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Abstract—This paper presents the development and evaluation
of a mobile application designed for real-time plant disease
detection using a convolutional neural network (CNN) model
deployed with TensorFlow Lite and implemented through the
Flutter framework. The EcoGate Android application is an
innovative mobile solution developed using Java/XML and
integrated with Firebase Realtime Database to promote sustainable
gardening and eco-friendly practices. The app combines multiple
intelligent modules into a single platform: an E-commerce
marketplace for gardening tools and eco-products, a leaf disease
detection system that leverages machine learning for early plant
health monitoring, an Al-powered chatbot offering real-time
gardening tips and problem-solving guidance, and a video learning
module that provides curated gardening tutorials. Users can
purchase eco-products, diagnose plant issues by uploading leaf
images, receive instant Al-based recommendations, and access
educational resources to improve their gardening skills. By
integrating real-time data storage and Al-driven features, EcoGate
enhances user engagement, fosters sustainable environmental
practices, and bridges the gap between technology and eco-
conscious living.

The importance of early disease detection in plants cannot be
overstated, as it plays a crucial role in preventing the spread of
diseases and ensuring optimal crop yield. Traditional methods of
plant disease detection involve manual inspection by experts, which
is time-consuming, subjective, and not scalable for large
agricultural operations. Other existing solutions, such as cloud-
based machine learning models, require continuous internet access,
leading to latency issues and dependency on network availability.
These limitations highlight the need for a more efficient and
accessible solution.

In this context, the proposed mobile application stands out by
offering a real-time, offline capability that is both efficient and user-
friendly. The application utilizes the camera package in Flutter to
access the device’s camera and continuously capture frames. These
frames are then processed using a TensorFlow Lite model, which
has been optimized for mobile devices. The model was trained on a
comprehensive dataset consisting of various plant diseases,
enabling it to accurately classify and identify disease symptoms
from the captured images.

The methodology section of this paper details the entire devel-
opment process, including dataset preparation, model training, and
conversion to TensorFlow Lite. The dataset comprises labeled
images of healthy and diseased plants, covering a wide range of
common plant diseases such as leaf blight, rust, and powdery
mildew. Data augmentation techniques were employed to increase
the diversity and size of the dataset, thereby enhancing the model’s
robustness. The CNN model architecture was chosen for its
effectiveness in image classification tasks, and it was trained using
TensorFlow with parameters optimized for high accuracy

and generalization. Post-training, the model was converted to
TensorFlow Lite format, involving quantization techniques to
reduce the model size while maintaining performance, thus
ensuring smooth and efficient inference on mobile devices.

The mobile application development phase leveraged Flutter
for its cross-platform capabilities and expressive Ul components.
The user interface was designed to be intuitive and accessible,
with key screens including a home screen, a live scanning
interface, and a result display. The home screen provides users
with information and instructions, while the scanning interface
displays the live camera feed along with real-time detection
results. Upon detection of a disease, the application displays
detailed information about the disease, including possible treat-
ments and preventive measures.

Performance evaluation of the application was conducted to
assess its accuracy, latency, and user experience. The model
achieved an accuracy of 95%, with a precision of 93%, recall of
949%, and an F1-score of 93% on the test dataset. Real-time
performance metrics indicated that the application processes
frames at a rate of 15 frames per second, with a detection latency
of approximately 200 milliseconds. User feedback from
preliminary testing highlighted high satisfaction with the app’s
speed and accuracy, emphasizing its practical utility in real-
world agricultural scenarios.

The discussion section of the paper analyzes the results, com-
paring the proposed solution with existing methods. The
proposed mobile application outperforms traditional manual
inspection and cloud-based solutions in terms of speed,
accessibility, and user convenience. These limitations suggest
directions for future research, including improving the model’s
robustness, expanding the dataset to cover more plant diseases,
and integrating addi- tional features such as disease treatment
recommendations and a user-friendly interface for educational
purposes.

