
www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 8 August 2021 | ISSN: 2320-2882

IJCRTE020011 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 62

A Conversion Concept for a Legacy Software

Model towards AUTOSAR Compliance

Vimal Sivashanmugam

Institute of Technical Informatics
Graz University of Technology

Graz, Austria

Tobias Scheipel, Marcel Baunach

Institute of Technical Informatics
Graz University of Technology

Graz, Austria

Bhargav Adabala

 Powertrain Engineering
AVL List GmbH

Graz, Austria

Abstract—Automotive Open System Architecture

(AUTOSAR) is a commonly established standard for automotive

software development. Over the last decade, the usage of

AUTOSAR methodology for Electronic Control Unit (ECU)

software development has gained popularity among the

industries. While AUTOSAR has put forth an efficient

methodology for the stepwise development of the software from

the system design phase until the ECU integration phase, the

guidelines for the conversion of a legacy software model into an

AUTOSAR compliant software are not covered by the standard.

This work investigates the direct conversion of legacy software

into AUTOSAR compliant software. A suitable AUTOSAR

conversion methodology has been identified and applied to the

non-AUTOSAR legacy software by examining the deviations

from the standard along the V-model development workflow.

After the software has been converted to include the missing

AUTOSAR features, it has been analyzed whether a complete

AUTOSAR conformance is achievable.

Keywords—AUTOSAR, Electronic Control Unit, V-model.

I. INTRODUCTION

AUTOSAR has been set up in 2003 to promulgate a
common standard in automotive software development. The
standard proposes a unique layered architecture and a unique
software development methodology. The benefits of setting a
common standard are not limited to the reduced effort in the
development process, but also to drive cost efficiency,
quality requirements, easier work-sharing, and software
reusability [1]. Although AUTOSAR encourages software
reusability, the problem of converting fully non-AUTOSAR
legacy software to AUTOSAR compliant software is not
well addressed by the standard. As the automotive industries
have been increasingly adopting AUTOSAR methodology
over the last decade, the conversion from a legacy software
model to standard-compliant software also gains importance.
Through the direct conversion approach, automotive
companies can focus on the reusability of the non-
AUTOSAR software for AUTOSAR projects rather than
setting up the project from scratch. In this work, an approach
to convert a proprietary legacy software to meet the standard
compliance is discussed. The legacy software is the Hybrid
Control Unit (HCU) software proprietary to AVL List
GmbH. Firstly, the deviations present in the software to the
AUTOSAR standard have been studied. Secondly, the steps
for conversion have been put forth which also the toolchain
and methodologies for conversion. Once the software is
converted, the performance of the standard-compliant

software in comparison with the non-AUTOSAR proprietary
software is evaluated on a Hardware-in-the-Loop (HIL)
setup. In this step, different versions of the converted
software are also generated with different optimization
settings, and the performance is compared with the original
legacy software. Furthermore, the degree of conformance of
the converted software to the standard will also be examined.
The rest of the paper is organized as follows: Section II
discusses some of the related works already presented in the
topics of migration of legacy software to AUTOSAR
standard. Section III provides a short overview of the
software architecture of the AUTOSAR layered architecture
and that of the legacy software. Section IV presents the
deviations in the legacy software to the AUTOSAR standard.
In Section V, the AUTOSAR conversion approach has been
discussed. Section VI explores the evaluation results of
different versions of the converted software.

II. RELATED WORK

 This section discusses some of the related work already

published in the field of migration from legacy software to

AUTOSAR compliant software. Daehyun et al. [2] propose a

migration concept of a legacy software model of an interior

lighting system to the AUTOSAR platform. The authors

discuss the need to decompose the legacy application among

various Software Component (SWC) types and use a

separate AUTOSAR specific Basic Software (BSW) stack

for integration through Run Time Environment (RTE)

generation. The work by James et al. [3] use MATLAB

scripts for the conversion of legacy applications to

AUTOSAR format and dSpace SystemDesk for the SWC

design and RTE generation. In both the works discussed

above, the authors generated the RTE using AUTOSAR

specific tools and integrated with the AUTOSAR specific

BSW. In contrast, the work described in this paper is not

migration to the standard platform in its entirety, but rather

the incorporation of AUTOSAR concepts in the existing

legacy software. It has been investigated whether complete

standard compliance is possible when the Application

Software (ASW) of the legacy software is converted to

AUTOSAR format and integrated with the typical non-

AUTOSAR BSW of the legacy software. The RTE layer, in

this case, has been tailored to suit the integration needs.

