
www.ijcrt.org © 2016 IJCRT | Volume 4, Issue 3 August 2016 | ISSN: 2320-2882

IJCRT1134651 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 454

Identifying Deadlock Situations in Mobile Ad

Hoc Networks

P. Varaprasada Rao

Associate Professor

Dept. of Computer Science & Engineering

Gokaraju Rangaraju Institute of Engineering & Technology

Hyderabad, India

ABSTRACT

Many challenges have been facing

in Mobile Ad hoc networking due to

frequent changes in the network topology

and the lack of resources. Now a day’s a

lots of research is going on to support QoS

in the Internet and other networks,

although they are not sufficient for mobile

Ad hoc networks and still QoS support for

such networks remains an open problem.

In this paper, a new scheme has been

proposed for achieving QoS in terms of

packet delivery. The proposed method

adopts the snapshot algorithm of

distributed systems to store information

and the same will be forwarded to

destination using dynamic linking. The

performance of the proposed method is

assessed through its low processing

overhead and loop freedom.

Keywords: Deadlock, Snapshot

Algorithm,MANET, QoS.

1. INTRODUCTION

Collection of mobile devices equipped

with interfaces and networking capability

are collectively called as mobile ad hoc

wireless networks. Ad hoc can be mobile,

stand alone or networked. Such type of

devices can communicate with another

node within their region or outside their

region by multi hop techniques and each

mobile node operates not only as a host

but also as a router, forwarding packets

for other mobile nodes in the network that

may not be within direct wireless

transmission range of each other. Each

node participates in an ad hoc routing

protocol that allows it to discover “multi-

hop” paths through the network to any

other node [5].

 A mobile ad hoc network is also

called MANET. The main characteristic

of MANET strictly depends upon both

wireless link nature and node mobility

features. Basically this includes dynamic

topology, bandwidth, energy constraints,

security limitations and lack of

infrastructure [2]. MANET is viewed as

suitable systems which can support some

specific applications as virtual classrooms,

military communications, emergency

search and rescue operations, data

acquisition in hostile environments,

communications set up in Exhibitions,

conferences and meetings, in battle field

among soldiers to coordinate defence or

attack, at airport terminals for workers to

share files etc. Several routing protocols

for ad hoc networks have been proposed

as DSR and AODV. Major emphasis has

been on shortest routes in all these

http://www.ijcrt.org/

www.ijcrt.org © 2016 IJCRT | Volume 4, Issue 3 August 2016 | ISSN: 2320-2882

IJCRT1134651 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 455

protocols in response whenever break

occurs.

In this paper a new technique is

proposed to avoiding deadlock situation

between nodes based on snapshot

algorithm. Due to the frequent changes in

network topology and the lack of the

network resources both in the wireless

medium and in the mobile nodes, mobile

ad hoc networking becomes a challenging

task [1]. Effect of this technique a

MANET is free from deadlock situation.

2. CLASSIFICATION OF ROUTING

PROTOCOLS

A routing protocol is needed to send

packets from source node to destination

node. A routing protocol has to find a

route for packet delivery and make the

packet delivered to the correct destination

[3]. Routing Protocols have been a QOS

based Routing for Ad Hoc Mobile

networks. Routing Protocols in Ad Hoc

Networks can be categorized into two

types:

2.1 Proactive Protocols

In Proactive or Table Driven

routing protocols each node maintains one

or more tables containing routing

information to every other node in the

network. All nodes keep on updating these

tables to maintain latest view of the

network. Some of the famous table driven

or proactive protocols are: DBF [4], GSR

[5].

2.2 Reactive Protocols

In Reactive or On Demand routing

protocols, routes are created as and when

required. When a transmission occurs

from source to destination, it invokes the

route discovery procedure. The route

remains valid till destination is achieved

or until the route is no longer needed.

Some famous on demand routing

protocols are: DSR [6], AODV [8].

3. SNAPSHOT ALGORITHM

The proposed scheme takes care of

on detecting deadlock situation between

source node and destination node based on

snapshot algorithm. The Snapshot

algorithm helps to MANET to detect

deadlock based on maintaining state

information of presenting nodes in the

conversation.

