CONCENTRATION PROBABILITY CRITERION AND GENERALIZED CLASS OF ESTIMATORS IN RESTRICTED REGRESSION MODEL

Dr. SYED QAIM AKBAR RIZVI
Department of Statistics
SHIA P.G. COLLEGE,
LUCKNOW UNIVERSITY, LUCKNOW.

ABSTRACT
Concentration probability criterion and generalized classes of estimators in restricted regression model, to study two generalized families of estimators from the literature in linear regression model under exact linear constraints of parameter vector when the criterion of choice of estimators is taken to be concentration probability of estimator around the true parameter. Following small sigma asymptotic approach, the sampling distributions and the concentration probabilities of the two generalized families of estimators are derived and the efficiency is discussed with respect to the criterion of concentration probability.

2. THE MODEL AND THE ESTIMATORS
Consider the classical linear regression model

\[y = x\beta + u \]

Where \(y \) is a \(T \times 1 \) vector observation on the variable to be explained, \(X \) is a \(T \times p \) matrix of observations on \(p \) explanatory variables, \(\beta \) is a \(p \times 1 \) vector of unknown regression coefficients and \(u \) is a \(T \times 1 \) vector of disturbances following normal distributions with mean vector zero and dispersion matrix \(\sigma^2 I_T \), \(\sigma^2 \) being the unknown variance of disturbances. Let the available apriori information on the coefficient vector be in the form of linear constraints, given by

\[q = Q\beta \]

Where \(q \) is the \((J \times 1) \) \((j<P)\) known vector and \(Q \) is a known \((J \times p) \) full row rank matrix.

For the model (2.1), we known that the ordinary least squares (OLS) estimator

\[b = (x'x)^{-1}X'y \]

Is the best linear unbiased estimator of \(\beta \) and dispersion matrix \(\sigma^2(x'x)^{-1} \)

Incorporation of linear constraints in the model, leads to the restricted least squares estimator given by

\[b_R = b + (x'x)^{-1}Q'[Q(x'x)^{-1}Q']^{-1}(q - Qb) \]
Which is unbiased and is distributed normally with mean vector β and variance covariance matrix

$$E(b_R - \beta)(b_R - \beta)' = \sigma^2 \Omega$$

Where $\Omega = (x'x)^{-1} - (x'x)^{-1}Q'[Q(x'x)^{-1}Q']^{-1}(x'x)^{-1}$

Satisfying the appropriate restriction (2.2), Srivastava and Chandra (1991) considered the following two families b_{RS} and b_{SR} of estimators

$$b_{RS} = b_R - \frac{k(y - xb)'(y - xb)}{b'cb} \Omega x'xb$$

$$= b_R - k z \Omega x'x b$$ (2.7)

and

$$b_{SR} = \left[I_p - \frac{K(y - x_{bR})'(y - x_{bR})}{b_{R}C_{bR}} \right] b_{R}$$

$$= \left[I_p - k z^* x'x \right] b_{R}$$

where $z = \frac{(y - xb)'(y - xb)}{b'Cb}$, $z^* = \frac{(y - x_{bR})'(y - x_{bR})}{b'_{R}Cb_{R}}$

k is a characterizing scalar greater than zero and C is a characterizing positive definite symmetric matrix.

Following small disturbance asymptotic theory and taking general quadratic loss function, Srivastava and Chandra (1991) derived the approximate risk up to the order $O(\sigma^4)$ for the families b_{RS} and b_{SR} of estimators and found some dominance conditions for their superiority.

Considering the concentration probabilities of the estimators b_{RS} and b_{SR} around β, Shukla (1993) examined their concentration optimality.