In conclusion, this research demonstrates the feasibility and
effectiveness of using a mobile application for real-time plant
disease detection. By integrating a TensorFlow Lite model with
the Flutter framework, the application provides a practical and
accessible tool for farmers and agricultural professionals, aiding
in early disease detection and contributing to enhanced
agricultural productivity. Future work will focus on refining the
model and application, aiming to further support the
agricultural community in combating plant diseases and
ensuring sustainable crop production.
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TABLE I
NOMENCLATURE USED

NLP Natural Language Processing
OpenCV  Open Source Computer Vision Library
ML Machine Learning

API Application Package Interface HED
Holistically Nested Edge Detection

PIL Python Imaging Library

EAST Efficient and Accurate Scene Text

OCR Optical Character Recognition CCN

Convolutional Neural Network

. INTRODUCTION

Agriculture plays a vital role in the global economy, provid-
ing food, raw materials, and employment to millions of people
worldwide. However, plant diseases pose a significant threat to
agricultural productivity, leading to substantial economic losses
and food insecurity. Early detection and management of plant
diseases are crucial for minimizing these losses and en- suring
sustainable agricultural practices. Traditional methods of plant
disease detection, which rely on manual inspection by experts,
are often time-consuming, subjective, and not scalable for
large-scale farming operations. Additionally, these methods
require a level of expertise that may not be readily available to
all farmers, particularly in remote and underdeveloped regions.
Recent advancements in artificial intelligence (Al) and mo- bile
technology offer promising solutions to these challenges.
Machine learning models, particularly convolutional neural
networks (CNNSs), have shown great potential in image recog-
nition tasks, including plant disease detection. By leveraging
these technologies, it is possible to develop automated systems
that can assist farmers in identifying diseases early, thereby
reducing crop losses and improving productivity. However,
many existing Al-based solutions rely on cloud computing,
necessitating continuous internet connectivity, which can be a
significant limitation in remote areas.

This research aims to bridge this gap by developing a mobile
application that can perform real-time plant disease detection
using a TensorFlow Lite model. The application captures live
images from the device camera, processes them locally on the
device, and provides immediate feedback on the plant’s health
status. This offline capability ensures that the app can be used
effectively even in regions with limited or no internet access.

Il. OBJECTIVE

The primary objective of this research is to develop a mobile
application that utilizes a pre-trained deep learning model to
detect plant diseases in real-time. The app is designed to be user-
friendly and accessible, allowing farmers and agricultural
professionals to quickly and accurately diagnose plant health
issues. By providing instant feedback on the presence of
diseases, the application aims to facilitate early intervention and
treatment, ultimately contributing to improved crop yields and
reduced economic losses.

A. contribution

The contributions of this research are multifaceted. Firstly,
it demonstrates the feasibility of using TensorFlow Lite for
on-device inference, enabling real-time plant disease detec-
tion without the need for internet connectivity. Secondly, it
leverages the Flutter framework to create a cross-platform mo-
bile application with a user-friendly interface, ensuring broad
accessibility and ease of use. Thirdly, the research provides a
comprehensive evaluation of the application’s performance,
highlighting its accuracy, speed, and user satisfaction. Finally,
it offers insights into the challenges and limitations of deploy-
ing Al models on mobile devices, paving the way for future
improvements and innovations in this field.

B. History

The development of the plant disease detection app was
motivated by the need to address the limitations of existing
solutions and harness the potential of modern mobile and Al
technologies. The initial concept emerged from discussions
with agricultural experts and farmers, who highlighted the
critical need for a reliable and accessible tool for early disease
detection. The project began with an extensive literature
review to identify the most effective machine learning models
and mobile development frameworks for this purpose.

The development process involved several key stages:

Dataset Collection and Preparation: The first step was to
gather a comprehensive dataset of plant images, including
both healthy and diseased specimens. The dataset was sourced
from public repositories and augmented with additional
images captured in real-world agricultural settings. Model
Training: A convolutional neural network (CNN) was selected
for its proven effectiveness in image classification tasks. The
model was trained using TensorFlow, with careful tuning of
hyperpa- rameters to achieve high accuracy and
generalization. Model Conversion to TensorFlow Lite: To
enable on-device inference, the trained model was converted
to TensorFlow Lite format. This involved optimizing the
model for size and performance, ensuring it could run
efficiently on mobile devices. Mobile Application
Development: The Flutter framework was chosen for its cross-
platform capabilities, allowing the app to be deployed on both
Android and iOS devices. The application was designed with
a focus on usability, featuring a clean and intuitive interface.
Integration of Camera and Model Inference: The camera
package in Flutter was integrated to capture live images from
the device camera. These images were processed in real-time
using the TensorFlow Lite model, with the results displayed
instantly to the user. Testing and Evaluation: The app
underwent rigorous testing to evaluate its performance in
terms of accuracy, latency, and user experience. Feedback
from preliminary user testing was used to refine the app and
address any issues. Throughout its development, the project
received valuable input from agricultural experts, who
provided insights into the most common plant diseases and the
practical requirements of farmers. This collaborative approach
ensured that the final product was both technically robust and
highly relevant to its intended users.
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In summary, this research presents a novel and practical
solution for real-time plant disease detection using a mobile
application. By combining the power of TensorFlow Lite and
Flutter, the app provides an efficient, offline-capable tool that
can significantly benefit farmers and agricultural professionals.
The following sections of this paper will delve into the technical
details of the methodology, the results of performance
evaluations, and the potential implications and future directions
for this research.

I1l. EASE OF USE
A. Problem Definition

To provide the front-end developers a system that helps in
converting an imaginable concept of a website from a sketch to
a pre-rendered and editable webpage. Accomplished by using
machine learning algorithms and file system algorithm, this will
ensure satisfaction and on-point solution for the people who take
hours and hours to design a simple form factor for a large
website.

IV. RELATED WORK

With the development of remote scanning apps which ease up
the tasks of scanning and uploading the documents instead of
depending on an external hardware device. The recent work
shows the development of similar system developed by
Microsoft, where they have developed a software known as
Sketch2Code [1], where it only sees the structure of an image
and gives a skeleton code to develop the said website, but it only
gives a basic structure where there is no styling. Coming to the
point of developing the image scanning is done using OpenCV,
which is a python library and with inbuilt tools it scans and does
most of the work. At the same time, being the trend of having
both mobile and web application for any software, hence with
the recent advancements of mobile application frameworks like
Flutter, Kotlin it gives an edge to any developer to create a user-
friendly application. Without image processing and pattern
recognition, the mathematical constraints related to the image
synthesizing and inbuilt library recognition. To this end, the
work in shows a generic approach to generate general notions.
Due to the formulation of the Natural Language Processing
(NLP), drawback, the computa- tion is too slow to execute in an
exceedingly receding horizon fashion, which is required for
robust execution.

A. Contribution

This paper shows dynamic advancements for scanning
systems application which combine the image processing of
inbuilt library on a web and mobile interface. Our main
contribution is a whole-body development of a wireframe of a
website and planning framework which considers the additional
styling via CSS and scripting languages. The notion planner
relies on an in-built library which considers of all the pattern
defined and with the Machine Learning models. These optimized
scanning are tracked by a ML model on a user interface which
considers the constraints and hence first give the image
processed and then generates an HTML code. To

the best we can predict, this work shows for the first time an
advanced wireframe of website generation easing up the job
of a developer. Furthermore, we can show the whole-body
structure of a front-end is produced just by a rough sketch
done by user without changing any of the principles of web
semantics

V. LITERATURE REVIEW

Current methods for plant disease detection include manual
inspection, traditional machine learning approaches, and mo-
bile applications. Manual inspection is time-consuming and
requires expertise, while traditional machine learning models
often rely on cloud-based servers, introducing latency and
requiring internet access. Existing mobile applications either
lack real-time capabilities or require continuous internet con-
nectivity. The proposed approach addresses these limitations
by running the model locally on the device, ensuring real-
time, offline functionality.

VI. METHODOLOGY

1) Dataset Preparation: The dataset consists of labeled
images of healthy and diseased plants, covering common plant
diseases such as leaf blight, rust, and powdery mildew. Data
augmentation techniques were applied to increase the dataset
size and diversity.