The goal of this algorithm is to

record a set of processes of nodes and

channels states for a set of processes pi,

i=1, 2,…, N such that, even though the

combination of recorded processes may

have occurred at the same time, the

recorded global state is consistent.

The assumptions of algorithm:

 Neither process of nodes

norchannels fail.

 All channels are uni directional.

 FIFO based services are provided

channels.

 The graph of channels and

processes are strongly connected.

 Any processes may initiate a global

snapshot at any time.

The algorithm is defined two rules, the

marker sending rule and the marker

receiving rule.

Algorithm

Marker receiving rule for process Pi

On Pi’s receipt of a marker message over

channel C:

 if(Pi has not yet recorded its state)

 it records its process state

now;

 records the state of c as the

empty set;

http://www.ijcrt.org/

www.ijcrt.org © 2016 IJCRT | Volume 4, Issue 3 August 2016 | ISSN: 2320-2882

IJCRT1134651 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 456

 turns on recording of

messages arriving over other

incoming channels;

 else

 Pi records the state of c as the

set of messages it has

received over c since it saved

its state.

 endif

Marker sending rule for process Pi

After Pi has recorded its state, for each

outgoing channel C;Pi sends one marker

message over C

(before it sends any other messages over

C).

The marker sending rule obligates

processes to send a marker after they have

recorded their state. The marker receiving

rule obligates a process that has not

recorded its state to do so. In that case,

this is the first marker that it has received.

It notes which messages subsequently

arrive on the other incoming channels.

When a process that has already saved its

state receives a marker (on another

channel), it records the state of that

channel as the set of messages it received

on it’s since it saved its state.

Any process may begin the

algorithm at any time. It acts as though it

has received a marker and follows the

marker receiving rule. Thus it records its

state and begins to record messages

arriving over all its incoming channels,

several processes may initiate recording

concurrently in this way.

Illustration of the algorithm is for a system

for a system of two process, p1 and p2

connected by two unidirectional channels,

c1 and c2.

Figure 1: Two processes and their initial

states

The two processes trade in

‘widgets’.Process p1 sends orders for

widgets over c2 to p2 , enclosing payment

at the rate of $10per widget. Sometime

later, process p2 sends widgets along

channel c1 to p1 . Process p2 has already

received an order for five widgets, which

it will shortly dispatch to p1 .

Figure 2: The execution of the processes

The above diagram shows an

execution of the system while the state is

recorded. Processp1 records its state in the

actual global state S0, when the state of p1

is <$1000, 0>.Following the marker

sending rule, process p1 then emits a

marker message over itsoutgoing channel

c2 before it sends the next application-

level message: (Order 10,$100), over

channel c2 . The system enters actual

global state S1.

Before p2 receives the marker, it

emits an application message (five

widgets) overc1 in response to p1 ’s

previous order, yielding a new actual

global state S2 .

Now process p1 receives p2 ’s

message (five widgets), and p2 receives

themarker. Following the marker

receiving rule, p2 records its state as <$50,

http://www.ijcrt.org/

www.ijcrt.org © 2016 IJCRT | Volume 4, Issue 3 August 2016 | ISSN: 2320-2882

IJCRT1134651 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 457

1995> andthat of channel c2 as the empty

sequence. Following the marker sending

rule, it sends amarker message over c1.

When process p1 receives p2 ’s

marker message, it records the state of

channelc1 as the single message (five

widgets) that it received after it first

recorded its state.The final actual global

state is S3.

The final recorded state is p1 :

<$1000, 0>; p2 : <$50, 1995>; c1 :

<(fivewidgets)>; c2 : <>. Note that this

state differs from all the global states

through whichthe system actually passed.

