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Abstract—This paper presents the development and evaluation 
of a mobile application designed for real-time plant disease 
detection using a convolutional neural network (CNN) model 
deployed with TensorFlow Lite and implemented through the 
Flutter framework. The EcoGate Android application is an 
innovative mobile solution developed using Java/XML and 
integrated with Firebase Realtime Database to promote sustainable 
gardening and eco-friendly practices. The app combines multiple 
intelligent modules into a single platform: an E-commerce 
marketplace for gardening tools and eco-products, a leaf disease 
detection system that leverages machine learning for early plant 
health monitoring, an AI-powered chatbot offering real-time 
gardening tips and problem-solving guidance, and a video learning 
module that provides curated gardening tutorials. Users can 
purchase eco-products, diagnose plant issues by uploading leaf 
images, receive instant AI-based recommendations, and access 
educational resources to improve their gardening skills. By 
integrating real-time data storage and AI-driven features, EcoGate 
enhances user engagement, fosters sustainable environmental 
practices, and bridges the gap between technology and eco-
conscious living. 

The importance of early disease detection in plants cannot be 
overstated, as it plays a crucial role in preventing the spread of 
diseases and ensuring optimal crop yield. Traditional methods of 
plant disease detection involve manual inspection by experts, which 
is time-consuming, subjective, and not scalable for large 
agricultural operations. Other existing solutions, such as cloud- 
based machine learning models, require continuous internet access, 
leading to latency issues and dependency on network availability. 
These limitations highlight the need for a more efficient and 
accessible solution. 

In this context, the proposed mobile application stands out by 
offering a real-time, offline capability that is both efficient and user-
friendly. The application utilizes the camera package in Flutter to 
access the device’s camera and continuously capture frames. These 
frames are then processed using a TensorFlow Lite model, which 
has been optimized for mobile devices. The model was trained on a 
comprehensive dataset consisting of various plant diseases, 
enabling it to accurately classify and identify disease symptoms 
from the captured images. 

The methodology section of this paper details the entire devel- 
opment process, including dataset preparation, model training, and 
conversion to TensorFlow Lite. The dataset comprises labeled 
images of healthy and diseased plants, covering a wide range of 
common plant diseases such as leaf blight, rust, and powdery 
mildew. Data augmentation techniques were employed to increase 
the diversity and size of the dataset, thereby enhancing the model’s 
robustness. The CNN model architecture was chosen for its 
effectiveness in image classification tasks, and it was trained using 
TensorFlow with parameters optimized for high accuracy 

and generalization. Post-training, the model was converted to 
TensorFlow Lite format, involving quantization techniques to 
reduce the model size while maintaining performance, thus 
ensuring smooth and efficient inference on mobile devices. 

The mobile application development phase leveraged Flutter 
for its cross-platform capabilities and expressive UI components. 
The user interface was designed to be intuitive and accessible, 
with key screens including a home screen, a live scanning 
interface, and a result display. The home screen provides users 
with information and instructions, while the scanning interface 
displays the live camera feed along with real-time detection 
results. Upon detection of a disease, the application displays 
detailed information about the disease, including possible treat- 
ments and preventive measures. 

Performance evaluation of the application was conducted to 
assess its accuracy, latency, and user experience. The model 
achieved an accuracy of 95%, with a precision of 93%, recall of 
94%, and an F1-score of 93% on the test dataset. Real-time 
performance metrics indicated that the application processes 
frames at a rate of 15 frames per second, with a detection latency 
of approximately 200 milliseconds. User feedback from 
preliminary testing highlighted high satisfaction with the app’s 
speed and accuracy, emphasizing its practical utility in real-
world agricultural scenarios. 

The discussion section of the paper analyzes the results, com- 
paring the proposed solution with existing methods. The 
proposed mobile application outperforms traditional manual 
inspection and cloud-based solutions in terms of speed, 
accessibility, and user convenience. These limitations suggest 
directions for future research, including improving the model’s 
robustness, expanding the dataset to cover more plant diseases, 
and integrating addi- tional features such as disease treatment 
recommendations and a user-friendly interface for educational 
purposes. 