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 8 August 2021 | ISSN: 2320-2882

IJCRTE020011 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 63

III. OVERVIEW OF SOFTWARE ARCHITECTURES

 In this section, the software architecture of the legacy

software and the AUTOSAR standard are discussed.

Referring to Figure. 1, the layered architecture proposed by

AUTOSAR can be divided into three layers: the ASW, the

RTE, and the BSW. The ASW is coded as individual SWCs

that communicate with each other via dedicated ports. The

RTE layer is the interfacing portion that is used to glue the

ASW with the BSW. The RTE also aids in resolving the port

communication between various SWCs and also the signal

Figure 1. AUTOSAR layered architecture.

transfer between the ASW and the BSW. Additionally, the

task bodies which are used to schedule the runnable-entities

are also housed within the RTE. The BSW is the core

software portion that contains the Operating System (OS)

and other software drivers. The BSW can be hierarchically

subdivided into various sublayers as shown in Figure 1. The

topmost Service Layer is used to provide various BSW

services to the ASW. The ECU Abstraction layer interfaces

the Service Layer and the Microcontroller Abstraction Layer

(MCAL). The MCAL is the software layer written directly

over the hardware. In comparison, the software architecture

of the legacy software is more or less similar to that of the

AUTOSAR architecture (Figure. 2). The software can be

classified into the ASW, the Customer Interface Layer (CIL),

and the BSW. The CIL is the interfacing portion, which is

used to manage the communication (COM) and diagnostic

signal transfer between the ASW and the BSW. This layer is

not similar to the RTE. Unlike the RTE, which includes the

RTE function calls, the ASW and the BSW are interfaced via

variable mappings. Additionally, the BSW used in the legacy

software is not AUTOSAR compliant, as the BSW supplier

has used their proprietary architecture in its implementation.

 Figure 2. Legacy software architecture [5].

IV. DEVIATIONS FROM AUTOSAR

The software deviations from AUTOSAR have been

investigated not only based on the software architecture but

also based on the software development process. Hence, the

V-Model flow of Software Development Lifecycle (SDLC)

has been used to identify deviations in the legacy software

from AUTOSAR. The software deviations have been

categorized as follows as per the V-model workflow:

A) Deviations at the requirements level.

B) Deviations at the design level.

C) Deviations at the implementation level.

D) Deviations at the integration level.

These deviations will be introduced as follows:

A. Deviations at the Requirements Level

Considering the deviations at the requirements level, the

requirements, in this case, are the BSW requirements

provided to the BSW supplier by the proprietor of the legacy

software. A predefined architecture for the BSW is not

specified in the requirements provided to the BSW supplier.

Therefore, the BSW supplier for the legacy software follows

proprietary implementation for the BSW architecture. The

AUTOSAR consortium, in contrast, defines a standard

architecture for the BSW [4].

B. Deviations at the Design Level

 This section discusses the deviations in the interface

handling and scheduling concepts. Figure. 3 shows an

overview of the interface handling in the legacy software.

The application SWCs communicate via globally defined

port variables. The diagnostic and communication signals

from the ASW are mapped to variable interfaces at the CIL

level which in turn are mapped to the interfaces provided by

the BSW. AUTOSAR architecture (Figure. 4), on the other

hand, proposes three types of interfaces for realizing the

communication between the ASW and the BSW. The

interface types are AUTOSAR interfaces, standardized

AUTOSAR interfaces, and standardized interfaces [4]. The

AUTOSAR interfaces are the port types that can be used for

interaction between the software components. The

AUTOSAR port types are further classifiable into

Sender/Receiver ports, Client/Server ports, etc.

 Figure 3. Interface handling in legacy software [5].

