et.al. (17) discussed the free convection terms in the equation of motion. 

In the present era of high altitude flights the study of slip conditions at the surface of the body is to be considered as the continuum 

approach fails to field satisfactory result. Keeping this fact in mind Jain (18) studies the problem of viscous elastic flow an infinite flat 

plate. 

 In this study the effects of 𝜎 (Darcy number), t (Taylor number) and R (Rarefaction Parameter) are observed on velocity, temperature, 

skin-friction and Nusselt number. 

2.  FORMULATION OF THE PROBLEM AND BASIC EQUATIONS 

Let us consider a three dimensional flow of an electrically conducting fluid on a porous vertical plate with the xˈ-axis along the plate in 

direction of flow, zˈ-axis perpendicular to the plate and yˈ-axis is chosen perpendicular to the (xˈ, zˈ) plane. The plate is taken to be with 

constant heat flux.  It is further assumed that the fluid and the plate rotate in unison with constant angular velocity Ω about zˈ-axis, taken 

normal to the plate. A strong magnetic field Hₒ is acting along zˈ-axis and the plate is assume to be electrical non-conducting. Assuming 
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the plate zˈ = 0 to be infinite, the physical quantities depends on zˈ only. The equation of continuity 𝛻𝑞 = 0 gives on integration wˈ=

−𝑤ₒ(𝑤ₒ > 0) where 𝑞 = (𝑈, 𝑉, 𝑊). It is assumed that the induced magnetic field is negligible so that𝐻 = (0,0, 𝐻ₒ). The equation of 

conservation of electric charge 𝛻𝐽 = 0 gives Jz = constant where J = (Jx, Jy Jz). This constant is zero since Jz = 0 at the plate  which is 

electrically non-conducting. Thus, Jz =0 everywhere in the flow. In the rotating frame of reference the governing equations are:  

Momentum Equations 

−𝑤ₒ
𝑑𝑈

𝑑𝑧ˈ
− 2𝛺𝑣 = 𝑉

𝑑2𝑈

𝑑𝑧 ˈ2 + 𝑔𝛽(𝑇 − 𝑇∞) +
𝜇𝑒𝐻ₒ

𝜌
𝐽𝑦ˈ    ……..(1) 

−𝑤ₒ
𝑑𝑉

𝑑𝑧ˈ
− 2𝛺𝑈 = 𝑉

𝑑2𝑣

𝑑𝑧 ˈ2 −
𝜇𝑒𝐻ₒ

𝜌
𝐽𝑥ˈ      ……..(2) 

Energy Equation 

−𝑤ₒ
𝑑𝑇

𝑑𝑧ˈ
=

𝑘

𝜌𝐶𝑝

𝑑2𝑇

𝑑𝑧 ˈ2 +
𝜇

𝜌𝐶𝑝
[(

𝑑2𝑈

𝑑𝑧ˈ
)

2

+ (
𝑑𝑣

𝑑𝑧ˈ
)

2

]     ……..(3) 

The boundary conditions of the problem are 

𝑈 = 0, 𝑣 =  0 𝑎𝑛𝑑 
𝑑𝑇

𝑑𝑧ˈ
= −

𝑞ˈ

𝑘
 𝑎𝑡 𝑧ˈ = 0  

𝑈 → 0, 𝑣 → 0 𝑎𝑛𝑑 𝑇 → 0 𝑎𝑠 𝑧ˈ → ∞     ……..(4) 

 As mention above when the strength of the magnetic field is very large, Ohm’s law must be modified to include Hall currents as follows 

𝐽 +
𝜔𝑒𝜏𝑒

𝐻ₒ
𝐽𝑥𝐻⃗⃗⃗ = 𝜎[𝐸⃗⃗ + 𝜇𝑒𝑞⃗𝑥𝐻⃗⃗⃗]       …….(5) 

 Where 𝐸⃗⃗ is electric field, 𝜔𝑒 is the cyclotron frequency and 𝜏𝑒 is the collision time of electrons, 𝜎 is fluid conductivity and 𝜇𝑒 is 

magnetic permeability. 

  Under the usual assumptions the electron pressure, thermoelectric pressure and ionslip are negligible. We also assume that the electric 

field 𝐸⃗⃗ = 0 [Mayer(19)] using the above assumptions equation (5) give us 

Jxˈ + mJyˈ = 𝜎𝜇𝑒𝐻ₒ𝑉        ……..(6) 

Yyˈ -mJxˈ = - 𝜎𝜇𝑒𝐻ₒ𝑈        ……….(7) 

Where m = 𝜔𝑒𝜏𝑒 is Hall parameter. 