In conclusion, this research demonstrates the feasibility and 
effectiveness of using a mobile application for real-time plant 
disease detection. By integrating a TensorFlow Lite model with 
the Flutter framework, the application provides a practical and 
accessible tool for farmers and agricultural professionals, aiding 
in early disease detection and contributing to enhanced 
agricultural productivity. Future work will focus on refining the 
model and application, aiming to further support the 
agricultural community in combating plant diseases and 
ensuring sustainable crop production.
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TABLE I 
NOMENCLATURE USED 

NLP Natural Language Processing 
OpenCV Open Source Computer Vision Library 
ML Machine Learning 
API Application Package Interface HED
 Holistically Nested Edge Detection 

PIL Python Imaging Library 
EAST Efficient and Accurate Scene Text 
OCR Optical Character Recognition CCN
 Convolutional Neural Network 

 

 

I. INTRODUCTION 
 

Agriculture plays a vital role in the global economy, provid- 

ing food, raw materials, and employment to millions of people 

worldwide. However, plant diseases pose a significant threat to 

agricultural productivity, leading to substantial economic losses 

and food insecurity. Early detection and management of plant 

diseases are crucial for minimizing these losses and en- suring 

sustainable agricultural practices. Traditional methods of plant 

disease detection, which rely on manual inspection by experts, 

are often time-consuming, subjective, and not scalable for 

large-scale farming operations. Additionally, these methods 

require a level of expertise that may not be readily available to 

all farmers, particularly in remote and underdeveloped regions. 

Recent advancements in artificial intelligence (AI) and mo- bile 

technology offer promising solutions to these challenges. 

Machine learning models, particularly convolutional neural 

networks (CNNs), have shown great potential in image recog- 

nition tasks, including plant disease detection. By leveraging 

these technologies, it is possible to develop automated systems 

that can assist farmers in identifying diseases early, thereby 

reducing crop losses and improving productivity. However, 

many existing AI-based solutions rely on cloud computing, 

necessitating continuous internet connectivity, which can be a 

significant limitation in remote areas. 

This research aims to bridge this gap by developing a mobile 

application that can perform real-time plant disease detection 

using a TensorFlow Lite model. The application captures live 

images from the device camera, processes them locally on the 

device, and provides immediate feedback on the plant’s health 

status. This offline capability ensures that the app can be used 

effectively even in regions with limited or no internet access. 

 

II. OBJECTIVE 
 

The primary objective of this research is to develop a mobile 

application that utilizes a pre-trained deep learning model to 

detect plant diseases in real-time. The app is designed to be user-

friendly and accessible, allowing farmers and agricultural 

professionals to quickly and accurately diagnose plant health 

issues. By providing instant feedback on the presence of 

diseases, the application aims to facilitate early intervention and 

treatment, ultimately contributing to improved crop yields and 

reduced economic losses. 

A. contribution 

The contributions of this research are multifaceted. Firstly, 

it demonstrates the feasibility of using TensorFlow Lite for 

on-device inference, enabling real-time plant disease detec- 

tion without the need for internet connectivity. Secondly, it 

leverages the Flutter framework to create a cross-platform mo- 

bile application with a user-friendly interface, ensuring broad 

accessibility and ease of use. Thirdly, the research provides a 

comprehensive evaluation of the application’s performance, 

highlighting its accuracy, speed, and user satisfaction. Finally, 

it offers insights into the challenges and limitations of deploy- 

ing AI models on mobile devices, paving the way for future 

improvements and innovations in this field. 

B. History 

The development of the plant disease detection app was 

motivated by the need to address the limitations of existing 

solutions and harness the potential of modern mobile and AI 

technologies. The initial concept emerged from discussions 

with agricultural experts and farmers, who highlighted the 

critical need for a reliable and accessible tool for early disease 

detection. The project began with an extensive literature 

review to identify the most effective machine learning models 

and mobile development frameworks for this purpose. 

The development process involved several key stages: 

Dataset Collection and Preparation: The first step was to 

gather a comprehensive dataset of plant images, including 

both healthy and diseased specimens. The dataset was sourced 

from public repositories and augmented with additional 

images captured in real-world agricultural settings. Model 

Training: A convolutional neural network (CNN) was selected 

for its proven effectiveness in image classification tasks. The 

model was trained using TensorFlow, with careful tuning of 

hyperpa- rameters to achieve high accuracy and 

generalization. Model Conversion to TensorFlow Lite: To 

enable on-device inference, the trained model was converted 

to TensorFlow Lite format. This involved optimizing the 

model for size and performance, ensuring it could run 

efficiently on mobile devices. Mobile Application 

Development: The Flutter framework was chosen for its cross-

platform capabilities, allowing the app to be deployed on both 

Android and iOS devices. The application was designed with 

a focus on usability, featuring a clean and intuitive interface. 

