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ABSTRACT 

Concentration probability criterion and generalized classes of estimators in restricted regression 

model, to study two generalized families of estimators from the literature in linear regression model 

under exact linear constraints of parameter vector when the criterion of choice of estimators is taken 

to be concentration probability of estimator around the true parameter. Following small sigma 

asymptotic approach, the sampling distributions and the concentration probabilities of the two 

generalized families of estimators are derived and the efficiency   is discussed with respect to the 

criterion of concentration probability. 

 

2. THE MODEL AND THE ESTIMATORS 

 Consider the classical linear regression model 

𝑦 = 𝑥𝛽 + 𝑢 

Where y is a Tx1 vector observation on the variable to tbe explained, X is a Txp matrix of observations on p 

explanatory variables, 𝛽 is a px1 vector of unknown regression coefficients and u is a Tx1 vector of 

disturbances following normal distributions with mean vector zero and dispersion matrix 𝜎2𝐼𝑇, 𝜎2 

being the unknown variance of disturbances. Let the available apriori information on the coefficient 

vector   be in the from of linear constraints, given by  

𝑞 = 𝑄𝛽 

Where q is the (Jx1) (j<P) known vector and Q is a known (Jxp) full row rank matrix. 

 For the model (2.1), we known that the ordinary least squares (OLS) estimator  

𝑏 = (𝑥′𝑥)−1𝑋′𝑦 

Is the best linear unbiased estimator of 𝛽 and dispersion matrix 𝜎2(𝑥′𝑥)−1 

Incorporation of linear constraints in the model, leads to the restricted least squares estimator given 

by 

𝑏𝑅 = 𝑏 + (𝑥′𝑥)−1𝑄′[𝑄(𝑥′𝑥)−1𝑄′]−1(𝑞 − 𝑄𝑏) 

http://www.ijcrt.org/


www.ijcrt.org                                                            © 2020 IJCRT | Volume 8, Issue 2 April 2020 | ISSN: 2320-2882 

IJCRT1134495 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 299 
 

Which is unbiased and is distributed normally with mean vector β and variance covariance matrix 

𝐸(𝑏𝑅 − 𝛽)(𝑏𝑅 − 𝛽)′ =  𝜎2Ω 

Where Ω = (x′x)−1 − (x′x)−1Q′[Q(x′x)−1Q′]−1(𝑥′𝑥)−1 

Satisfying the apriopri restriction (2.2), Srivastava and Chandra (1991) considered the following two 

families 𝑏𝑅𝑆 𝑎𝑛𝑑 𝑏𝑆𝑅  of estimators 

bRS = bR −
k(y − xb)′(y − xb)

b′cb
Ωx′xb 

= bR − 𝑘 𝑧 Ω 𝑥′𝑥 𝑏 (2.7) 

𝑎𝑛𝑑 

𝑏𝑆𝑅 = [𝐼𝑝 −
𝐾(𝑦 − 𝑥𝑏𝑅)′(𝑦 − 𝑥𝑏𝑅)

𝑏𝑅𝐶𝑏𝑅
] 𝑏𝑅 

= [𝐼𝑝 − 𝑘 𝑧∗ 𝑥′𝑥]𝑏𝑅 

𝑤ℎ𝑒𝑟𝑒 𝑧 =
(𝑦 − 𝑥𝑏)′(𝑦 − 𝑥𝑏)

𝑏′𝐶𝑏
,                        𝑧∗ =

(𝑦 − 𝑥𝑏𝑅)′(𝑦 − 𝑥𝑏𝑅)

𝑏𝑅
′ 𝐶𝑏𝑅

 

𝑘 𝑖𝑠 𝑎 characterizing scalar greater than zero and C is a characterizing positive definite symmetric 

matrix. 

Following small disturbance asymptotic theory and taking general quadratic loss function, Srivastava 

and Chandra(1991) derived the approximate risk up to the order O(σ4) for the families 𝑏𝑅𝑆 𝑎𝑛𝑑 𝑏𝑆𝑅 of 

estimators and found some dominance conditions for their superiority.  

