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Abstract: Self Supervised multi-frame with Full Image Warping is a strategy for finding out with regards to solo optical stream that 

works on the cutting edge of all benchmarks from 36% to 40% (contrasted with the past best UFlow technique) and some even 

outperforms administered approaches like PWC-Net and FlowNet2. Our strategy for compositional improvements from the 

administered optical stream, otherwise known as the RAFT model, coordinates novel thoughts for solo picking up including loss of 

arrangement mindful self-management, procedure for taking care of off-outline movement, and a learning approach. Viably from 

multi-outline video information with just two casings needed for inductions. 

 

Index Terms -Self-supervised learning, Multi-frame, Full-Image Warping. 

 

I. INTRODUCTION 

Unsupervised learning is a promising direction to address this issue as it allows training optical flow models from unlabeled videos 

of any domain. The unsupervised approach works by combining ideas from classical methods and supervised-learning – training the 

same neural networks as in supervised approaches but optimizing them with objectives such as smoothness and photometric similarity 

from classical methods. Unlike those classical methods, unsupervised approaches perform optimization not per image pair but jointly 

for the entire training set. Since unsupervised optical flow takes inspiration from classical and supervised learning methods, we can 

make substantial progress by properly combining novel ideas with insights from these two directions. In this paper, we do exactly 

that and make the following three contributions: 

1. We integrate the current best supervised model, RAFT [29] with unsupervised learning and perform key changes to the loss 

functions and data augmentation to properly regularize this model for unsupervised learning. 

2. We perform unsupervised learning on image crops while using the full image to compute unsupervised losses. This technique, 

which we refer to as full-image warping, improves flow quality near image boundaries. 

3. We leverage a classical method for multi-frame flow refinement [19] to generate better labels for selfsupervision from multi-

frame input. This technique improves performance especially in occluded regions without requiring more than two frames for 

inference. 

Our method Self-Teaching Multi-frame Unsupervised RAFT with Full-Image Warping (SMURF) combines these three 

contributions and improves the state of the art (SOTA) in unsupervised optical flow in all major benchmarks, i.e. it reduces errors by 

40 / 36 / 39 % in the Sintel Clean / Sintel Final / KITTI 2015 benchmarks relative to the prior SOTA set by UFlow [12]. These 

improvements also reduce the gap to supervised approaches, as SMURF is the first unsupervised optical flow method that outperforms 

supervised FlowNet2 [9] and PWC-Net [28] on all benchmarks. 

II. RELATED WORK 

of five years. The time series monthly data is collected on stock prices for sample firmsand relative macroeconomic variables for 

the period of 5 years. The data collection period is ranging from January 2010 to Dec 2014. Monthly prices of KSE -100 Index is 

taken from yahoo finance. 

Optical flow was first studied in psychology to describe motion in the visual field [6]. Later, the rise of computing in the 1980s led 

to analytical techniques to estimate optical flow from images [8, 18]. These techniques introduced photometric consistency and 

smoothness assumptions. These early methods do not perform any learning but instead solve a system of equations to find flow 

vectors that minimize the objective function for a given image pair. Follow-up work continued to improve flow accuracy, e.g. 

through better optimization techniques and occlusion reasoning [2, 27]. Machine learning has helped to improve results 

substantially. First approaches used supervised convolutional neural networks that had relatively little flow-specific structure [5, 9]. 

Others introduced additional inductive biases from classical approaches such as coarse-to-fine search [23, 28, 37]. The current best 

network architecture is the Recurrent All-Pairs Field Transforms (RAFT) model. It follows classical work that breaks with the 

coarse-to-fine assumption [4, 26, 36] and computes the cost volume between all pairs of pixels and uses that information to 

iteratively refine the flow field [29]. All supervised methods rely heavily on synthetic labeled data for training. While producing 

excellent results in the supervised setting, RAFT has not previously been used in unsupervised learning. Unsupervised approaches 
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appeared after supervised methods and showed that even without labels, deep learning can greatly outperform classical flow 

methods [10, 11, 12, 14, 16, 17, 21, 24, 25, 33, 35, 38, 39, 42, 43]. Besides being more accurate than classical methods, learned 

methods are also faster at inference because all optimization occurs during training instead of during inference time.1 A recent 

study [12] performed an extensive comparison of the many proposed advances in unsupervised flow estimation and amalgamated 

these different works into a state of the art method called UFlow. We take this work as a starting point and build on the techniques 

suggested there such as range-map based occlusion reasoning [35], the Census loss for photometric consistency [21, 40], edge aware 

smoothness [30], and self supervision [16, 17]. We build on and substantially extend this prior work by enabling the RAFT model 

to work in an unsupervised learning setting through changes in the loss function and data augmentation. We also propose full-image 

warping to make the photometric loss useful for pixels that leave the (cropped) image plane. And we utilize a flow refinement 

technique [19] to leverage multi-frame input during training to self-generate improved labels for self-supervision. 

