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𝐼𝑓 𝑐 ≠ |1|. 𝑇ℎ𝑒𝑛 𝑝𝑎𝑝𝑒𝑟 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑠 𝑡𝑜 𝑡ℎ𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (𝑥2 − 𝑐)2(𝑡2 ± 1)𝑦2 +

𝑙 ℎ𝑎𝑣𝑒 𝑓𝑖𝑛𝑖𝑡𝑒𝑙𝑦 𝑚𝑎𝑛𝑦 𝑠𝑙𝑜𝑢𝑡𝑖𝑜𝑛𝑠 𝑖𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠 𝑥, 𝑦, 𝑡. 

Keywords: 𝐷𝑖𝑜𝑝ℎ𝑎𝑛𝑡𝑖𝑛𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠, 𝑅𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑖𝑛𝑡𝑒𝑔𝑒𝑟. 

Introduction 

It is the object of this note to demonstrate that the two equations of the title have 

only finitely many solutions in positive integers 𝑥, 𝑦, 𝑡 for any given integer 𝑐 ≠
|1| and to provide a method for finding all the solutions by reducing the problem 

to finitely many Diophantine equations in two variables, each of which will have 

only finitely many solutions in integers. The cases 𝑐 ≠ |1| are in principle similar, 

except that there may be rather trivial infinite families of solutions.[1] 

  The results are somewhat exceptional in that for every fixed 𝑘 ≠ |2𝑘1
2|, 

there are infinitely many values of 𝑐 for which the equation (𝑥2 − 𝑐)2=
(𝑡2 + 𝑘)𝑦2 + 1 has infinitely many solutions in positive integers 𝑥, 𝑦, 𝑡. 

 In the first place any solutions with 𝑥2 − 𝑐 ≤ 0 and/or 𝑡2 − 2 < 0 are finite 

in number and can be found by simple enumeration. Secondly if 𝑡2 − 2 =

2, 𝑖. 𝑒. 𝑡 = 2, we find since 𝑥2 − 𝑐 > 0 that 
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    (𝑥2 − 𝑐)2−2𝑦2 = 1, 

    (𝑥2 − 𝑐) + (𝑦√2)2n, 𝑛 ≥ 1. 

Thus 

    𝑥2 − 𝑐 = {
(1+√2)

2𝑛
+(1−√2)

2𝑛

2
}, 

𝑥2 − 𝑐(−1)𝑛−1 = {
(1 + √2)

2𝑛
+ (1 − √2)

2𝑛

√2
}

2

 

          = 𝑧2, say, 

where z is a rational integer. Thus 𝑥2 − 𝑧2 = 𝑐 ± 1, which can be solved 

immediately, giving only finitely many possible values for 𝑥, 𝑖𝑓 𝑐 ≠ |1|,  hence 

only finitely many possible corresponding values for y. We therefore suppose from 

now on that 𝑥2 − 𝑐 > 0 and that 𝐷 = 𝑡2 ± 2 ≥ 3. 

Consider first the case 𝐷 = 𝑡2 − 2, where the equation 𝑢2 − 𝐷𝑦2 = 2 has 

solutions, with fundamental solution a, say. Then the fundamental solution of 𝑢2 −

𝐷𝑦2 = 1 is 𝛽 =
1

2
𝑎2. If now (𝑥2 − 𝑐)2−𝐷𝑦2 = 1, then 

                                        (𝑥2 − 𝑐) + 𝑦√𝐷 = 𝛽𝑛 = (
1

2
𝑎2)

2𝑛
, 

i.e.                                             𝑥2 − 𝑐 =
𝑎2𝑛+𝑎′2𝑛

2𝑛+1  . 

Then 𝑥2 − 𝑐 + 1 =
(𝑎𝑛+𝑎′𝑛)

2

2𝑛+1  , 

Since 𝑎𝑎′ = 2. If n is odd, this yields 𝑥2 − 𝑐 + 1 = 𝑧2 where z is a rational integer, 

and this is easily solved. If 𝑛 = 2𝑚 is even, then 

                                             𝑥2 − 𝑐 + 1 = 2𝑧2, 

Where 

                 𝑥2 =
𝑎2𝑚+𝑎′2𝑚

2𝑚+1 = −1 +
(𝑎𝑚+𝑎′𝑚)

2

2𝑚+1 = 𝑦2 − 1 𝑜𝑟 2𝑦2 − 1, 

Where v is a rational integer, according as m is odd or even. Thus, we obtain either 

                                      𝑥2 = 2𝑦2 − 4𝑦2 + (𝑐 + 1)  

Or                                  𝑥2 = 8𝑦4 − 8𝑦2 + (𝑐 + 1), 
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and each of these equations has but a finite number of solutions in integers for each 

given 𝑐 ≠ |1|. Thus for each given c there are but finitely many possible values of 

𝑥, and hence of corresponding 𝑦 and 𝑡. 

The case 𝐷 = 𝑡2 + 2 is entirely similar, except that now 𝑎 is the fundamental 

solution of 𝑢2 − 𝐷𝑣2 = −2, 𝑎𝑎′ = −2 𝑎𝑛𝑑 𝛽 =
1

2
𝑎2. Then 

                                    𝑥2 − 𝑐 + 𝑦√𝐷 = 𝛽𝑛 = (
1

2
𝑎2)

2𝑛
, 

                                    𝑥2 − 𝑐 =
𝑎2𝑛+𝑎′2𝑛

2𝑛+1 , 

                                     𝑥2 − 𝑐 + (−1)𝑛 =
(𝑎𝑛+𝑎′𝑛)

2

2𝑛+1 , 

If 𝑛 is odd then 𝑥2 − 𝑐 + 1 = 𝑧2, etc., as before. If 𝑛 = 2𝑚 is even, then 

𝑥2 − 𝑐 + 1 = 2𝑧2, 

Where 𝑧 =
𝑎2𝑚+𝑎′2𝑚

2𝑚+1 = (−1)𝑚+1 +
(𝑎𝑚+𝑎′𝑚)

2

2𝑚+1 = 𝑦2 + 1 𝑜𝑟 2𝑦2 − 1. 

Thus, we obtain in this case, either 

                                               𝑥2 = 2𝑦4 − 4𝑦2 + (𝑐 + 1) 

or                        𝑥2 = 8𝑦4 + 8𝑦2 + (𝑐 + 1),  

and the result follows as before. This concludes the proof of the main result of the 

paper. 

 However, if 𝑘 ≠ |2𝑘1
2|, then the equation  

(𝑥2 − 𝑐)2 = (𝑡2 + 𝑘)𝑦2 + 1 

is satisfied by integers 𝑥, 𝑦, 𝑡 where 𝑦 = 2𝑢, 𝑡 = |𝑘|𝑢 provided 

(𝑥2 − 𝑐)2 = (𝑘2𝑢2 + 𝑘) ∙ 4𝑢2 + 1 = (2𝑘𝑢2 + 1) + 1, 

i.e., provided that either 

𝑥2 − 2𝑘𝑢2 = 𝑐 + 1 

or                                      𝑥2 + 2𝑘𝑢2 = 𝑐 − 1, 

and since 𝑘 ≠ |2𝑘1
2|, one of these equations has infinitely many solutions for 

suitable values of 𝑐. 
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