Termination of the snapshot

algorithm • We assume that a process that

has received amarker message records its

state within a finite time and sends marker

messages overeach outgoing channel

within a finite time (even when it no

longer needs to sendapplication messages

over these channels). If there is a path of

communication channelsand processes

from a process pi to a process pj(j≠i), then

it is clear on theseassumptions that pj will

record its state a finite time after pi

recorded its state. Sincewe are assuming

the graph of processes and channels to be

strongly connected, it follows that all

processes will have recorded their states

and the states of incoming channels afinite

time after some process initially records

its state.

Characterizing the observed state •

The snapshot algorithm selects a cut from

the historyof the execution. The cut, and

therefore the state recorded by this

algorithm, isconsistent. To see this, let ei

and ej be events occurring at pi and pj ,

respectively, suchthat ei→ ej . We assert

that if ej is in the cut, then ei is in the cut.

That is, if ej occurredbefore pj recorded its

state, then ei must have occurred before pi

recorded its state.This is obvious if the

two processes are the same, so we shall

assume that j ≠i . Assume,for the moment,

the opposite of what we wish to prove:

that pi recorded its state beforeei occurred.

Consider the sequence of H messages m1,

m2,…, mH((H ≥ 1), giving riseto the

relation ei→ej . By FIFO ordering over

the channels that these messagestraverse,

and by the marker sending and receiving

rules, a marker message would

havereached pj ahead of each of

m1,m2,…,mH . By the marker receiving

rule, pj wouldtherefore have recorded its

state before the event ej . This contradicts

our assumptionthat ej is in the cut, and we

are done.

We may further establish a

reachability relation between the observed

global stateand the initial and final global

states when the algorithm runs. Let Sys=

e0,e1,….bethe linearization of the system

as it executed (where two events occurred

at exactly thesame time, we order them

according to process identifiers). Let Sinit

be the global stateimmediately before the

first process recorded its state; let Sfinal

be the global state whenthe snapshot

algorithm terminates, immediately after

the last state-recording action; andlet

Ssnap be the recorded global state.

We shall find a permutation of Sys,

Sys’=e’0,e’1,e’2,…. such that all three

statesSinit , Ssnap and Sfinal occur in Sys’

, Ssnap is reachable from Sinit in Sys’ ,

and Sfinalis reachable from Ssnap in Sys’.

Figure 3: Reachability between states in

the snapshot algorithm

The above diagram shows this

situation, in which the upperlinearization

is Sys and the lower linearization is Sys’.

http://www.ijcrt.org/

www.ijcrt.org © 2016 IJCRT | Volume 4, Issue 3 August 2016 | ISSN: 2320-2882

IJCRT1134651 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 458

We derive Sys’ from Sys by first

categorizing all events in Sys as pre-

snapevents or post-snap events. A pre-

snap event at process pi is one that

occurred at pibefore it recorded its state;

all other events are post-snap events. It is

important tounderstand that a post-snap

event may occur before a pre-snap event

in Sys , if the eventsoccur at different

processes. (Of course, no post-snap event

may occur before a pre-snapevent at the

same process.)

We shall show how we may order

all pre-snap events before post-snap

events toobtain Sys’. Suppose that ejis a

post-snap event at one process, and ej + 1 is

a pre-snap event at a different process. It

cannot be that ej → ej + 1 for then these two

events wouldbe the sending and receiving

of a message, respectively. A marker

message would haveto have preceded the

message, making the reception of the

message a post-snap event,but by

assumption ej+1 is a pre-snap event. We

may therefore swap the two eventswithout

violating the happened-before relation

(that is, the resultant sequence of

eventsremains a linearization). The swap

does not introduce new process states,

since we donot alter the order in which

events occur at any individual process.

We continue swapping pairs of

adjacent events in this way as necessary

until wehave ordered all pre-snap events

e’0 ,e’1 ,e’2 ,… e’R– 1 prior to all post-snap

eventse’R ,e’R + 1,e’R + 2, …with Sys’ the

resulting execution. For each process, the

set ofevents in e’0,e’1e’2,…,e’R – 1 that

occurred at it is exactly the set of events

that itexperienced before it recorded its

state. Therefore the state of each process

at that point,and the state of the

communication channels, is that of the

global state Ssnap recordedby the

algorithm. We have disturbed neither of

the state’sSinit or Sfinal with which

thelinearization begins and ends. So we

have established the reachability

relationship.

