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               (1)     INTRODUCTION:  

 

        Anisotropic shell consists of composite materials such as Boron-Epoxy, Glass Epoxy, re-inforced 

plastics and whiskers. They are used in many advanced structural applications and quite often in cylindrical 

shells. 

                       Buckling problem of isotropic material are known from literature on shells e.g. 

Flugge[1](1973). The buckling problem of anisotropic cylindrical shells has occupied the interest of many 

researchers such as Tasi[2] , Cheng & Kuenzi[3] , Hess T.E[4], Thielemann, Schnell and Fisher[5], Tasi, 

Fellmann and Strang[6], Cheng & Ho[7,8], Lie and Cheng[9], De,A[10-14]. 

     The re-inforced anisotropic shell is the most important one. The shell of uniform thickness re-inforced by 

closely spaced rings or stringers or both.( fig. 1) 

  Object of this paper is to investigate the solution of the differential equation of the buckling problem of re-

in forced anisotropic shells with rings and stringers or both for shells with shear load in the case of  torsion 

of a long tube. The condition of neutral equilibrium and the critical load and the critical value of the torque 

are found out in this case. The corresponding result for gridwork cylindrical shells are deduced as a special 

case which are found to be identical with the previous result. 
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                                          (2).   BASIC   EQUATION: 

 

    

Fig.1(a) shows the section    = constant through a re-inforced shell i,e shell with rings and stringers and 

fig.1(b) shows the sections x = constant through the reinforced cylindrical shell  

      We choose the middle plane of the wall as the middle plane of the entire shell. The equations of 

equilibrium in the case of buckling of cylindrical shell vide Flugge[1](1973)(p-448) are given by, 

a
/

xN +a


xN - pa(


u - w / ) - Pu // - 2Tu / = 0                        -------------------------------(1-a) 

a


N +a
/

xN - 


M - 
/

xM - pa(


v +


w ) - P //v - 2T( /v + /w ) = 0    -----------------------(1-b) 



M +


/

xM +
/

xM  +
//

xM + a N + pa( /u -


v +


w ) + P //w - 2T( /v - /w ) = 0  ----------(1-c) 

where (   )/  and  (


)  denotes  a (...)
x


  and   (...)




 respectively. 

The shell being simultaneously subject to three simple loads - 

(i) a uniform normal pressure on its wall,  ppr  ( Fig.2)  

(ii) an axial compression applied at the edges, the force per unit of circumference 

       being  P 

(iii)a shear load applied at the same edges so as to produce a torque in the cylinder. The shearing force 

(shear flow )  is T. 
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Substituting the values of elastic laws given by Flugge[1](1973)(p-309) equation (5.116) in (1) we get after 

proper simplification, 

u// + A1



u + A2
/v + A3

/w - k 1 (A4
///w - A5

/w ) - 1q (


u - /w ) - 2q u// - 2 3q /u = 0   ……..(2-a) 

A6 
/u + 



v + A7
///v + 



w + k 1 [A8(


v +


w -


w ) – A9
//w - A10



w ] – A11[ 1q (


v +


w ) +  

                                                                    2q //v + 2 3q ( /v + /w )]    = 0……………….(2-b) 

A12
/u + 



v  + w - k 1 [A8(


v +


w2 ) + A13
///u - A10



w - A14
//w - A11

////w ] + A11[ 1q ( /u - 

                                                  


v +


w )  + 2q //w   - 3q ( /v - /w )] = 0 …………………(2-c) 

 

where,    A1 = 
x

x

D
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x
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x

x

K

aS
,  

             A5 = 
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
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


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DaS
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DK

KKD

x

xx )( 
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

DK

DK

x

x
,    A11 = 

D
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
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



DK

KKK
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xx 2
  

And         k 1 = 
x

x

Da

K
2

,    1q =   
xD

pa
,      2q = 

xD

P
,     3q = 

xD

T
  ……………(4) 

 

The equations (2) describes the buckling of equations for the buckling of re-inforced anisotropic shells with 

rings and stringers. In these case the parameters defined by (4) are small quantities.  
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     For k 1 , it is obvious since we are interested in thin shells, where  t<<a . The three load parameters 1q , 

2q , 3q  are approximately the elastic strains caused by the corresponding basic loads, and since all our theory 

is based on the assumption that such strains are small compared with unity, we shall neglect the parameters 

1q , 2q , 3q  compared with 1 whenever the opportunity comes. 