On solving (6) and (7), we get 

𝐽𝑥ˈ =
𝜎𝜇𝑒𝐻ₒ

1+𝑚2 (𝑈 + 𝑚𝑈)        ……..(8) 

and  

𝐽𝑦ˈ =
𝜎𝜇𝑒𝐻ₒ

1+𝑚2 (−𝑈 + 𝑚𝑈)        ……..(9) 

Now introducing the following non-dimensional quantities 

𝑧 =
𝑤ₒ𝑧ˈ

𝑉
,  

(𝑢, 𝑣) =
1

𝑤ₒ
(𝑈, 𝑉) , 

𝜃 =
𝑇−𝑇∞

𝑞ˈ𝑉
𝑘𝑤ₒ , 

𝐸 =
𝑤ₒ3

𝑞ˈ𝑉𝑐𝑝
 (Eckert number), 

𝑃𝑟 =  
𝜇𝑐𝑝

𝑘
 (Prandtl number), 

𝐺 =
𝑞ˈ𝑔𝛽𝑉2

𝑤ₒ4𝑘
 (Grashoff number), 

𝐸𝑘 =
𝛺𝑉

𝑤ₒ2 ( Ekman Number) 
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𝑀2 =
𝜇𝑒

2𝐻𝑜
2𝑉𝜎

𝜌𝑤ₒ2  (Hartmann number)       ……..(10) 

We get, 

−
𝑑𝑢

𝑑𝑧
+ 2𝐸𝑘𝑣 =

𝑑2𝑢

𝑑𝑧2 +
𝑀2

1+𝑚2
(−𝑢 + 𝑚𝑣) − 𝐺𝜃     ……..(11) 

−
𝑑𝑣

𝑑𝑧
+ 2𝐸𝑘𝑢 =

𝑑2𝑣

𝑑𝑧2 +
𝑀2

1+𝑚2
(𝑣 + 𝑚𝑢)      ……..(12) 

and  

−
𝑑𝜃

𝑑𝑧
=

1

𝑃𝑟

𝑑2𝜃

𝑑𝑧2 + 𝐸 [(
𝑑𝑢

𝑑𝑧
)

2

+ (
𝑑𝑣

𝑑𝑧
)

2

]        …….(13) 

and the boundary conditions are  

𝑢 = 0 , 𝑣 = 0 𝑎𝑛𝑑 
𝑑𝜃

𝑑𝑧
=  −1  𝑎𝑡 𝑧 = 0  

𝑢 = 0 , 𝑣 = 0 𝑎𝑛𝑑   𝜃 =  0  𝑎𝑠 𝑧 → ∞        ……(14) 

 

introducing q = u + iv, equations (11) to (14) can be written as  

𝑑2𝑞

𝑑𝑧2 +
𝑑𝑞

𝑑𝑧
− (2𝑖𝐸𝑘 +

𝑀2

1−𝑖𝑚
) 𝑞 = −𝐺𝜃      ……(15) 

𝑑2𝜃

𝑑𝑧2 + 𝑃𝑟
𝑑𝜃

𝑑𝑧
=  −𝑃𝑟𝐸

𝑑𝑞

𝑑𝑧

𝑑𝑞

𝑑𝑧
       ……(16) 

Where 𝑞 is the complex conjugate of q. 

The boundary conditions are 

𝑞 = 0 ,
𝑑𝜃

𝑑𝑧
=  −1  𝑎𝑡 𝑧 = 0  

𝑞 = 0 ,   𝜃 →  0  𝑎𝑠 𝑧 → ∞         …….(17) 

 3. SOLUTION OF THE PROBLEM 

 To solve the non-linear coupled equations (15) and (16) we consider a series solution in powers of the Eckert number E, assuming to be 

small as follows 

𝑞 = 𝑞ₒ + 𝐸𝑞1   

𝜃 = 𝜃ₒ + 𝐸𝜃1         ……(18) 

Substituting (18) in the equations (15) and (16) and equating the coefficient of different power of E  

𝑑2𝑞ₒ

𝑑𝑧2 +
𝑑𝑞ₒ

𝑑𝑧
− 𝑆𝑞ₒ =  −𝐺𝜃ₒ        ……..(19) 