Singh (1994) defined two more general families b_g and b_h of estimators as

$$b_g = b_R + g(z) \Omega x'x b$$

And

$$b_h = \left[I_p + h(z^*) \right] x'x b$$

Where $g(z)$ and $h(z^*)$ satisfying the validity condition of Taylor’s (Maclaurian’s) series expansion with appropriate finite expectation and having first two derivatives bounded, are functions are functions of z and z^* respectively such that $g(z = 0) = 0$, $g(z) = O(\sigma^2)$, $h(z^* = 0) = 0$, $h(z^*) = O(\sigma^2)$ and z, z^* have at least $k(\geq 4)$ finite moments, following small σ asymptotic approach, Singh derived the risk function of b_g and b_h with respect to a general quadratic loss functions and studied their properties. Here, we analyze the properties of the two generalized families of estimators b_g and b_h by Singh from the criterion of concentration probability around the true unknown parameter and compare them with the existing estimators in search of better ones.
3. CONCENTRATION PROBABILITIES OF THE ESTIMATORS b_g AND b_h

We first derive the small sigma asymptotic expression for the sampling distribution of the estimators b_g and b_h.

Rewriting the model (2.1) as

$$y = \beta + \sigma v$$

Where v follows multivariate normal distribution with mean we now define a vector

$$r_g = \frac{1}{\sigma} \Omega^{-\frac{1}{2}} (b_g - \beta)$$

$$= A_0 + \sigma A_1 + \sigma^2 A_2 + \sigma^3 A_3 + \sigma^4 A_4 \quad (3.7)$$

the characteristic function of r_g up to terms of order $O(\sigma^3)$ is given by

$$\phi_{r_g}(h) = E(e^{i h' r_g})$$

$$= E(e^{i h' A_0}) e^{(i h' A_1 + \sigma^2 h' A_2 + \sigma^3 h' A_3 + o(\sigma^4))}$$

$$= E(e^{i h' A_0}) \left[1 + \sigma i h' A_1 + \sigma^2 \left((ih' A_2 + \frac{1}{2} (ih' A_1)^2) \right) + \sigma^3 \left((ih' A_3 + (ih' A_1) (ih' A_2)) \right) + \frac{1}{6} (ih' A_1)^3 \right]$$

We have the characteristic function

$$\phi_{r_g}(h) = \left[1 + \sigma \phi_1 + \sigma^2 \phi_2 + \sigma^3 \phi_3 \right] e^{-\frac{1}{2} h'h}$$

By inversion theorem, the joint probability density function of the elements of r_g is given by

$$g(r_g) = \frac{1}{(2\pi)^p} \int_{-\infty}^{\infty} ... \int_{-\infty}^{\infty} e^{-i h' r_g} \phi_{r_g}(h) dh \quad (3.11)$$

Substituting $\phi_{r_g}(h)$ from (3.10) in (3.11) and for a fixed vector a and a fixed matrix A, utilizing the following result;

we obtain the joint probability density function of r_g to order $O(\sigma^3)$ to be

$$g(r_g) = (1 + \sigma \varsigma_1 + \sigma^2 \varsigma_2 + \sigma^3 \varsigma_3) \xi(r_g)$$

For $\overline{m} = (\overline{m}_1, \overline{m}_2, ... \overline{m}_p)$, when $\overline{m}_j, j=1,2, ... ,p$ are arbitrarily chosen positive constants, the concentration probability associated with the estimator b_g around the parameter vector β in the region bounded by the constants $\overline{m}_1, \overline{m}_2, ... \overline{m}_p$ in the p - dimensional euclidian space is given by

$$CP(b_g) = P(|b_g - \beta| < -)$$

$$= P(|r_{gj}| < m_j; j = 1,2,3, ..., p)$$

where r_{gj} is the j^{th} element of the vector r_g and the constants $m_j's (j = 1,2, ..., p)$ are the elements of the vector $m = \frac{1}{\sigma} \Omega^{-\frac{1}{2}} \overline{m}$