Integration of Camera and Model Inference: The camera 

package in Flutter was integrated to capture live images from 

the device camera. These images were processed in real-time 

using the TensorFlow Lite model, with the results displayed 

instantly to the user. Testing and Evaluation: The app 

underwent rigorous testing to evaluate its performance in 

terms of accuracy, latency, and user experience. Feedback 

from preliminary user testing was used to refine the app and 

address any issues. Throughout its development, the project 

received valuable input from agricultural experts, who 

provided insights into the most common plant diseases and the 

practical requirements of farmers. This collaborative approach 

ensured that the final product was both technically robust and 

highly relevant to its intended users.
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In summary, this research presents a novel and practical 

solution for real-time plant disease detection using a mobile 

application. By combining the power of TensorFlow Lite and 

Flutter, the app provides an efficient, offline-capable tool that 

can significantly benefit farmers and agricultural professionals. 

The following sections of this paper will delve into the technical 

details of the methodology, the results of performance 

evaluations, and the potential implications and future directions 

for this research. 

III. EASE OF USE 

A. Problem Definition 

To provide the front-end developers a system that helps in 

converting an imaginable concept of a website from a sketch to 

a pre-rendered and editable webpage. Accomplished by using 

machine learning algorithms and file system algorithm, this will 

ensure satisfaction and on-point solution for the people who take 

hours and hours to design a simple form factor for a large 

website. 

IV. RELATED WORK 

With the development of remote scanning apps which ease up 

the tasks of scanning and uploading the documents instead of 

depending on an external hardware device. The recent work 

shows the development of similar system developed by 

Microsoft, where they have developed a software known as 

Sketch2Code [1], where it only sees the structure of an image 

and gives a skeleton code to develop the said website, but it only 

gives a basic structure where there is no styling. Coming to the 

point of developing the image scanning is done using OpenCV, 

which is a python library and with inbuilt tools it scans and does 

most of the work. At the same time, being the trend of having 

both mobile and web application for any software, hence with 

the recent advancements of mobile application frameworks like 

Flutter, Kotlin it gives an edge to any developer to create a user-

friendly application. Without image processing and pattern 

recognition, the mathematical constraints related to the image 

synthesizing and inbuilt library recognition. To this end, the 

work in shows a generic approach to generate general notions. 

Due to the formulation of the Natural Language Processing 

(NLP), drawback, the computa- tion is too slow to execute in an 

exceedingly receding horizon fashion, which is required for 

robust execution. 

A. Contribution 

This paper shows dynamic advancements for scanning 

systems application which combine the image processing of 

inbuilt library on a web and mobile interface. Our main 

contribution is a whole-body development of a wireframe of a 

website and planning framework which considers the additional 

styling via CSS and scripting languages. The notion planner 

relies on an in-built library which considers of all the pattern 

defined and with the Machine Learning models. These optimized 

scanning are tracked by a ML model on a user interface which 

considers the constraints and hence first give the image 

processed and then generates an HTML code. To 

the best we can predict, this work shows for the first time an 

advanced wireframe of website generation easing up the job 

of a developer. Furthermore, we can show the whole-body 

structure of a front-end is produced just by a rough sketch 

done by user without changing any of the principles of web 

semantics 

V. LITERATURE REVIEW 

Current methods for plant disease detection include manual 

inspection, traditional machine learning approaches, and mo- 

bile applications. Manual inspection is time-consuming and 

requires expertise, while traditional machine learning models 

often rely on cloud-based servers, introducing latency and 

requiring internet access. Existing mobile applications either 

lack real-time capabilities or require continuous internet con- 

nectivity. The proposed approach addresses these limitations 

by running the model locally on the device, ensuring real-

time, offline functionality. 

VI. METHODOLOGY 

1) Dataset Preparation: The dataset consists of labeled 

images of healthy and diseased plants, covering common plant 

diseases such as leaf blight, rust, and powdery mildew. Data 

augmentation techniques were applied to increase the dataset 

size and diversity. 

