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(1) INTRODUCTION:

Anisotropic shell consists of composite materials such as Boron-Epoxy, Glass Epoxy, re-inforced
plastics and whiskers. They are used in many advanced structural applications and quite often in cylindrical
shells.

Buckling problem of isotropic material are known from literature on shells e.g.
Flugge™(1973). The buckling problem of anisotropic cylindrical shells has occupied the interest of many
researchers such as Tasil? |, Cheng & Kuenzi® |, Hess T.E[, Thielemann, Schnell and Fisher®, Tasi,
Fellmann and Strang!®, Cheng & Hol"®l, Lie and Cheng!®!, De, Alt%-24],

The re-inforced anisotropic shell is the most important one. The shell of uniform thickness re-inforced by
closely spaced rings or stringers or both.( fig. 1)

Object of this paper is to investigate the solution of the differential equation of the buckling problem of re-
in forced anisotropic shells with rings and stringers or both for shells with shear load in the case of torsion
of a long tube. The condition of neutral equilibrium and the critical load and the critical value of the torque
are found out in this case. The corresponding result for gridwork cylindrical shells are deduced as a special
case which are found to be identical with the previous result.
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(2). BASIC EQUATION:

Fig.1(a) shows the section ¢ = constant through a re-inforced shell i,e shell with rings and stringers and
fig.1(b) shows the sections x = constant through the reinforced cylindrical shell

We choose the middle plane of the wall as the middle plane of the entire shell. The equations of
equilibrium in the case of buckling of cylindrical shell vide Flugge*(1973)(p-448) are given by,

aNX’+aN¢X’-pa(U-w’)-Pu”-ZTu":O P -(1-a)
aN, +aN,/= M, - M, - pa(v+w) - Pv/- 2T(V" + W) =0  -crcercmecmeces —(1-b)
M, +M,' +M,"+M "+aN_ +pa(u’'-v+w) + Pw’- 2T(V' -W") = 0 wcreeceeee (1-c)

where () and (‘) denotes a%(...) and %(...) respectively.

The shell being simultaneously subject to three simple loads -
(i) auniform normal pressure on its wall, p, =—-p (Fig.2)
(i) an axial compression applied at the edges, the force per unit of circumference
being P
(iii)a shear load applied at the same edges so as to produce a torque in the cylinder. The shearing force
(shear flow ) is T.
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Substituting the values of elastic laws given by Fluggel!l(1973)(p-309) equation (5.116) in (1) we get after
proper simplification,

U+ AU+ AoV’ + Asw' - K, (AW~ Asw'™) - g, (U-w') - q,u"- 20, U =0 ....... (2-a)
Ao U+ v+ AV + W K, [As(V+W- W) — AeW - Ao w ] — Ana[g, (V+w) +
q, vV'+2q, (VHwW)] =0.l (2-b)
Apu'+ \./ + w - kl[Ag(.\./.+2\.l;l) +Algum-Alo.\.l;l.-A14WN"-A11W””] +A11[q1(u’-
\./+\./\./) + g, W =g (V-WH] =0 (2-C)
D, D, +D, D
where, Ai= —-, A= ——F, Ag= -, A4:aSX,
DX DX DX KX
@.X Dv +Dx¢7 DX(/J aS DX
As = , As= , A7= , Ag= s e ?3)
K, D, D, K,D,
D, (K, +K, K,D, D D
9= ( w), 0= —"—, Au=—>, Ap=-—*,
K,D, K,D, D, D,
as D 2K +K, +K,
A13— X — X , 14 = (2 4
x o KXD(p
K pa P T
And k,= — = —, =—, e T 4
1 azDX ql DX qZ DX q3 DX ( )

The equations (2) describes the buckling of equations for the buckling of re-inforced anisotropic shells with
rings and stringers. In these case the parameters defined by (4) are small quantities.
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For k., it is obvious since we are interested in thin shells, where t<<a. The three load parameters ¢, ,
qd,,0, are approximately the elastic strains caused by the corresponding basic loads, and since all our theory

is based on the assumption that such strains are small compared with unity, we shall neglect the parameters
d,, d,,d, compared with 1 whenever the opportunity comes.

(3). SOLUTION FOR SHELLS WITH SHEAR LOAD

When g, = q, =0, q;= 0, then there exists a solution, which is applicable in this case, of the form,

u=A' sin(ﬂ+ me )

a
v=B' sin(%+ MO ) et (5)
w=C’ cos(%+ me )

where A = n;lr_.a ('n being an integer)
It may be used for any combination of loads p, P and T. The terms of u, v, w and of their derivatives
are found on lines ﬂ+ me = const., winding around the cylinder(fig.3). It is therefore not possible to
a

satisfy reasonable boundary conditions on lines x = const. and the solution (5) can not be used to deal with
the cylinders length. We shall use it here to study the buckling of infinitely long cylinder subject to a
torsion T only.

When we introduce the expression (5) in (2) we get a set of linear equationsin A’, B’, C':

A'[A2+ Aim?-2q,2m ] +B/[ A2Am ] + C'[ Ash + k, (A% - Askm?)]=0 ........... (6-a)

ATALA+ALRK, 1+B [m+k,Asm®-2A , g, L] +C/[1+Kk,.2A, m*+ A, m*
+ A MM+ A AN -AL(29,Am )] =0............. (6-b)

ATALA+ALRK]T+B (m+Kk,Asm®*~2A,, g, 1) + C' {1 + Kk, (2Asm?*+ Aom? +
Aud?m?+ A 02m%+ Audt) —2A,, G, Am }=0 . (6-C)

The equations (6) are three linear equations with the buckling amplitudes A’, B/, C' as unknowns and
with the brackets as coefficients.