All the port communications are resolved via the RTE. The

standardized AUTOSAR interfaces are the standardized

ports that can be used for providing BSW services to the

upper layers. A notable use case for the standardized

AUTOSAR interfaces is the diagnostic data transfer between

the application software components and the Diagnostic

Communication Manager (DCM) module in the BSW. The

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 8 August 2021 | ISSN: 2320-2882

IJCRTE020011 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 64

third category of interfaces, the standardized interfaces, are

standardized API calls used for interaction among the BSW

modules as well as the RTE. In terms of the scheduling

concept, both the legacy software and the AUTOSAR

architecture use Operating System (OS) tasks to schedule the

runnable entities. However, only one basic task of periodicity

10ms is used by the legacy software to schedule all the ASW

runnable entities as shown in Figure. 5.

 Figure 4. Interface handling in AUTOSAR environment

The task bodies are provided as empty functions by the BSW

supplier. The calls to the runnable entities are made using

one of these task bodies. The runnable entities are invoked

sequentially so that the complete execution of the task body

finishes within the next period of the task. As there is no

synchronized execution among the ASW runnable entities,

the OS events are not used.

In the AUTOSAR case, there is a provision to use more than

one task type (basic or extended) depending on the

application context. The basic tasks are used for runnable

entity with no wait points and extended tasks are used for

runnable entity with one or more wait points which have to

be resolved by the occurrence of the particular RTE event.

Additionally, the task bodies are generated as part of the

RTE generation.

C. Deviations at the Model Development and Code

Generation Level

The software development in the case of legacy software

begins with the definition of system requirements. From the

system requirements, the software requirements for the HCU

are filtered out and the HCU software system is designed. In

this phase, the list of SWCs and the Input/Output (I/O) and

parameter signals present in the HCU software system for

each SWC are defined. Automotive Data Dictionary (ADD)

[8] has been used to define model I/O and parameter signals,

which are stored as database files for each SWC. In the SWC

design phase, the model algorithm is developed using

MATLAB version 2013b and dSpace TargetLink.

 Figure 5. Scheduling concept in legacy software [5].

In the AUTOSAR case, the AUTOSAR Extensible Markup

Language (ARXML) files [4], which are also the description

files defined in AUTOSAR schema, play an important role in

every phase of development. AUTOSAR software

development begins with the definition of the System

Description [4], which includes information about the

complete vehicle ECU system. The System Description is

prepared by the automotive Original Equipment

Manufacturers (OEMs). The information about a particular

ECU (e.g. HCU) is extracted as an ECU Extract [4] and

delivered to the respective ECU manufacturers. The ECU

suppliers can then extract the SWC information as an SWC

description and port it into a model-based development tool

such as MATLAB and can implement the SWC model

algorithm.

D. Deviations at Integration Level

In the case of legacy software, the generated model SWC

code files, the CIL code, and the BSW code files from the

supplier are built in a build environment and the ECU

executable can be generated in binary format. In the

AUTOSAR case, the configuration of BSW modules and the

RTE is a necessary step in the software integration phase.

The BSW modules must be individually configured using

standard configuration tools and the ECU Configuration

Description has to be created. The result of the configuration

step is the BSW configuration code files. The configuration

code files have to be built along with the BSW static files

and the RTE code files during the ECU build process.

V. AUTOSAR CONVERSION APPROACH

This section discusses the conversion approach followed to

incorporate AUTOSAR features in the legacy software

architecture shown in Figure. 3. Referring to Figure. 6, the

ASW models of the legacy software are converted to

AUTOSAR format and integrated with the original BSW of

legacy software. As the objective of this work is to

incorporate AUTOSAR features by reusing the software

modules of the legacy software, the BSW has been reused

for AUTOSAR conversion. As indicated earlier, the BSW of

the legacy software is not compliant with the AUTOSAR

standard. Besides, the CIL has also been retained since

completely replacing it with the RTE can involve huge

manual modifications.

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 8 August 2021 | ISSN: 2320-2882

IJCRTE020011 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 65

 Figure 6. AUTOSAR conversion approach [5].

However, the portion of the RTE layer to support the SWC

port communications is generated and integrated on the top

of the CIL. The converted architecture, shown in Figure. 4,

still meets ICC1 (Implementation Conformance Class) (p. 2-

8, [1]) AUTOSAR compliance. The AUTOSAR ICC1

compliance requirement states that the BSW and the RTE

can be considered as a single proprietary entity and that the

interfaces between this BSW unit and the ASW shall be

AUTOSAR conform. In the converted software architecture,

this can be understood from Figure. 7. The BSW altogether

with the RTE and the BSW is considered as a single

proprietary implementation and the ASW is interfaced with

this unit via AUTOSAR conform implementation.