 Considering the concentration probabilities of the estimators 𝑏𝑅𝑆 𝑎𝑛𝑑 𝑏𝑆𝑅  around β, Shukla 

(1993) examined their concentration optimality. 

Singh (1994) defined two more general families 𝑏𝑔𝑎𝑛𝑑 𝑏ℎ of estimators as 

𝑏𝑔 = 𝑏𝑅 + 𝑔(𝑧) Ω 𝑥′𝑥 𝑏 

And  

𝑏ℎ = [𝐼𝑝 + ℎ(𝑧∗) Ω  𝑥′𝑥 ]𝑏𝑅 

Where g(z) and h(z*) satisfying the validity condition of Taylor’s (Maclaurian’s ) series expansion with 

appropriate finite expectation and having first two derivatives bounded, are functions are functions of 

z and z* respectively such that g(z = 0) = 0,  g(z)  = O(σ2),  h ( z*  = 0 )  =  0,  h(z*)  = O(σ2) and z , z* 

have at least  𝑘(≥ 4) finite moments, following small σ asymptotic approach, Singh derived the risk 

function of 𝑏𝑔 𝑎𝑛𝑑  𝑏ℎ with respect to a general quadratic loss functions and studied their properties. 

Here, we analyze the properties of the two generalized families of estimators 𝑏𝑔 𝑎𝑛𝑑 𝑏ℎ by Singh from 

the criterion of concentration probability around the true unknown parameter and compare them with 

the existing estimators in search of better ones. 
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3. CONCENTRATION PROBABILITIES OF THE ESTIMATORS bg AND bh  

We first derive the small sigma asymptotic expression for the sampling distribution of the estimators 

𝑏𝑔 𝑎𝑛𝑑 𝑏ℎ. 

Rewriting the model (2.1) as  

𝑦 = 𝛽 + 𝜎v 

Where v follows multivariate normal distribution with mean we now define a vector 

𝑟𝑔 =
1

𝜎
Ω−

1
2(𝑏𝑔 − 𝛽) 

= 𝐴0 + 𝜎𝐴1 + 𝜎2𝐴2 + 𝜎3𝐴3 + 𝜎4𝐴4       (3.7) 

𝑡ℎ𝑒 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑟𝑔up to terms of order O( 𝜎3) is given by  

 ϕg(ℎ) = 𝐸(𝑒𝑖ℎ′𝑟𝑔) 

 = 𝐸(𝑒𝑖ℎ′𝐴0) 𝑒{𝜎𝑖ℎ′𝐴1+𝜎2𝑖ℎ′𝐴2+𝜎3𝑖ℎ′𝐴3+𝑂(𝜎4)} 

= 𝐸(𝑒𝑖ℎ′𝐴0) [ 1 +  +𝜎(𝑖ℎ′𝐴1) +  𝜎2 {(𝑖ℎ′𝐴2 +
1

2
(𝑖ℎ′𝐴1)2 )} + 𝜎3{(𝑖ℎ′𝐴3 + (𝑖ℎ′𝐴1 )(𝑖ℎ′𝐴2)}

+
1

6
(𝑖ℎ′𝐴1)3]  

We have the characteristic function 

ϕg(ℎ) = [1 + 𝜎ϕ1 + 𝜎2ϕ2 + 𝜎3ϕ3] 𝑒−
1
2ℎ′ℎ 

 

By inversion theorem, the joint probability density function of the elements of 𝑟𝑔 is given by 

𝑔(𝑟𝑔) =
1

(2𝜋)𝑃
 ∫ … … . . ∫ 𝑒−𝑖ℎ′𝑟𝑔

∞

−∞

∞

−∞

ϕg(ℎ) 𝑑ℎ       (3.11) 

Substituting ϕg(ℎ) from (3.10) in (3.11) and for a fixed vector a and a fixed matrix A, utilizing the 

following result; 