Since these equations are homogeneous they admit, in general, only the solution A’ =B’ =C’
=0, indicating that the shell is not in neutral equilibrium.

A non-vanishing solutions A’, B/, C' are possible if and only if the determinant of the 9
coefficients of the equations (6) is zero.

Eliminating A’, B', C' from the equations (6) we get,

a11 a‘lZ a13
== 0 (7)
a’Zl a22 a23
a?:l a32 a33
where a,,, @,, Qz.cccnen... etc. are the coefficients of A’, B’, C' in the equations (6-a), (6-b), (6-c)

respectively.
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Whenever the condition (7) is satisfied ie the buckling condition is fulfilled, any two of the three
equations (6) determine the ratios A’/ C’ and B’/ C’ and thus the buckling mode according to equation

(5).

The coefficients of the equation (6) are linear function of k,and q,.

The determinant when expanded is therefore the polynomial of degree 3 in these parameters. Since they
are very small quantities it is sufficient to keep the linear terms and to write the buckling condition as,

CoHC,K=Colly  eoreeeeeeeeee, (8)

Where, Ci= AL-A) A (9-a)

C, = (B +AmM)M* + A L) (A,m" + A LM + A1) —[AL — A M — A Am’
=AM A M AT ALTME - ALPME - A - AL M] .....(9-D)

C.=2AmA,, (Z + Am?)(M* + A, 22 =) + AM[A,, > — A Pm?] .o (9-c)

where A= A, (A;A+ALAL)
A =2A; At Ayt A, At A AAL-AA,
+A4A6‘A4A12

A= Ap+2A A A +A Aj-2A,AA+
AL AALT A ApALt A AA,

A=A A

A=A, A A

An=AAAy

A=A AA, (10)

An=AALA,-A;)

A=A (A,-Ag)

Au=AA A,

Ay =AuA A,

A26 =A-AL-AALTFAAALTAA,
'A3A11A12'A6+A12

Ay =AA,

We see at once that neither 4 nor m can be zero because in both the cases C,= 0 and hence ¢, = cc.

It is also without interest to consider negative values of 2 or m. When both are negative nothing is
changed in the equation (8) when either 4 or m alone is negative the buckling mode (5) is altered in so far
as the nodal lines (fig.3) becomes right handed screws.

One would expect that then the buckling load T must be applied in the opposite sense and this is exactly
what happens. In the equation (8) the L.H.S remains the same while C. changes sign and hence g, .
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Fig -3

The discussion of the buckling formulae is now restricted to +ve values A and to +ve integers m. One
might think of solving for q,, differentiating the expression with respect to 4 and m, and putting the first

partial derivatives equal to zero. This would yield two algebraic equations for A4 and m, and their solution (
or one of them) would lead to the smallest possible q,. This procedure however, is rather tiresome and may

be avoided. By some trial computations one may find out that any m>2 yields a higher buckling load than
does m = 2 and that 2 must be chosen rather small, 4 << 1, to obtain a low g, .

With this in mind we now investigate separately the two cases m =1, m = 2.
For m = 2, the equation (8) gives,

_.C +C)k,
q3 [ C5 ]m=2

When we neglect A*, compared with unity we get,

AU-A) 0 3A
BAA, AL

3_

It is easy to find from,

s _ A7(1—A12)/12 3A, k =0
oA 16A A, A11/12
that, A= ABAA,
AL-A, *

This yields the lowest possible value of g, and is given by,

0l =2 \/A(l An)A’ _2\/A7(1 AAS Kipe, L2
3AA, 3AA, D,
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Using the last equation of (4) we may now return to the real shear load T and find its critical value given by,

3 3/4 174
Tcrzz_i/pv(l_Alz)Alo (K)™" Dy (12-b)

AN : T e
The total torque applied to the tube is given by,

M=T.2na. a

", The critical value of this torque is given by,

3
Mcr: 47‘5.&1/2 DX1/4.(KX)3/4.§/A7(1_AlZaAIO
3A A,

All this results have been derived for an infinitely long cylinder of re-inforced anisotropic shell with
rings and stringers.
Since they do not contain any wave length we are tempted to apply them to cylinders of finite length.

However such a cylinder usually has some kind of stiffening at the end, say a bulk head requiring w
= 0. Any such condition is in contradiction to the equation (5), and the additional constraint imposed by
the bulkhead will increase the buckling load beyond the one given by the preceding formulae.

We may expect that the difference is not too big, if the cylinder is rather long.

When m =1, the equation (8) gives,
C,+C,k;

3= [ lna

C

g = A (1- A2 +k,P
U PRALE + A)A, +(Ay - A

where P = [(2* + A )L+ A A )(Ag + A7 + AL ) ~{AL =2 (A + A,
- A19 - Azoﬂv2 - AQMVA + Azz + Azsﬂ + AZMVB}_ AlB]

Now neglecting A4* as compared with unity we may drop k, terms entirely and we get,

= AA-AY)
PO2AAA A, - A,

If we can choose A arbitrarily, we may choose it as small as we like and thus make ¢, approach zero. This

shows that there is no finite buckling load for the infinite shell unless we prevent the buckling mode with m
=1

In this mode the axis of the tube is deformed to a steep helical curve, with the circular cross-
sections remain circular and normal to the deformed axis. Since every such cross-section rotates about one
of its diameters, this mode may be
excluded by preventing such a rotation of the terminal cross-section of a long cylinder.

Particular Case:

Putting D, = K, =0 in the equations (2), (6), (9) reduces to the corresponding equations for anisotropic
gridwork cylindrical shells which are found identical with the previous result.
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