VI. IMPLEMENTATION AND EVALUATION

 The conversion of non-AUTOSAR models of the legacy

software to AUTOSAR compliant models follows the

bottom-up approach of the AUTOSAR workflow. For the

conversion, MATLAB/Simulink version 2017b was

employed. MATLAB introduces an additional support

package to handle the models in the AUTOSAR

development environment. MATLAB scripts were

additionally developed to automate the model conversion to

AUTOSAR format. Besides, a separate RTE generator

engine (based on the work by Shiquan Piao et al. [6]) was

also developed using MATLAB script to generate the RTE

function definitions involving SWC port communication.

Eventually, the code files for the RTE and the ASW models

were generated for the AUTOSAR converted software. The

generated code files are in turn subjected to ECU build. The

result of the build process is the ECU executable in binary

format. Additionally, different versions of the AUTOSAR

converted software were also prepared based on different

optimization settings as follows:

Figure 7. AUTOSAR compliance analysis for the converted

software

 AUTOSAR Normal Version with no optimization

settings. The compiler optimization flag is O0 in

this case. It is the default optimization setting and

indicates that zero optimization has been applied.

 AUTOSAR Inline Version in which the RTE

function definitions are made inline. The

optimization level is O0 for this software version.

 AUTOSAR Optimized Version Level 1 which is

compiled with the O1 optimization flag, which is

the first level of optimization for reduced code size

and execution time [7]. The RTE function calls are

not made inline in this software version.

 AUTOSAR Optimized Version Level 2 in which

all the RTE function definitions are made inline, as

well as the O1 optimization level, is applied.

The software versions were validated on a HIL setup and the

performance metrics were analyzed in comparison with a

non-AUTOSAR software used as a reference. A

customizable real time simulation environment made of

National Instruments VeriStand [10] was the HIL setup

employed in the study. The software performances were

compared in terms of memory consumption and execution

time metrics. Figure. 8 shows the comparison of memory

consumption analysis for different software versions.

Although the trend of memory consumption is the same for

all the software versions (both non-AUTOSAR and

AUTOSAR compliant) across the. .caldata, .rodata, and. .bss

memory sections, a significant difference could be analyzed

in the .data and .text memory portions. The .text portion

represents the code size and the AUTOSAR Normal and

Inline versions (compiled with zero compiler optimization

setting) tended to occupy more memory space than the non-

AUTOSAR reference software. The reason can be the

difference in code structure caused by the different code

generator tools and also the presence of RTE function

definitions in the AUTOSAR versions. Nevertheless, the

code size improved dramatically for the AUTOSAR

Optimized Level 1 and Level 2 software versions due to the

compiler-induced optimization. A similar observation can be

seen in the execution time metric (Table I). The execution

time, in this case, is the total runtime of the OS task that is

used to schedule all the ASW runnable entities. The mean

execution time of the AUTOSAR Normal version had been

about three times more than the reference software.

However, with an increasing degree of optimizations for the

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 8 August 2021 | ISSN: 2320-2882

IJCRTE020011 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 66

AUTOSAR versions, a significant improvement in the

execution time could be observed. The average execution

time of the AUTOSAR Optimized Level 2 version was

nearly equal to that of the reference non-AUTOSAR

software with only a marginal difference of about 11%.

 Figure 8. Analysis of memory consumption [5].

Table 1. Percentage Change in Average Execution Time

 Average Task

Runtime (ms)

Percentage

Change

Reference SW 2.483 0

AUTOSAR SW - Normal 6.384 +163%

AUTOSAR SW - Inline 5.347 +120%

AUTOSAR - Optimized

Version L1

4.177 +72%

AUTOSAR - Optimized

Version L2

2.698 +11%

VII. DISCUSSION

The AUTOSAR conversion concept has been established
for the legacy software. The ASW of the legacy software has
been converted to AUTOSAR format and integrated with the
BSW via the RTE generation. Although the proposed
conversion concept incorporates AUTOSAR features, an
ICC3 level AUTOSAR compliance was not achievable due
to the following factors:

 The usage of non-AUTOSAR BSW for AUTOSAR
conversion.