2) Model Training: A CNN model was trained using Ten- 

sorFlow, with layers optimized for feature extraction and clas- 

sification. The model achieved high accuracy on the 

validation set, demonstrating its effectiveness in 

distinguishing between healthy and diseased plants. 

3) Model Conversion to TensorFlow Lite: The trained 

model was converted to TensorFlow Lite format, reducing its 

size and optimizing it for mobile devices. This step involved 

quantization techniques to maintain accuracy while improving 

inference speed. 

4) Mobile Application Development: The application was 

developed using Flutter, chosen for its cross-platform capabil- 

ities and expressive UI. The camera package was integrated 

for capturing live images, and the TensorFlow Lite model was 

used for on-device inference. The app’s UI was designed to be 

user-friendly, with clear instructions and intuitive navigation. 

5) User Interface Design: Key screens include the home 

screen, scanning interface, and result display. The home 

screen provides access to the scanning feature, while the 

scanning interface displays the camera feed and real-time 

detection results. The result display shows detailed 

information about the detected disease and suggested 

treatments. 

SYSTEM DESIGN 

A. System Architecture 

The system design for the real-time plant disease detec- tion 

mobile application involves several key components and 

architectural decisions to ensure efficiency, scalability, and 

usability. The system is divided into three main parts: the 

mobile application interface, the machine learning model, and 

the integration of both for real-time inference.
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1) Overall Architecture: The system architecture consists of 

the following layers: 

User Interface Layer: Developed using Flutter, this layer 

provides the front-end interface through which users interact 

with the application. Camera Integration Layer: This layer 

handles the real-time image capture from the device’s camera 

using the Flutter camera package. Inference Engine Layer: 

This layer integrates TensorFlow Lite to perform on-device 

inference using the pre-trained CNN model. Result Display 

Layer: This layer processes and displays the results from the 

inference engine, providing the user with information about the 

plant’s health status and any detected diseases. 

 

 
 

 

Fig. 1. Basic Working Principal of the system  

 

TensorFlow Lite: The trained model is converted to Tensor- 

Flow Lite format to enable efficient on-device inference. This 

involves quantization techniques to reduce the model size and 

improve inference speed without significantly sacrificing 

accuracy. 

5) Example Code: Here is an example of Python code for 

loading a TensorFlow Lite model: 

Be careful whilist training the model as it requires a very heavy 

duty System

2) User Interface Design: The user interface (UI) design  

aims to provide an intuitive and seamless experience for users. 
 

Key screens include:  

Home Screen: Provides navigation to different features  

of the app, such as scanning for plant diseases, viewing past 

scans, and accessing settings. Scan Screen: Displays the 20 live 

camera feed and overlays real-time detection results. It 

includes a button to start and stop the scanning process. Results 

Screen: Shows detailed information about the detected disease, 

including the name, symptoms, and suggested treatments. The 

UI design utilizes a clean and modern aesthetic with primary 

and secondary colors to highlight important elements. Fonts 

are chosen for readability, and key buttons are prominently 

placed to ensure ease of use. 

3) Camera Integration: The camera integration is achieved 

using the Flutter camera package, which allows access to the 

device’s camera hardware. The CameraController class 

manages the camera feed, and the application continuously 

captures frames for processing. The camera feed is displayed 

on the Scan Screen, providing users with a live view of the 

plant being scanned. 

4) Machine Learning Model: The core of the system is a 

convolutional neural network (CNN) model trained to recog- 

nize and classify plant diseases from images. The model is 

designed with the following considerations: 

Model Architecture: The CNN architecture includes multi- 

ple convolutional layers, pooling layers, and fully connected 

layers. It is optimized for feature extraction and classification 

accuracy. Training Process: The model is trained using a 

labeled dataset of plant images, including both healthy and 

diseased specimens. Data augmentation techniques are applied 

to improve the model’s robustness. Model Conversion to 

 
 

 
Listing 1. Loading a TensorFlow Lite model 

6) Inference Engine: The inference engine uses TensorFlow 

Lite to perform real-time inference on the captured images. The 

process involves: 

Loading the Model: The TensorFlow Lite model is loaded 

into the application during initialization. Processing Frames: 

Captured frames from the camera are preprocessed to match the 

input requirements of the model (e.g., resizing, normaliza- tion). 