For fixed vector a and fixed matrix A, and for the region bounded by the column vector m in the
Nothing the concentration probability of estimator \(b_g \) around \(\beta \) for the region bounded by the constants \(m_1, m_2, \ldots, m_p \) in the p-dimensional Euclidean space to be

\[
CP(b_g) = \int_{-m_1}^{m_1} \ldots \int_{-m_p}^{m_p} g(r_g) \, dr_1 \ldots dr_p
\]

and using the results of (3.12) and (3.13) in (3.14), we have

\[
CP(b_g) = \left[1 - \frac{ng'(0)\sigma}{\theta} \left\{ tr A E + \frac{(n+2)g'(0)}{2\theta} (\alpha_1^*E\alpha_1^*) \right\} \right] \phi(m)
\]

where

\[E = \text{diag. } (e_1, e_2, \ldots, e_p) \]

For \(g'(0) = K \) (a characterizing scalar greater than 0) and \(Q \to 0 \), \(b_g \) reduces to Stein-rule estimator

\[
b_s = \left[1 - k \frac{(y-xb)'(y-xb)}{b'C b} \right] b,
\]

for \(K=0 \) and \(Q \neq 0 \), \(b_g \) reduces to the restricted regression estimator \(b_R \) and for \(K=0 \) and \(Q \to 0 \), \(b_g \) reduces to the ordinary least square estimator \(b \). So that the concentration probabilities of the Stein-rule estimator \(b_g \), the restricted regression estimator \(b_r \) and the ordinary least square estimator \(b \) around the parameter \(\beta \) are given by

\[
CP(b_s) = \left[1 + \frac{nk\rho^2}{\theta} \right] \left\{ tr A E + \frac{(n+2)k}{2\theta} (\alpha_1^*E\alpha_1^*) \right\} \]

(3.18)

\[
CP(b_r) = \phi(m)
\]

(3.19)

\[
CP(b) = \phi(m^*)
\]

(3.19)

\[\phi(m^*) = \int_{-m}^{m} \ldots \int_{-m}^{m} \xi(r_g) \, dr_1 \ldots dr_p
\]

On the same lines as for \(b_s \) the concentration probability of the estimator \(b_h \) around \(\beta \) is given by

\[
CP(b_h) = \left[1 - \frac{(n+j)h'(0)\rho^2}{\theta} \right] \left\{ tr A E + \frac{(n+j+2)h'(0)}{2\theta} (\alpha_1^*E\alpha_1^*) \right\} \phi(m)
\]

(3.20)

Where \(h'(0) \) is the first derivative of \(h(z^*) \) with respect to \(z^* \) at \(z^* = 0 \), \(E = \text{diag. } (e_1, e_2, \ldots, e_p) \).

4 COMPROMISE OF CONCENTRATION PROBABILITIES

To compare the performance of the generalized estimator \(b_g \) with the restricted regression estimator \(b_r \) on the criterion of concentration probability, we have

\[
CP(b_g) - CP(b_r) = \left[-\frac{ng'(0)\sigma^2}{\theta} \left\{ tr A E + \frac{(n+2)g'(0)}{2\theta} (\alpha_1^*E\alpha_1^*) \right\} \right] \phi(m)
\]

We observe that the estimator \(b_g \) is superior to the restricted regression estimator \(b_r \) based on the criterion of concentration probability to order \(0(\sigma^3) \), if
\[0 < -g'(0) < \frac{2tr \ A \ E \ \beta' \ C \beta}{(n+2)\alpha_1' \ E \alpha_1'} \]

\[0 < -g'(0) < \frac{\sum_j e_j^* - 2e_p^*}{n+2} \frac{1}{C_h} \left[\frac{1}{E \Omega^2(x'x)} C^{-1}(x'x) G \Omega^2 \right] \]

For \(C = (X'X) \) or \(\Omega^{-1} \), the superiority condition of the estimator \(b_h \) over \(b_R \) turns out to be

\[0 < -g'(0) < \frac{2}{n+2} \left(\sum_{j=1}^p e_j^* - 2e_p^* \right) \frac{1}{e_p^*} \]

In particular, when all the elements of the constant vector \(m \) are equal, that is,

\[e_j = \frac{m_0 e^{-\frac{1}{2}m_0^2}}{\int_0^{m_0} e^{-\frac{1}{2}g_j^2 \ dr_j}} ; \ j = 1, 2, 3, 4, \ldots, P, \]