 The presence of CIL and the supplier-specific
interfaces from the BSW.

It is imperative to use the AUTOSAR specific BSW stacks
and follow the AUTOSAR proposed development
methodology from scratch to achieve ICC3 level compliance.
Nevertheless, the proposed conversion approach could meet
the ICC1 level considering the BSW, the CIL, and the RTE
as a single proprietary BSW unit. The proposed conversion
concept additionally cannot be applied to all types of legacy
software. As mentioned by Daehyun et al. [2], in some cases,
it is necessary to decompose the legacy software into

different AUTOSAR SWC types before conversion.
Considering the software performance, the original non-
AUTOSAR legacy software outperformed the AUTOSAR
versions in the memory consumption and task runtime
metrics. The above observation is in accordance with the
study in [2], which mentions that the incorporation of
AUTOSAR concepts can bring out an increase in the code
size and execution time. This is due to the presence of the
RTE function definitions and the function call overheads
introduced during software execution. However, it was also
shown in this work that the additional function call
overheads and the increase in the code size can be
compensated by introducing various optimization options in
the AUTOSAR converted software.

ACKNOWLEDGMENT

This work is carried out as a master’s thesis project in

collaboration with AVL List GmbH, Graz, Austria, and

Institute of Technical Informatics, Graz University of

Technology. We would like to express our gratitude to the

Dept. of Powertrain Engineering, AVL List GmbH. for

sponsoring this work.

REFERENCES

[1] Nicolas Navet and Francoise Simonot-Lion, Automotive Embedded

Systems Handbook, CRC Press, Taylor & Francis, no. of pages 488,
2008.

[2] Daehyun Kum, Gwang-Min Park, Seonghun Lee andWooyoung Jung,

” AUTOSAR Migration from Existing Automotive Software,” in
International Conference on Control, Automation and Systems 2008,
Seoul, Korea, pp. 558-562, 2008

[3] James Joy, Anush G Nair,” Automation framework for converting
legacy application to AUTOSAR System using dSPACE
SystemDesk,” in dSPACE User Conference 2012 - India, September
14, 2012.

[4] AUTOSAR Classic Release 4.3.1, AUTOSAR Classic Platform,
2019.

[5] Vimal Sivashanmugam,” Conversion of Control Unit Software
towards AUTOSAR Compliance,” Master’s thesis in Information and
Computer Engineering, Graz University of Technology, 2019.

[6] Shiquan Piao, Hyunchul Jo, Sungho Jin, and Wooyoung Jung,”
Design and Implementation of RTE Generator for Automotive
Embedded Software,” in 2009 Seventh ACIS International
Conference on Software Engineering Research, Management and
Applications, pp. 159-165, 2009.

[7] Sharang Kulkarni, Prof. Shafali Gupta, Rameez Tamboli, Anil Dake,”
Review of Techniques for Making Efficient Executable in GCC
Compiler,” in Imperial Journal of Interdisciplinary Research (IJIR),
Vol-3, Issue-3, 2017.

[8] ” ADD V19.1 Product Datasheet,” VisuIT, 2019. [Online]. Available:
https://www.visuit.de/vitdata/Download/pub/10_ADD/ADD_Info/Wh
ats%20new%20in%2019.1.pdf [Accessed October 2, 2020]

[9] Hightec Compiler Suite Product Information, HighTec EDVSysteme
GmbH, 2019. [Online]. Available:
https://hightecrt.com/en/products/development-platform.html
[Accessed May 24, 2020].

[10] VeriStand Product Information, National Instruments, 2019. [Online].
Available: http://www.ni.com/veristand/ [Accessed June 06, 2020].

http://www.ijcrt.org/
https://www.visuit.de/vitdata/Download/pub/10_ADD/ADD_Info/Whats%20new%20in%2019.1.pdf
https://www.visuit.de/vitdata/Download/pub/10_ADD/ADD_Info/Whats%20new%20in%2019.1.pdf
https://hightecrt.com/en/products/development-platform.html