 

we obtain the joint probability density function of 𝑟𝑔 to order O(𝜎3)  to be  

𝑔(𝑟𝑔) = (1 + 𝜎ϛ1 + 𝜎2ϛ2  + 𝜎3ϛ3) 𝜉(𝑟𝑔) 

 

For �̅� =(�̅�1, �̅�2 … .. �̅�𝑝 ),  when �̅�𝑗 , j=1,2 ….P are arbitrarily chosen positive constants, the 

concentration probability associated with the estimator 𝑏𝑔 around the parameter vector  𝛽 in 

the region bounded by the constants �̅�1, �̅�2 … .. �̅�𝑝 in the p - dimensional ecludian space is 

given by 

𝐶𝑃(𝑏𝑔) = 𝑃 ( |𝑏𝑔 − 𝛽|<  −) 

 = 𝑃{|𝑟𝑔𝑗| < 𝑚𝑗; 𝑗 = 1,2,3, … … , 𝑝} 

where 𝑟𝑔𝑗 is the 𝐽𝑡ℎ element of the vector 𝑟𝑔 and the constants 𝑚𝑗
′𝑠(𝑗 = 1,2, … , 𝑝) are the 

elements of the vector 𝑚 =
1

𝜎
Ω−

1

2 �̅̅̅� 

  For fixed vector a and fixed matrix A, and for the region bounded by the column vector m in 

http://www.ijcrt.org/


www.ijcrt.org                                                            © 2020 IJCRT | Volume 8, Issue 2 April 2020 | ISSN: 2320-2882 

IJCRT1134495 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 301 
 

the p- dimensional Ecludian space, we have  

 

    Nothing the concentration probability cf estimator 𝑏𝑔 around  𝛽 for the region bounded by 

the constants �̅�1, �̅�2 … .. �̅�𝑝 in the p- dimensional Ecludian space to be  

𝐶𝑃(𝑏𝑔) ==  ∫ … . . . . . . ∫ 𝑔(𝑟𝑔)

𝑚1

−𝑚1

 𝑑𝑟𝑔1 … … … … 𝑑𝑟𝑔𝑝

𝑚𝑝

−𝑚𝑝

 

and using the results of(3.12) and (3.13) in (3.14), we have  

 

𝐶𝑃(𝑏𝑔) = [1 −
𝑛𝑔′(0)𝜎

𝜃
{𝑡𝑟 𝐴 𝐸 +

(𝑛 + 2)𝑔′(0)

2𝜃
 (𝛼1𝐸𝛼1)}] ϕ( 

 

where E = diag.  (𝑒1, 𝑒2, … , 𝑒𝑝) 

 

For g’(0) = K ( a characterizing scalar greater than 0) and Q → 0, 𝑏𝑔 reduces to stein – rule estimator 

𝑏𝑠 = [1 − 𝑘
(𝑦 − 𝑥𝑏)′(𝑦 − 𝑥𝑏)

𝑏′𝐶𝑏
 ] 𝑏, 

     for K=0 and Q≠0, 𝑏𝑔 reduces to the restricted regression  estimator 𝑏𝑅  and  for  K = 0 and Q → 

0, 𝑏𝑔 reduces to the ordinary least square estimator b so that the concentration probabilities of the stein 

– rule estimator 𝑏𝑠, the restricted regression estimator 𝑏𝑟 and the ordinary least square estimator b 

around the parameter 𝛽 are given by  

𝐶𝑃(𝑏𝑠) = [1 +
𝑛𝑘𝜌2

𝜃
{𝑡𝑟 �̃� 𝐸 −

(𝑛 + 2)𝑘

2𝜃
. (𝛼1

∗ 𝐸𝛼1
∗)}] 

𝐶𝑃(𝑏𝑟) = ϕ(m)    (3.18) 

𝐶𝑃(𝑏) =  ϕ(m∗)        (3.19) 

ϕ(m∗) =  ∫ … … … . . ∫ 𝜉(𝑟𝑔) 