Running Inference: The preprocessed frame is fed into the 

TensorFlow Lite model, which outputs predictions indicat- ing 

the presence and type of any plant diseases. Interpreting Results: 

The model’s output is interpreted to determine the disease label 

and confidence level. This information is then passed to the 

Result Display Layer. 

7) Result Display: The result display layer presents the 

inference results to the user in a clear and informative manner. 

Key features include: 

Real-Time Feedback: Detection results are overlaid on the 

live camera feed, providing instant feedback. Detailed Infor- 

mation: When a disease is detected, detailed information about 

the disease, including its name, symptoms, and treatment rec- 

ommendations, is displayed. User Guidance: The app provides 

guidance on how to capture better images if the detection 

confidence is low, helping users improve the accuracy of the 

scans.

import tensorflow as tf 

# Load the TFLite model and allocate tensors. 

interpreter = tf.lite.Interpreter(model_path="model. 
tflite") 

interpreter.allocate_tensors() 

# Get input and output tensors. 
input_details = interpreter.get_input_details() 

output_details = interpreter.get_output_details() 

# Prepare the input data. 
input_data = np.array(some_data, dtype=np.float32) 

# Perform inference. 

interpreter.set_tensor(input_details[0][’index’], 
input_data) 

interpreter.invoke() 

# Get the output data. 
output_data = 

interpreter.get_tensor(output_details 

[0][’index’]) 
print(output_data) 
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Listing 2. Loading a TensorFlow Lite model on Mobile with Dart 

8) System Workflow: The workflow of the system can be 

summarized as follows: 

 

User Interaction: The user opens the app and navigates to the 

Scan Screen. 

1 

2 

3 

 

 

4 

5 
 

 

6 

7 

 

Listing 3. loading the TF Interpreter class for the model to run on 

Image Capture: The camera feed is displayed, and the user 

points the camera at the plant. 

Frame Processing: The app continuously captures frames from 

the camera feed. 

Model Inference: Each frame is processed by the TensorFlow 

Lite model to detect any diseases. 

Result Interpretation: The model’s predictions are interpreted, 

and the results are displayed on the screen. 

User Feedback: The app provides real-time feedback, guiding 

the user to capture better images if necessary. 

 

9) Security and Privacy Considerations: Given that the 

application processes images captured by the device camera, 

security and privacy are paramount. The app ensures that all 

processing is done locally on the device, and no images are 

uploaded to external servers unless explicitly allowed by the 

user. This approach protects user privacy and ensures 

compliance with data protection regulations. 

10) Future enhancements: Future enhancements to the sys- 

tem may include: 

Expanded Dataset: Incorporating a broader range of plant 

diseases to improve the model’s coverage. Improved Model 

Accuracy: Continuously updating and refining the model to 

enhance its accuracy and robustness. User Analytics: Adding 

features to track and analyze user interactions, providing in- 

sights into common plant diseases and usage patterns. Integra- 

tion with IoT Devices: Exploring integration with IoT sensors 

and devices for comprehensive plant health monitoring. 

B. Hardware and Software Requirements 

1) Hardware Requirements: Generic Mobile Phone with 

ARM (Multi-Processing Core with at least 6 threads) Processor 

along with a working camera and some classes may have other 

software requirements which are not critically 

needed but required for smooth flow. 

 

VII. CONCLUSION 

The development and deployment of a mobile application 

for real-time plant disease detection represent a significant 

advancement in agricultural technology. This application 

lever- ages the power of convolutional neural networks 

(CNNs) and the versatility of mobile computing to provide 

farmers and agricultural professionals with an accessible and 

efficient tool for early disease diagnosis. this research 

demonstrates the fea- sibility and effectiveness of using a 

mobile application for real- time plant disease detection. By 

combining the capabilities of TensorFlow Lite and Flutter, the 

application offers a practical and accessible solution that 

addresses key challenges in agri- cultural disease management. 

The successful implementation of this technology has the 

potential to transform agricultural practices, improving 

productivity, economic stability, and food security. As the 

application continues to evolve, it promises to be an invaluable 

tool for farmers and agricultural professionals worldwide, 

contributing to a more sustainable and resilient agricultural 

future. 