Stability and the reachability of the

observed state • The reachability property

of thesnapshot algorithm is useful for

detecting stable predicates. In general, any

non-stablepredicate we establish as being

True in the state Ssnap may or may not

have been Truein the actual execution

whose global state we recorded. However,

if a stable predicate isTrue in the state

Ssnap then we may conclude that the

predicate is True in the state Sfinal ,since

by definition a stable predicate that is True

of a state S is also True of any

statereachable from S. Similarly, if the

predicate evaluates to False for Ssnap ,

then it mustalso be False for Sinit .

Global states

The examplesof distributed garbage

collection, deadlock detection, termination

detection anddebugging:

Distributed garbage collection: An object

is considered to be garbage if there are

nolonger any references to it anywhere in

the distributed system. The memory taken

upby that object can be reclaimed once it

is known to be garbage. To check that

anobject is garbage, we must verify that

there are no references to it anywhere in

thesystem.

Distributed deadlock detection: A

distributed deadlock occurs when each of

acollection of processes waits for another

process to send it a message, and

wherethere is a cycle in the graph of this

‘waits-for’ relationship.

Distributed termination detection: The

problem here is how to detect that

adistributed algorithm has terminated.

Detecting termination is a problem that

soundsdeceptively easy to solve: it seems

at first only necessary to test whether each

http://www.ijcrt.org/

www.ijcrt.org © 2016 IJCRT | Volume 4, Issue 3 August 2016 | ISSN: 2320-2882

IJCRT1134651 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 459

processhas halted. To see that this is not

so, consider a distributed algorithm

executed by twoprocesses p1 and p2 ,

each of which may request values from

the other.Instantaneously, we may find

that a process is either active or passive –

a passiveprocess is not engaged in any

activity of its own but is prepared to

respond with avalue requested by the

other. Suppose we discover that p1 is

passive and that p2 is passive. To see that

we may not conclude that the algorithm

hasterminated, consider the following

scenario: when we tested p1 for passivity,

amessage was on its way from p2 , which

became passive immediately after

sendingit. On receipt of the message, p1

became active again – after we had found

it to bepassive. The algorithm had not

terminated.

Distributed debugging: Distributed

systems are complex to debug, and care

needs to be taken in establishing what

occurred during the execution.For

example, suppose Smith has written an

application in which each process

picontains a variable xi(i = 1, 2,…,N).

The variables change as the

programexecutes, but they are required

always to be within a value δ of one

another.Unfortunately, there is a bug in

the program, and Smith suspects that

under certaincircumstances |xi – xj|> δ for

some i and j, breaking her consistency

constraints. Herproblem is that this

relationship must be evaluated for values

of the variables thatoccur at the same

time.

Each of the problems above has

specific solutions tailored to it; but they all

illustrate theneed to observe a global state,

and so motivate a general approach.

It is possible in principle to observe

the succession of states of an individual

process, butthe question of how to

ascertain a global state of the system – the

state of the collectionof processes – is

much harder to address.The essential

problem is the absence of global time. If

all processes had perfectlysynchronized

clocks, then we could agree on a time at

which each process would recordits state –

the result would be an actual global state

of the system. From the collection

ofprocess states we could tell, for

example, whether the processes were

deadlocked. Butwe cannot achieve perfect

clock synchronization, so this method is

not available to us.So we might ask

whether we can assemble a meaningful

global state from localstates recorded at

different real times.

The answer is a qualified ‘yes’, but

in order to seethis we must first introduce

some definitions.

Let us return to our general

system of N processes pi (i = 1, 2, … ,N

), whoseexecution we wish to study. We

said above that a series of events occurs at

each process,and that we may characterize

the execution of each process by its

history:

history(pi)=hi=<ei
0,e

i
1,e

i
2, ……>

Similarly, we may consider any

finite prefix of the process’s history:

Hi
0=<ei

0,ei
1, … , ei

k>

Each event either is an internal

action of the process (for example, the

updating of oneof its variables), or is the

sending or receipt of a message over the

communicationchannels that connect the

processes.