 

                      (3).  SOLUTION   FOR   SHELLS  WITH   SHEAR   LOAD  

 

  When  1q  = 2q  = 0, 3q  0, then there exists a solution, which is applicable in this case, of the form, 

                u = A /  sin(
a

x.
+ m ) 

                 v = B /  sin(
a

x.
+ m )            …………………………….(5) 

                 w = C /  cos(
a

x.
+ m ) 

           where   = 
l

an .
 ( n being an integer)   

It may be used for any combination of loads p, P and T. The terms of u, v, w and of their derivatives 

are found on lines 
a

x.
+ m = const., winding around the cylinder(fig.3). It is therefore not possible to 

satisfy reasonable boundary conditions on lines x = const. and the solution (5) can not be used to deal with 

the cylinders length. We shall use it here to study the buckling of infinitely long cylinder subject to a 

torsion T only. 

 When we introduce the expression (5) in (2) we get a set of linear equations in A / , B / , C / : 

 

A / [ 2 + A1
2m - 2 3q m ] +B / [ A2m ] + C / [ A3 + k 1 (A4

3 - A5
2m )]= 0 ………..(6-a) 

 

A / [ A 12 + A 13
3k 1  ] + B / [ m + k 1 A8

3m – 2A 11 3q  ] + C / [ 1 + k 1 .(2A 8

2m + A 10

4m  

                                                      + A 14
2 2m + A 11

4) - A 11 ( 2 3q m )] = 0………….(6-b) 

 

A / [ A 12 + A 13
3k 1 ] + B / ( m + k 1 A8

3m – 2A 11 3q  ) + C / {1 + k 1 (2A8
2m + A10

2m +                    

                       A14
2 2m + A 14

2 2m +  A11
4 ) – 2A 11 3q m }= 0     .………………….(6-c) 

 

The equations (6) are three linear equations with the buckling amplitudes A / , B / , C /  as unknowns and 

with the brackets as coefficients.  

                  Since these equations are homogeneous they admit, in general, only the solution A /  = B /  = C /  

= 0 , indicating that the shell is not in neutral equilibrium. 

                    A non-vanishing solutions A / , B / , C /  are possible if and only if the determinant of the 9 

coefficients of the equations (6) is zero. 

 

    Eliminating A / , B / , C /  from the equations (6) we get, 

 

   11a         12a         13a                  

                                               ==    0                    …………………….(7)           

   21a        22a         23a  

 

  31a         32a         33a  

 

where  11a , 12a , 13a ……….. etc. are the coefficients of A / , B / , C /  in the equations (6-a), (6-b), (6-c) 

respectively. 
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          Whenever the condition (7) is satisfied ie the buckling condition is fulfilled, any two of the three 

equations (6) determine the ratios A / / C /  and  B / / C /  and thus the buckling mode according to equation 

(5).  

 

   The coefficients of the equation (6) are linear function of  k 1 and 3q . 

The determinant when expanded is therefore the polynomial of degree 3 in these parameters. Since they 

are very small quantities it is sufficient to keep the linear terms and to write the buckling condition as, 

 

                         C 1 + C 2  k 1 = C 5 3q               ………………….(8) 

 

   Where,             1C  = )1( 127 AA  4       ……………………….(9-a) 

 

  2C  =  4

11

22

14

4

10

2

7

22

1

2 )()((  AmAmAAmmA  ) 42

17

24

16

6

15[ mAmAA                                      

. ]5

24

33

23

22

22

26

21

44

20

62

19

6

18 mAmAmAmAmAmAmA   ...…(9-b) 

 

  5C = 2 m A 11 ][)1)(( 22

21

2

27

2

7

22

1

2 mAAmAmmA   ……………(9-c) 

 

       where      A 15 =  A 7 (A 3 A 13 + A 4 A 12 )  

                      A16 = 2 A 7 A 8 +  A 9 + A 2 A 13 +  A 2 A 9 A 12 - A 3 A 13  

                                                           + A 4 A 6 - A 4 A 12  

                      A16 =  A 10 + 2 A 1 A 7 A 8 + A 1  A 9 - 2 A 2 A 6 A 8 +   

                                     A 2 A 8 A 12 + A 2  A 10 A 12 + A 3 A 6 A 8  

                      A 18 = A 1 A 10  

                      A 19 = A 2 A 6 A 10  

                      A
20

= A 2 A 6 A 14  

                      A 21 = A 2 A 6 A 11                                                                 ….….…..(10) 

                      A 22 = A 8 A 12 (A 2 - A 3 )  

                      A
23

= A 5 ( A 12 - A 6 ) 

                      A 24 = A
5
A 7 A 12  

                      A
25

 = A 11 A 2 A 12  

                      A
26

 = A 7 - A 11 - A 2 A 11 + A 3 A 6 A 11 + A 3 A 11  

                                    - A 3 A 11 A 12 - A 6 + A 12  

                      A
27

 = A 1 A 11  

 

We see at once that neither   nor m can be zero because in both the cases 5C = 0 and hence 3q = . 