𝑚1

−𝑚1

𝑚

−𝑚

𝑑𝑟𝑔1   … … . . . . 𝑑𝑟𝑔𝑝  

On the same lines as for bg the concentration probability of the estimator bh around 𝛽is given by 

𝐶𝑃(𝑏ℎ) = [ 1 −
(𝑛+𝐽)ℎ′(0)𝜌2

𝜃
{𝑡𝑟 𝐴 𝐸 +

(𝑛+𝐽+2)ℎ′(0)

2𝜃
. (𝛼1𝐸𝛼1)}]  ϕ(m), (3.20) 

Where h’ (0) is the first derivative of h(z* ) with respect to z* at z*=0, E= diag.  (𝑒1, 𝑒2, … , 𝑒𝑝) 

 

4 COMPRISON OF CONCENTRATION PROBILITIES  

To compare the performance of the generalized estimator bg  with the restricted regression estimator 

bR on the criterion of concentration probability, we have  

𝐶𝑃(𝑏𝑔) − 𝐶𝑃(𝑏𝑅) = [
−𝑛𝑔′(0)𝜎2

𝜃
{𝑡𝑟 𝐴 𝐸 +

(𝑛+2)𝑔′(0)

2𝜃
 . (𝛼1

′ 𝐸𝛼1)}] ϕ(m)  

We observe that the estimator bg is superior to the restricted regression estimator bR based on the 

criterion of concentration probability to order 0(𝜎3),if 
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0 < −𝑔′(0) <
2𝑡𝑟 𝐴 𝐸 𝛽′𝐶𝛽

(𝑛 + 2)𝛼1
′ 𝐸𝛼1

,  

0 < −𝑔′(0) <
2

𝑛 + 2

∑ 𝑒𝑗
∗𝑝

𝑗 − 2𝑒𝑃
∗

�̅�ℎ̅ [𝐸Ω
1
2(𝑥′𝑥)𝐶−1(𝑥′𝑥)𝐺Ω

1
2]

 

For C = (X’X) or Ω-1 , the superiority condition of the estimator bg over bR turns out to be  

0 < −𝑔′(0) <
2

𝑛 + 2

(∑ 𝑒𝑗
∗ − 2𝑒𝑃

∗  𝑃
𝑗=1 )

𝑒𝑃
∗  

In particular when all the elements of constant vector m are equal, that is, 

𝑤ℎ𝑒𝑛 𝑚𝑗 = 𝑚0 𝑎𝑛𝑑 

𝑒𝑗 =
𝑚0𝑒−

1
2

𝑚0
2

∫ 𝑒
−

1
2𝑟

𝑔𝑗
𝑑𝑟𝑔𝑗

2
𝑚0

0

  ;       𝑗 = 1,2,3,4 … … … 𝑃, 

The concentration dominance condition of the estimator bg over bR becomes 

0 < −𝑔′(0) <
2(𝑝 − 2)

𝑛 + 2
 

To compare the performance of the generalized estimator bh with restricted regression estimator br on 

the criterion of concentration probability, we have  

𝐶𝑃(𝑏ℎ) − 𝐶𝑃(𝑏𝑅) = −
(𝑛+𝐽)

𝜃
ℎ′(0)𝜎2 {𝑡𝑟 𝐴𝐸 −

(𝑛+𝐽+2)ℎ′(0)

2𝜃
(𝛼1

′ 𝐸𝛼1) } ϕ(m)  

The estimator bh is superior to the restricted regression estimator bR base on the criterion of 

concentration probability to order O(σ3), if 

0 <  −ℎ′(0) < 2𝑡𝑟 𝐴𝐸
𝛽′𝐶𝛽

(𝑛 + 𝐽 + 2)(𝛼1
′ 𝐸𝛼1)

 

Which holds true at least as long as  

 

0 <  −ℎ′(0) <
2(∑ 𝑒𝑗

∗𝑝
𝑗=1 − 2𝑒𝑝

∗)