𝑑2𝜃ₒ

𝑑𝑧2 + 𝑃𝑟
𝑑𝜃ₒ

𝑑𝑧
= 0        …….(20) 

𝑑2𝑞1

𝑑𝑧2 +
𝑑𝑞1

𝑑𝑧
− 𝑆𝑞1 = −𝐺𝜃1        …….(21) 

𝑑2𝜃1

𝑑𝑧2 + 𝑃𝑟
𝑑𝜃1

𝑑𝑧
=  −𝑃𝑟

𝑑𝑞ₒ

𝑑𝑧

𝑑𝑞ₒ

𝑑𝑧
        ..…..(22) 

Where 𝑆 = −2𝑖𝐸𝑘 +
𝑀2

1−𝑖𝑚
.  

The boundary conditions reduce to  

𝑞ₒ = 0, 𝑞1 = 0,
𝑑𝜃ₒ

𝑑𝑧
= −1,

𝑑𝜃1

𝑑𝑧
= 0 𝑎𝑡 𝑧 = 0  

𝑞ₒ = 𝑞1 → 0, 𝜃ₒ = 𝜃1 → 0 𝑎𝑠 𝑧 → ∞      ……(23)  
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the solutions of the equations (19) to (22) under boundary conditions (23) are obtained as 

𝑞ₒ =
𝐺(𝑛+𝑖𝑇)

𝑃𝑟𝑃𝑟 (𝑛2+𝑇2) 
(𝑒−ℎ1𝑧 − 𝑒−𝑃𝑟𝑧)        ……(24) 

𝜃ₒ =
1

𝑃𝑟
𝑒−𝑃𝑟𝑧         ……(25) 

𝑞1 = −
𝐺3

(𝑛2+𝑇2) 
[𝑒ℎ1𝑧𝐹2(0) − 𝐹2(𝑧)]      ……(26) 

𝜃1 = −
𝐺2

(𝑛2+𝑇2) 
[𝑒𝑃𝑟𝑧𝐹ˈ1(0) + 𝑃𝑟𝐹1(𝑧)]      …….(27) 

where 

 𝛼ₒ =
𝑀2

1+𝑚2,  

ℎ1 =  𝛼1 + 𝑖𝛽1  

ℎ1 = 𝛼1 − 𝑖𝛽,  

𝛼1 =
1+𝛼

2
 , 

𝛽1 =
𝛽

2
 , 

𝛼 = [
√(1+4𝛼ₒ)2+(8𝐸𝑘+𝛼ₒ𝑚)2+(1+4𝛼ₒ)

2
]

1

2
  

𝛽 = [
√(1+4𝛼ₒ)2+(8𝐸𝑘+𝛼ₒ𝑚)2−(1+4𝛼ₒ)

2
]

1

2
  

𝑛 = 𝑃𝑟2 − 𝑃𝑟 − 𝛼ₒ,  

𝑙 = 4𝑃𝑟2 − 2𝑃𝑟 − 𝛼ₒ,   

𝑇 =  2𝐸𝑘 + 𝛼ₒ𝑚,  

𝑚 = 4𝛼1
2 − 2𝛼1 − 𝛼ₒ , 

𝑌 =  𝛼1
2 − 𝛽1

2 + 𝛼1𝑃𝑟,  

𝑥1 = 2𝛼1𝑦 + 2𝛽1(2𝛼1 + 𝑃𝑟)  

𝑦1 = 2𝛽1𝑦 − 2𝛽1(2𝛼1 + 𝑃𝑟)  

𝑧1 = 𝑦2 + 𝛽1
2(2𝛼1 + 𝑃𝑟)2  

𝑥2 = 𝑎 𝑐𝑜𝑠𝛽1𝑧 + 𝛿𝛽1 𝑠𝑖𝑛𝛽1𝑧  

𝑦2 = 𝑎 𝑠𝑖𝑛 𝑠𝑖𝑛 𝛽1𝑧 − 𝛿𝛽1 𝑐𝑜𝑠𝛽1𝑧   

𝑧2 = 𝑗 − 2𝛼1𝑖𝑇  

𝑥3 = 𝑗(𝑥1𝑥2 + 𝑦1𝑦2) + 2𝑎𝑇2(𝑥1 𝑐𝑜𝑠𝛽1𝑧 + 𝑦1 𝑠𝑖𝑛 𝑠𝑖𝑛 𝛽1𝑧 )   