 
Figure 1. Self-supervision with sequence loss and augmentation. 

We use a single model as both “student” and “teacher”. As the teacher, we apply the model on full non-augmented images. As 

student, the model only sees a cropped and augmented version of the same images. The final output of the teacher is then cropped 

and used to supervise the predictions at all iterations of the student (to which the smoothness and photometric losses are applied as 

well). The advantages of this self-supervision method are threefold: (1) the model learns to ignore photometric augmentations (2) 

the model learns to make better predictions at the borders and in occluded areas of the image, and (3) early iterations of the recurrent 

model learn from the output at the final iteration. 

III. SELF-TEACHING MULTI FRAME WITH FULL IMAGE WARPING 

3.1 Full Image Warping 

The photometric loss, which is essential for unsupervised optical flow estimation, is generally limited to flow vectors that stay 

inside the image frame because vectors that point outside of the frame have no pixels to compare their photometric appearance to. 

We address this limitation by computing the flow field from a cropped version of the images I1 and I2 while referencing the full, 

uncropped image I2 when warping it with the estimated flow V1 before computing the photometric loss (see Figure 2). As we also 

no longer mark these flow vectors that move outside the image frame as occluded, they now provide the model with a learning signal. 

We use full-image warping for all datasets except Flying Chairs, where we found that cropping the already small images hurt 

performance. 

 

3.2 Muti-Frame Self supervision 

Finally, we propose to leverage multi-frame information for self-supervision to generate better labels in occluded areas, inspired 

by work that used a similar technique for inference [19]. For multi-frame self-supervision, we take a frame t and compute the 

forward flow to the next frame (t → t + 1) and the backward flow to the previous frame (t → t − 1). We then use the backward flow 

to predict the forward flow through a tiny learned inversion model and use that prediction to inpaint areas that were occluded in the 

original forward flow but were not occluded in the backward flow – which is why the estimate from the backward flow is more 

accurate (see Figure 3). The tiny model for the backward-forward inversion consists of three layers of 3×3 convolutions with [16, 

16, 2] channels that are applied on the backward flow and the image coordinates normalized to [−1,1]. The model is re-initialized 

and trained per frame using the non-occluded forward flow as supervision, after which the in-painted flow field is stored and used 

for selfsupervision. We apply multi-frame self-supervision only at the final stage of training. Importantly, we use multiple frames 

only during training and not for inference. 

 

3.3 Extensive Data Augmentation 

To regularize RAFT, we use the same augmentation as supervised RAFT [RAFT] which is much stronger than what has 

typically been used in unsupervised optical flow, except for the recent ARFlow [liu2020learning]. We randomly vary hue, 

brightness, saturation, stretching, scaling, random cropping, random flipping left/right and up/down, and we apply a random eraser 

augmentation that removes random parts of each image. All augmentations are applied to the model inputs, but not to the images 

used to compute the photometric and smoothness losses. The self-generated labels for self-supervision are computed from un-

augmented images, which has the benefit of training the model to ignore these augmentations. 
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IV. CONCLUSION 
We have presented SMURF, an effective method for unsupervised learning of optical flow that reduces the gap to supervised 

approaches and shows excellent generalization across datasets and even to “zero-shot” depth estimation. SMURF brings key 

improvements, most importantly (1) enabling the RAFT architecture to work in an unsupervised setting via modifications to the 

unsupervised losses and data augmentation, (2) full-image warping for learning to predict out of frame motion, and (3) multi-frame 

self-supervision for improved flow estimates in occluded regions. We believe that these contributions are a step towards making 

unsupervised optical flow truly practical, so that optical flow models trained on unlabeled videos can provide high quality pixel-

matching in domains without labelled data. 
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