REFERENCES 

[1] R. C. Joshi, V. R. Patel, A. Mishra, and S. Kumar, “Real-Time Plant Leaf 
Disease Detection using CNN and Solutions to Cure with Android App,” 
Proc. Int. Conf. on Computing, Communication, and Intelligent Systems 
(ICCCIS), 2023. 

 

[2] Y. Wang, H. Wang, and Z. Peng, “Rice Diseases Detection and Classification 
Using Attention Based Neural Network and Bayesian Optimization 
(ADSNN-BO),” IEEE Access, vol. 10, pp. 54012-54023, 2022. 

 

[3] H. J. Yu and C. H. Son, “Apple Leaf Disease Identification through Region-
of-Interest-Aware Deep Convolutional Neural Network,” IEEE Transactions 
on Image Processing, vol. 29, pp. 1903-1913, 2020. 

 

[4] P. E. C. da Silva and J. Almeida, “An Edge Computing-Based Solution for 
Real-Time Leaf Disease Classification using Thermal Imaging,” Proc. Int. 
Conf. on Edge Computing, 2024. 

 

[5] J. Sidlauskiene, Y. Joye, and V. Auruskeviciene, “AI-based Chatbots in 
Conversational Commerce and Their Effects on Product and Price 
Perceptions,” Electronic Markets, vol. 33, no. 2, pp. 425-439, 2023. 

 

[6] M. D. Illescas-Manzano, F. Ortiz, and R. Ruiz, “Implementation of Chatbots 
in Online Commerce and Customer Interaction,” IEEE Trans. on Emerging 
Topics in Computing, vol. 11, no. 3, pp. 356-365, 2021. 

 

[7] S. Morsi, “Investigating the Customers’ Acceptance of Using Chatbots in 
Online Shopping,” Journal of Social Media Studies, vol. 13, no. 3, pp. 85-98, 
2023. 

 

[8] M. Sharma and R. Gupta, “Evaluating Plant Disease Detection Mobile 
Applications for Agricultural Support,” IEEE Access, vol. 12, pp. 11234-
11245, 2022. 

 

[9] B. Alturki and A. M. Adabashi, “Design and Implementation of a Mobile E-
Commerce Platform Based on Machine Learning,” Proc. Int. Conf. on Smart 
Computing and Applications, 2024. 

 

 

[10] K. Lee and P. Zhang, “Android Application-Based E-Commerce System for 
Efficient Local Store Product Search,” IEEE Access, vol. 13, pp. 78651-
78662, 2025. 

 

[11] Y. J. Liu and Z. P. Liu, “Android Development and Mobile E-Commerce 
Research,” Applied Mechanics and Materials, vol. 155-156, pp. 430-434, 
2012. 

Future<List<dynamic>?> 

runModelOnFrame(CameraImage camerImage) async { 

interpreter?.run(CameraImage, _result); 
var result = _outputTensor?.shape; 

return result; 
} 

 
void loadInterpreter() async { 

interpreter = await 
Interpreter.fromAsset(Assets 

.models.convertedModel, 
options: 

InterpreterOptions()..threads = 4); 
_outputTensor = 

interpreter?.getOutputTensors(). first; 
interpreter?.allocateTensors(); 

} 

http://www.ijcrt.org/


www.ijcrt.org                                                        © 2025 IJCRT | Volume 13, Issue 10 October 2025 | ISSN: 2320-2882 

IJCRTBH02015 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 74 
 

 

[12] A. Verma, S. Chatterjee, and N. Singh, “Crop Disease Detection and 
Prevention Android Application,” Proc. Int. Conf. on Mobile Computing and 
Sustainable Informatics, 2022. 

 

[13] K. Patel and R. Thakur, “Deep Learning Approach for Automated Leaf 
Disease Diagnosis in Smart Farming Applications,” IEEE Trans. on 
Artificial Intelligence, vol. 2, no. 4, pp. 327-336, 2021. 

 

[14] P. Kumar and A. Banerjee, “Integration of E-Commerce and AI Chatbots: 
Enhancing User Experience in Mobile Applications,” Proc. IEEE Int. Conf. 
on Human-Centric Computing, 2023. 

 

[15] D. Singh and M. Kaur, “Mobile-based Video Learning Platforms for 
Agricultural Knowledge Dissemination,” IEEE Trans. on Learning 
Technologies, vol. 16, no. 1, pp. 95-104, 2024. 

http://www.ijcrt.org/