In principle, we can record what

occurred in ’s execution. Each process

canrecord the events that take place there,

and the succession of states it passes

through. Wedenote by si
kthe state of

process piimmediately before the kth event

occurs, so that si
0 is the initial state of pi.

We noted in the examples above that the

http://www.ijcrt.org/

www.ijcrt.org © 2016 IJCRT | Volume 4, Issue 3 August 2016 | ISSN: 2320-2882

IJCRT1134651 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 460

state of thecommunication channels is

sometimes relevant. Rather than

introducing a new type ofstate, we make

the processes record the sending or receipt

of all messages as part of theirstate. If we

find that process pi has recorded that it

sent a message m to processpj(i≠j), then by

examining whether pj has received that

message we can infer whetheror not m is

part of the state of the channel between pi

and pj.

We can also form the global history

of as the union of the individual

processhistories:

H= h0U h1U … UhN – 1

Mathematically, we can take any set of

states of the individual processes to form a

globalstateS= (s1,s2, …, sN). But which

global states are meaningful – that is,

whichprocess states could have occurred

at the same time? A global state

corresponds to initialprefixes of the

individual process histories. A cut of the

system’s execution is a subsetof its global

history that is a union of prefixes of

process histories:

C = h1
c1 U h2

c2U, …., UhN
cN

The state si in the global state S

corresponding to the cut C is that of pi

immediatelyafter the last event processed

by pi in the cut – ei
ci(i = 1,2, …,N). The

set of events{ei
ci: i = 1, 2, …, N } is called

the frontier of the cut [7].

4. PROPOSED METHOD

The routing protocols provide a

route but not detect a deadlock situation.

The snapshot algorithm detects a deadlock

situation between source and destination.

The channels in Ad-Hoc networks will be

added dynamically. Even though, the

processes identified by “snapshot”

algorithm will be forwarded through, by

linking the channels dynamically.

The snapshot algorithm detects the

deadlock situation in between nodes and

the information maintained in separate file

similar to log file. By verifying this by file

one can assess and avoids the sending

information to other node in the channel.

5. CONCLUSION

A new scheme has been proposes to detect

deadlock situation between source and

destination. This can be incorporated

effectively in MANETs to improve low

processing overhead and loop freedom.

6. REFERENCES

[1] National Science foundation,

“Research priorities in Wireless and

mobile networking”, Available at

www.cise.nsf.gov.

[2] E.M. Royer and C.K. Toh, “A review

of current routing protocols for ad

hoc mobile wireless networks”. IEEE

Personal Communications, pages 46–

55, April 1999.

[3] Andrew TanenBaum, “Computer

Networks”, Prentice Hall, New

Jersey, 2002.

[4] Tsu-Wei Chen, Mario Gerla, "Global

State Routing: A New Routing

Scheme for Ad-hoc Wireless

Networks"Proceedings IEEE ICC

1998.

[5] S. Murthy, J.J. Garcia-Luna-Aceves,

"An Efficient Routing Protocol for

Wireless Networks", ACM Mobile

Networks and App. Journal, Special

Issue on Routing in Mobile

Communication Networks, Oct.

1996, pp. 183-97.

[6] Navid Nikaein, Christina Bonnet,

“Dynamic Routing algorithm”,

available at Institute

Eurecom,Navid.Nikaein@eurocom.fr

.

http://www.ijcrt.org/

www.ijcrt.org © 2016 IJCRT | Volume 4, Issue 3 August 2016 | ISSN: 2320-2882

IJCRT1134651 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 461

[7] George Coulouris, Jean Dollimore,

Tim Kindberg, Gordon Blair,

“Distributed Systems Concepts and

Design”, 5th Edition,Pearson, 2012.

[8] NS notes and documentation

www.isi.edu/vint.

http://www.ijcrt.org/