   It is also without interest to consider negative values of   or m. When both are negative nothing is 

changed in the equation (8) when either   or m alone is negative the buckling mode (5) is altered in so far 

as the nodal lines (fig.3) becomes right handed screws. 

 

      One would expect that then the buckling load T must be applied in the opposite sense and this is exactly 

what happens. In the equation (8) the L.H.S remains the same while 5C  changes sign and hence 3q . 
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Fig - 3 

  

                   

       The discussion of the buckling formulae is now restricted to  +ve values  and to +ve integers m. One 

might think of solving for 3q , differentiating the expression with respect to  and m, and putting the first 

partial derivatives equal to zero. This would yield two algebraic equations for  and m, and their solution ( 

or one of them) would lead to the smallest possible 3q . This procedure however, is rather tiresome and may 

be avoided. By some trial computations one may find out that any m2 yields a higher buckling load than 

does m = 2 and that must be chosen rather small,   1, to obtain a low 3q .  

         With this in mind we now investigate separately the two cases m =1, m = 2. 

   For m = 2, the equation (8) gives, 

   

                                             3q = [
5

121

C

kCC 
 ] 2m       

 

           

      When we neglect 2 , compared with unity we get, 

 

                           3q = 1

11

103

111

127 3

48

)1(
k

A

A

AA

AA


 


 

 

 It is easy to find from, 

 

                         0
3

16

)1(
12

11

102

111

1273 






k

A

A

AA

AAq





 

      that,            4 = 1

127

101

)1(

48
k

AA

AA


           ……………………..(11) 

This yields the lowest possible value of 3q and is given by, 

       3q  min = 2 .
4/3

1k . 4
4

111

3

10127

3

)1(

AA

AAA 
  =  2. 4

4

111

3

10127

3

)1(

AA

AAA 
(

x

x

D

K
) 4/3 .

2/3

1

a
…(12-a) 
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Using the last equation of (4) we may now return to the real shear load T and find its critical value given by, 

 

                   T cr = 2. 4
4

111

3

10127

3

)1(

AA

AAA 
.

2/3

4/14/3 .)(

a

DK xx    ………….(12-b) 

The total torque applied to the tube is given by, 

  

                                                    M = T. 2a. a 

 

 The critical value of this torque is given by, 

 

            M cr = 4.a 2/1 4/1

xD .( xK ) 4/3 . 4
4

111

3

10127

3

)1(

AA

AAA 
   

 

 All this results have been derived for an infinitely long  cylinder of re-inforced anisotropic shell with 

rings and stringers. 

    Since they do not contain any wave length we are tempted to apply them to cylinders of finite length.  

 

     However such a cylinder usually has some kind of stiffening at the end, say a bulk head requiring w 

= 0. Any such condition is in contradiction to the equation (5), and the additional constraint imposed by 

the bulkhead will increase the buckling load beyond the one given by the preceding formulae. 

   We may expect that the difference is not too big, if the cylinder is rather long. 

 

When m = 1, the equation (8) gives, 

                                3q = [
5

121

C

kCC 
 ] 1m   

 3q  = 
)]()(2[

)1(

212771

2

11

3

1

4

127

AAAAA

PkAA








  

 

where P = 17

2

16

26

15

4

11

2

1410

2

71

2 ({))(1)([( AAAAAAAA    

  ]} 18

3

242322

4

21

2

2019 AAAAAAA    

 

Now neglecting 2  as compared with unity we may drop k 1  terms entirely and we get, 

        3q = 
21277111

127

2

)1(

AAAAA

AA




  ……………………………(13)   

 

If we can choose  arbitrarily, we may choose it as small as we like and thus make 3q approach zero. This 

shows that there is no finite buckling load for the infinite shell unless we prevent the buckling mode with m 

=1. 

                          In this mode the axis of the tube is deformed to a steep helical curve, with the circular cross-

sections remain circular and normal to the deformed axis. Since every such cross-section rotates about one 

of its diameters, this mode may be  

excluded by preventing such a rotation of the terminal cross-section of a long cylinder. 

 

     Particular  Case: 

 

Putting D = K = 0 in the equations (2), (6), (9) reduces to the corresponding equations for anisotropic 

gridwork cylindrical shells which are found identical with the previous result. 
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