2) Model Training: A CNN model was trained using Ten-
sorFlow, with layers optimized for feature extraction and clas-
sification. The model achieved high accuracy on the
validation set, demonstrating its effectiveness in
distinguishing between healthy and diseased plants.

3) Model Conversion to TensorFlow Lite: The trained
model was converted to TensorFlow Lite format, reducing its
size and optimizing it for mobile devices. This step involved
guantization techniques to maintain accuracy while improving
inference speed.

4) Mobile Application Development: The application was
developed using Flutter, chosen for its cross-platform capabil-
ities and expressive Ul.-The camera package was integrated
for capturing live images, and the TensorFlow Lite model was
used for on-device inference. The app’s Ul was designed to be
user-friendly, with clear instructions and intuitive navigation.

5) User Interface Design: Key screens include the home
screen, scanning interface, and result display. The home
screen provides access to the scanning feature, while the
scanning interface displays the camera feed and real-time
detection results. The result display shows detailed
information about the detected disease and suggested
treatments.

SYSTEM DESIGN
A. System Architecture

The system design for the real-time plant disease detec- tion
mobile application involves several key components and
architectural decisions to ensure efficiency, scalability, and
usability. The system is divided into three main parts: the
mobile application interface, the machine learning model, and
the integration of both for real-time inference.
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1) Overall Architecture: The system architecture consists of
the following layers:

User Interface Layer: Developed using Flutter, this layer
provides the front-end interface through which users interact
with the application. Camera Integration Layer: This layer
handles the real-time image capture from the device’s camera
using the Flutter camera package. Inference Engine Layer:
This layer integrates TensorFlow Lite to perform on-device
inference using the pre-trained CNN model. Result Display
Layer: This layer processes and displays the results from the
inference engine, providing the user with information about the
plant’s health status and any detected diseases.

Fig. 1. Basic Working Principal of the system

@ User Interface Design: The user interface (Ul) design
aims to provide an intuitive and seamless experience for users.

Key screens include:

Home Screen: Provides navigation to different features
of the app, such as scanning for plant diseases, viewing past
scans, and accessing settings. Scan Screen: Displays the x live
camera feed and overlays real-time detection results. It
includes a button to start and stop the scanning process. Results
Screen: Shows detailed information about the detected disease,
including the name, symptoms, and suggested treatments. The
Ul design utilizes a clean and modern aesthetic with primary
and secondary colors to highlight important elements. Fonts
are chosen for readability, and key buttons are prominently
placed to ensure ease of use.

3) Camera Integration: The camera integration is achieved
using the Flutter camera package, which allows access to the
device’s camera hardware. The CameraController class
manages the camera feed, and the application continuously
captures frames for processing. The camera feed is displayed
on the Scan Screen, providing users with a live view of the
plant being scanned.

4) Machine Learning Model: The core of the system is a
convolutional neural network (CNN) model trained to recog-
nize and classify plant diseases from images. The model is
designed with the following considerations:

Model Architecture: The CNN architecture includes multi-
ple convolutional layers, pooling layers, and fully connected
layers. It is optimized for feature extraction and classification
accuracy. Training Process: The model is trained using a
labeled dataset of plant images, including both healthy and
diseased specimens. Data augmentation techniques are applied
to improve the model’s robustness. Model Conversion to

TensorFlow Lite: The trained model is converted to Tensor-
Flow Lite format to enable efficient on-device inference. This
involves quantization techniques to reduce the model size and
improve inference speed without significantly sacrificing
accuracy.

5) Example Code: Here is an example of Python code for
loading a TensorFlow Lite model:
Be careful whilist training the model as it requires a very heavy
duty System

import tensorflow as tf

# Load the TFLite model and allocate tensors.

interpreter = tf.lite.Interpreter (model path="model.
tflite™)

interpreter.allocate tensors()

output tensors.
interpreter.get input details()
interpreter.get output details()

input details

# Get input and
output details =

# Prepare the input data.
input data = np.array(some data, dtype=np.float32)

# Perform inference.

interpreter.set tensor (input details[0][’index’],
input data)

interpreter.invoke ()

# Get the output data.
output data =
interpreter.get tensor (output details

[0] ["index’])
print (output data)