(𝑛 + 𝐽 + 2)𝐶ℎ̅̅̅̅ {𝐸Ω
1
2(𝑥′𝑥)𝐶−1(𝑥′𝑥) Ω

1
2}

 

For 𝐶 = (𝑋′𝑋) 𝑜𝑟 Ω−1 ,the superiority condition of the estimator 𝑏ℎ over 𝑏𝑅 becomes 

0 < [−ℎ′(0)] <
2

(𝑛 + 𝐽 + 2)

(∑ 𝑒𝑗
∗𝑝

𝑗=1 − 2𝑒𝑝
∗)

𝑒𝑝
∗

 

In particular, when all the elements of the constant vector 𝑚 are equal,  𝑚𝑗 = 𝑚0 and 

𝑒𝑗 =
𝑚0 (𝑒−

1
2𝑚0

2

)

(∫ 𝑒
−

1
2𝑟𝑔𝑗𝑑𝑟𝑔𝑗

2
𝑚0

0
)

; 𝑗 = 1,2,3, , … . . , 𝑝, 
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The concentration dominance condition of the estimator 𝑏ℎ𝑜𝑣𝑒𝑟 𝑏𝑅becomes 

0 < [−ℎ′(0)] <
2(𝑝 − 2)

(𝑛 + 𝐽 + 2)
 

 

 5. CONCLUDING REMARK 

(a) All the result of Shukla (1993) may be easily seen to be special cases of this general study based on 

the concentration probability around true parameter. In particular, it may be easily seen that the value of 

𝑔′(0) 𝑖𝑠 − 𝑘 for the estimator 𝑏𝑅𝑆 so that by substituting this value 𝑔′(0) =  −𝑘 in general efficiency 

condition based on the criterion of concentration probability around the true coefficient vector 𝛽, we get the 

same condition for 𝑏𝑅𝑆 to be better then 𝑏𝑅 as obtained by Shukla (1993). 

(b) For k and k1 being the characterizing scalars, the estimator 

𝑏𝑔1
= 𝑏𝑅 − 𝑘[(1 + 𝑧)𝑘1 − 1] Ω𝑥′ 𝑥 𝑏 

 

Belonging to the generalized class 𝑏𝑔 of estimators, has the value  

𝑔′(0) =  −𝑘𝑘1 

Which, when substituted in the general efficiency condition gives the efficiency condition  

0 < 𝑘𝑘1 <
2(𝑝 − 2)

(𝑛 + 2)
  

For 𝑏𝑔1𝑡𝑜 be better than 𝑏𝑅 based on the concentration probability criterion. It is to be noted that, for 𝑘1 = 1 , 

the efficiency condition reduces to the condition 0 < 𝑘1 < 2
(𝑝−2)

(𝑛+2)
  

 For 𝑏𝑅𝑆 𝑡𝑜   be better then 𝑏𝑅 as obtained by Shukla (1993). Further, for 0 < 𝑘1 < 1 , the range of the 

condition for the 𝑏𝑔1 to be better then 𝑏𝑅 is wider than that of the condition for 𝑏𝑅𝑆 to be better than   

𝑏𝑟 , hence in the extended range of the efficiency condition over the efficiency condition the estimator 𝑏𝑔1 is 

better than both the estimators 𝑏𝑅𝑆 and 𝑏𝑅 in the sense of having more concentration probability around the 

true parameter 𝛽. 

(c )  Considering the estimator 

𝑏ℎ1
= 𝑏𝑅 − 𝑘[(1 + 𝑧∗)𝑘1 − 1 ] Ω 𝑥′𝑥 𝑏𝑅 

Belonging to the generalized class 𝑏ℎ of estimators, we have the value of  

ℎ′(0) =  −𝑘 𝑘1 

And similar results as for the comparison of 𝑏𝑔1
 𝑎𝑛𝑑 𝑏𝑅 , hold while comparing the estimator 𝑏ℎ1

 𝑤𝑖𝑡ℎ 𝑏𝑆𝑅. 
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