𝑦3 = 𝑗(𝑥1 𝑐𝑜𝑠𝛽1𝑧 + 𝑦1 𝑠𝑖𝑛𝛽1𝑧 − 2𝑎(𝑥1𝑥2 + 𝑦1𝑦2)   

𝑧3 = 𝑧2𝑧2,  

𝑎 = (𝛼1 + 𝑃𝑟)2 − (𝛼1 + 𝑃𝑟) − 𝛽1
2   

𝑗 =  𝑎2 − 𝑇2 + 𝛿2𝛽1
2  

𝛿 = 1 − 2(𝛼1 + 𝑃𝑟)  

𝐹1(𝑧) −
(𝛼1

2+𝛽1
2)

2𝛼1(2𝛼1−𝑃𝑟)
𝑒−2𝛼1𝑧 +

𝑒−2𝑃𝑟𝑧

2
− 𝑃𝑟

𝑒−(𝛼1+𝑃𝑟)𝑧

𝑧1
[𝑥1 𝑐𝑜𝑠 𝑐𝑜𝑠 𝛽1𝑧 + 𝑦1 𝑠𝑖𝑛 𝑠𝑖𝑛 𝛽1𝑧]      
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𝐹2(𝑧) =
𝐹1(0)(𝑛+𝑖𝑇)

(𝑛2+𝑇2)
𝑒−𝑃𝑟𝑧 − 𝑃𝑟 [

(𝛼1
2+𝛽1

2)(𝑚+𝑖𝑇)

2𝛼1(2𝛼1−𝑃𝑟)(𝑚2+𝑇2)
𝑒−2𝛼1𝑧 +

1

2

𝑙+𝑖𝑇

(𝑙2+𝑇2)
𝑒−2𝛼1𝑧 𝑃𝑟𝑒−(𝛼1+𝑃𝑟)𝑧

𝑧1𝑧3
(𝑥3 − 𝑖𝑦3)  

3. DISCUSSIONS  

  To study the effect of Hall current and viscos dissipation on the hydromagnetic  free convective flow in a rotating fluid, We have 

carried out the numerical calculations for different values of m (Hall Parameter), M (magnetic Parameter). we have plotted the non-

dimensional velocity and temperature fields for E = 0.01, Ek = 0.4, G = 5.0 and Pr = 1.0 in figure 1 and 2. 

 From figure 1 it is seen that with increase in m, both the primary velocity u and secondary velocity v decreases. However, for fixed m 

primary velocity decreases while secondary velocity increases with the increase of M. Figure 2 show that the non-dimensional 

temperature 𝜃 increase with m and decreases with M. 

 The components of the skin-friction at the plate in x and y-directions are 

𝜏𝑢 = (
𝑑𝑢

𝑑𝑧
)𝑧=0 = (

𝑑𝑢ₒ

𝑑𝑧
+ 𝐸

𝑑𝑢1

𝑑𝑧
)𝑧=0       …..(28) 

and    

𝜏𝑣 = (
𝑑𝑣

𝑑𝑧
)𝑧=0 = (

𝑑𝑣ₒ

𝑑𝑧
+ 𝐸

𝑑𝑣1

𝑑𝑧
)𝑧=0        …..(29) 

Dimensionless heat transfer coefficient Nu (Nusselt Number) is given by 

𝑁𝑢 =
1

𝜃(0)
           …(30) 

 

 

 

 

Table 1  

𝑀2 = 3.0        𝑀2 = 10.0 

m    Nu                  𝜏𝑢       - (𝜏𝑣)  Nu    𝜏𝑢           −(𝜏𝑣) 

0.5    0.9899  2.08  0.55  0.9975  1.35  0.31 

1.0   0.9843   2.15  0.81  0.9959  1.43  0.53 

2.0   0.9700  2.33  1.09  0.9909  1.62  0.81 

 From the table 1, it is seen that with the increase in m the skin-friction 𝜏𝑢 increases while the skin-friction 𝜏𝑣 decreases. Further, 𝜏𝑢 

decrease and 𝜏𝑣 increase with increase in M. It is also observe that the Nusselt number decreases with the increase in Hall parameter m 

and increases with increase in  magnetic parameter M.  It is important to note that the effect of constant heat flux is to decrease the 

Nusselt number as compared with constant temperature at the plate [Agrawal et.al. (13)].  
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