The concentration dominance condition of the estimator \(b_h \) over \(b_R \) becomes

\[0 < -g'(0) < \frac{2(p-2)}{n+2} \]

To compare the performance of the generalized estimator \(b_h \) with restricted regression estimator \(b_R \) on the criterion of concentration probability, we have

\[CP(b_h) - CP(b_R) = \frac{(n+J)h'(0)}{\sigma^2} \left\{ tr \ A \ E - \frac{(n+J+2)h'(0)}{2\sigma} (\alpha_1' \ E \alpha_1) \right\} \phi(m) \]

The estimator \(b_h \) is superior to the restricted regression estimator \(b_R \) base on the criterion of concentration probability to order \(O(\sigma^3) \), if

\[0 < -h'(0) < \frac{2tr \ A \ E \ \beta' \ C \beta}{(n+J+2)(\alpha_1' \ E \alpha_1)} \]

Which holds true at least as long as

\[0 < -h'(0) < \frac{2\left(\sum_{j=1}^p e_j^* - 2e_p^* \right)}{(n+J+2)C_h} \left[\frac{1}{E \Omega^2(x'x)} C^{-1}(x'x) \Omega^2 \right] \]

For \(C = (X'X) \) or \(\Omega^{-1} \), the superiority condition of the estimator \(b_h \) over \(b_R \) becomes

\[0 < [-h'(0)] < \frac{2}{(n+J+2)} \left(\sum_{j=1}^p e_j^* - 2e_p^* \right) \frac{1}{e_p^*} \]

In particular, when all the elements of the constant vector \(m \) are equal, \(m_j = m_0 \) and

\[e_j = \frac{m_0 e^{-\frac{1}{2}m_0^2}}{\int_0^{m_0} e^{-\frac{1}{2}g_j^2 \ dr_j}} ; j = 1, 2, 3, \ldots, P, \]
The concentration dominance condition of the estimator b_h over b_R becomes

$$0 < [-h'(0)] < \frac{2(p - 2)}{(n + J + 2)}$$

5. CONCLUDING REMARK

(a) All the result of Shukla (1993) may be easily seen to be special cases of this general study based on the concentration probability around true parameter. In particular, it may be easily seen that the value of $g'(0)$ is $-k$ for the estimator b_{RS} so that by substituting this value $g'(0) = -k$ in general efficiency condition based on the criterion of concentration probability around the true coefficient vector β, we get the same condition for b_{RS} to be better than b_R as obtained by Shukla (1993).

(b) For k and k_1 being the characterizing scalars, the estimator

$$b_{g_1} = b_R - k[(1 + z)^{k_1} - 1] \Omega x' x b$$

Belonging to the generalized class b_g of estimators, has the value

$$g'(0) = -kk_1$$

Which, when substituted in the general efficiency condition gives the efficiency condition

$$0 < kk_1 < \frac{2(p - 2)}{(n + 2)}$$

For b_{g_1} to be better than b_R based on the concentration probability criterion. It is to be noted that, for $k_1 = 1$, the efficiency condition reduces to the condition $0 < k_1 < \frac{2(p - 2)}{(n + 2)}$

For b_{RS} to be better then b_R as obtained by Shukla (1993). Further, for $0 < k_1 < 1$, the range of the condition for the b_{g_1} to be better then b_R is wider than that of the condition for b_{RS} to be better than b_r, hence in the extended range of the efficiency condition over the efficiency condition the estimator b_{g_1} is better than both the estimators b_{RS} and b_R in the sense of having more concentration probability around the true parameter β.

(c) Considering the estimator

$$b_{h_1} = b_R - k[(1 + z^*)^{k_1} - 1] \Omega x' x b$$

Belonging to the generalized class b_h of estimators, we have the value of

$$h'(0) = -k k_1$$

And similar results as for the comparison of b_{g_1} and b_R, hold while comparing the estimator b_{h_1} with b_{SR}.
REFERENCES