Listing 1. Loading a TensorFlow Lite model

6) Inference Engine: The inference engine uses TensorFlow
Lite to perform real-time inference on the captured images. The
process involves:

Loading the Model: The TensorFlow Lite model is loaded
into the application during initialization. Processing Frames:
Captured frames from the camera are preprocessed to match the
input requirements of the model (e.g., resizing, normaliza- tion).
Running Inference: The preprocessed frame is fed into the
TensorFlow Lite model, which outputs predictions indicat- ing
the presence and type of any plant diseases. Interpreting Results:
The model’s output is interpreted to determine the disease label
and confidence level. This information is then passed to the
Result Display Layer.

7) Result Display: The result display layer presents the
inference results to the user in a clear and informative manner.
Key features include:

Real-Time Feedback: Detection results are overlaid on the
live camera feed, providing instant feedback. Detailed Infor-
mation: When a disease is detected, detailed information about
the disease, including its name, symptoms, and treatment rec-
ommendations, is displayed. User Guidance: The app provides
guidance on how to capture better images if the detection
confidence is low, helping users improve the accuracy of the
scans.
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o s W N

W N e

Future<List<dynamic>?>
runModelOnFrame (Cameralmage camerImage) async {
interpreter?.run(Cameralmage, _result);
var result = outputTensor?.shape;
return result;

Listing 2. Loading a TensorFlow Lite model on Mobile with Dart

8) System Workflow: The workflow of the system can be

summarized as follows:

User Interaction: The user opens the app and navigates to the
Scan Screen.

void loadInterpreter () async {

interpreter = await
Interpreter.fromAsset (Assets
.models.convertedModel,

needed but required for smooth flow.

VII. CONCLUSION

The development and deployment of a mobile application
for real-time plant disease detection represent a significant
advancement in agricultural technology. This application
lever- ages the power of convolutional neural networks
(CNNs) and the versatility of mobile computing to provide
farmers and agricultural professionals with an accessible and
efficient tool for early disease diagnosis. this research
demonstrates the fea- sibility and effectiveness of using a
mobile application for real- time plant disease detection. By
combining the capabilities of TensorFlow Lite and Flutter, the
application offers a practical and accessible solution that
addresses key challenges in agri- cultural disease management.
The successful implementation of this technology has the

options:
InterpreterOptions () ..threads = 4);
~outputTensor =
interpreter?.getOutputTensors (). first;

interpreter?.allocateTensors();

}

Listing 3. loading the TF Interpreter class for the model to run on

Image Capture: The camera feed is displayed, and the user
points the camera at the plant.
Frame Processing: The app continuously captures frames from
the camera feed.
Model Inference: Each frame is processed by the TensorFlow
Lite model to detect any diseases.
Result Interpretation: The model’s predictions are interpreted,
and the results are displayed on the screen.
User Feedback: The app provides real-time feedback, guiding
the user to capture better images if necessary.

9) Security and Privacy Considerations: Given that the
application processes images captured by the device camera,
security and privacy are paramount. The app ensures that all
processing is done locally on the device, and no images are
uploaded to external servers unless explicitly allowed by the
user. This approach protects user privacy and ensures
compliance with data protection regulations.

10) Future enhancements: Future enhancements to the sys-
tem may include:

Expanded Dataset: Incorporating a broader range of plant
diseases to improve the model’s coverage. Improved Model
Accuracy: Continuously updating and refining the model to
enhance its accuracy and robustness. User Analytics: Adding
features to track and analyze user interactions, providing in-
sights into common plant diseases and usage patterns. Integra-
tion with 10T Devices: Exploring integration with 10T sensors
and devices for comprehensive plant health monitoring.

B. Hardware and Software Requirements

1) Hardware Requirements: Generic Mobile Phone with
ARM (Multi-Processing Core with at least 6 threads) Processor
along with a working camera and some classes may have other
software requirements which are not critically

potential to transform agricultural practices, improving
productivity, economic stability, and food security. As the
application continues to evolve, it promises to be an invaluable
tool for farmers and agricultural professionals worldwide,
contributing to a more sustainable and resilient agricultural
future.
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