IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Activated Carbon For Cleaner Air, Water, And A Healthier Planet

Sk. Beebi^{1*}, Sd. Vaziha Tahaseen², P. Suresh¹, K.R. Manjula³

¹Dept. of Chemistry, S.R.R. & C.V.R. GDC (A), Vijayawada

²Dept. of Bio-chemistry, S.R.R. & C.V.R. GDC (A), Vijayawada

³Dept. of Chemistry, V.S.R. Government Degree & PG College, Movva

Abstract: Activated carbon (AC) is a highly porous and efficient adsorbent that offers significant potential in addressing the environmental pressures posed by desertification and climate change. Produced from renewable plant biomass and other natural sources through carbonization and activation, AC possesses a large surface area (500–3000 m²/g) and high adsorption capacity, enabling the effective removal of contaminants such as heavy metals, dyes, pesticides, and volatile organic compounds. By improving water quality, purifying air, and supporting sustainable industrial processes, AC contributes to resource conservation in regions vulnerable to land degradation and water scarcity. Its availability in granular, powdered, and fibrous forms allows for tailored applications in environmental remediation, food and pharmaceutical industries, and energy storage technologies. As a sustainable, cost-effective, and regenerable material, activated carbon plays a vital role in developing adaptive solutions for mitigating the impacts of desertification and climate change.

Key words: Activated carbon, plant biomass, adsorption, sustainable, climate change.

1. Introduction: Activated carbon, also referred to as activated charcoal, is an amorphous carbonaceous material with a highly crystalline form and is characterized by a large internal surface area and high porosity. It is primarily derived from plant-based sources and other organic matter [1]. Common raw materials for its production include biomass such as bamboo, coconut husks, wood, coir, willow peat, and lignocellulosic materials, including agricultural residues and natural fibers.

Its high surface area allows it to adsorb impurities from water and gas, leading to its use in water filter candles and gas masks [2, 3]. The highly porous structure of activated carbon makes it effective for filtration and decontamination by removing contaminants from water, air, and industrial waste [4]. Its high adsorption capacity plays a crucial role in eliminating toxins and pollutants, making it valuable for wastewater treatment,

https://doi.org/10.56975/ijcrt.v13i8.292637

air filters, and pharmaceutical applications [5]. The chemical reactivity of AC supports catalytic reactions in industries and assists in the removal of unwanted chemicals [6]. Its electrical conductivity makes it useful for energy storage applications, including supercapacitors and battery electrodes [7]. The high thermal stability of activated carbon allows its use in industrial applications that require heat resistance [8]. Its biocompatibility makes it suitable for medical applications such as drug delivery, poisoning treatment, and wound care [9]. The combination of high surface area and porous structure makes activated carbon valuable in water and air purification, metal recovery, solvent and sewage treatment, energy storage, food processing, cosmetology, automotive applications, teeth whitening, hydrogen chloride production, and medical treatments like hemoperfusion [10].

2. Preparation of activated carbon (AC):

Any material with a low inorganic content and high carbon content can be utilized for AC preparation. Activated carbon can be produced from both plant-based sources, such as coconut shells, wood, and agricultural waste, and animal-based sources, like bone char and blood carbon. While plant-derived activated carbon is widely preferred for its high porosity and renewability, animal-based carbon, particularly bone char, is effective in specific applications like decolorization and heavy metal removal.

Lignocellulosic biomass from agricultural by-products is a low-cost and abundant material for producing AC. It consists of cellulose, hemicellulose, and lignin, with lignin being the primary component responsible for adsorption [11]. As the second most abundant renewable carbon resource after cellulose, lignin accounts for a global production of 50–70 million tons annually [12]. Its high carbon content makes lignocellulosic biomass an ideal precursor for activated carbon. Various sources, such as durian shell, coconut shell, rubber seed shell, hazelnut shell, palm kernel shell, almond shell, plum stones, cotton stalks, rice husk, pistachio shell, walnut shell, and wood, have been widely utilized for this purpose [13].

The synthesis of activated carbon from lignocellulosic biomass or animal waste involves a two-step process: carbonization and activation [14, 15]. In the first phase, carbonization is carried out at 700–800 K (427–527°C) in an oxygen-free environment to eliminate volatile compounds, leaving behind a carbon-rich char. The second phase, activation, occurs at 1100–1300 K (827–1027°C) to enhance the material's porosity and surface area, significantly improving its adsorption capacity. Activation can be achieved through three main methods: chemical activation, where chemical agents such as KOH, H₃PO₄, or ZnCl₂ are used; physical (thermal) activation, which involves gases like CO2, air, or steam; or a combination of both methods [16]. While physical activation is more cost-effective and environmentally friendly, chemical activation is often preferred due to its superior ability to enhance porosity [17,18].

3. Properties and characteristics:

1. Physical Properties:

- a) High Surface Area: Ranges from 500 to 3000 m²/g, enhancing adsorption capacity.
- b) Porous Structure: Contains micropores, mesopores, and macropores for efficient contaminant removal.
- c) Low Density: Typically light-weight due to its porous nature.
- d) Black, Odorless, and Tasteless: Appears as a fine black powder or granules.
- e) Thermal Stability: Can withstand high temperatures without decomposition.

2. Chemical Properties:

- a) Chemical Stability: Resistant to acids, bases, and oxidation under normal conditions.
- b) pH-Dependent Behavior: Can be slightly acidic, neutral, or alkaline, affecting adsorption efficiency.
- c) Ion Exchange Capacity: Capable of adsorbing both organic and inorganic pollutants.
- d) Electrically Conductive: Has moderate conductivity due to its carbon structure.

3. Adsorption Properties:

- a) High Adsorption Capacity: Effectively removes organic compounds, heavy metals, and gases.
- b) Hydrophobic and Hydrophilic Adsorption: Can attract both polar and non-polar substances.
- c) Fast Kinetics: Quickly adsorbs contaminants due to its extensive pore structure.

4. Regeneration and Reusability:

- a) Can Be Regenerated: Restored using thermal, chemical, or steam activation.
- b) Sustainable and Renewable: Plant-based sources make it eco-friendly and widely used in water and air purification.

3. Mechanism of sorption:

Sorption refers to the interaction of substances with solids and liquids. It includes adsorption, where molecules accumulate on a material's surface, and absorption, where substances penetrate into the bulk of the material. Activated carbon (AC) effectively removes heavy metals (Pb²⁺, Cd²⁺, Ni²⁺, Cu²⁺, Cr⁶⁺), metalloids, organic pollutants, and dyes through mechanisms like electrostatic attraction, ion exchange, surface complexation, pore filling, hydrophobic interaction, π - π interactions, and partitioning [19]. Its high surface area, porous structure, and functional groups enhance contaminant binding, making AC a cost-effective and efficient adsorbent for water purification.

Electrostatic interaction plays a crucial role in pollutant removal by attracting charged organic pollutants and other species to oppositely charged functional groups on the adsorbent surface. This process is highly pH-dependent, as pH variations influence both the adsorbent's surface charge and the pollutant's ionization state, thereby affecting adsorption efficiency [20].

The removal of organic pollutants through π - π interactions occurs via non-covalent π -stacking between the π -electron systems of aromatic or conjugated pollutants and the surface of adsorbents like activated carbon, enabling efficient adsorption [21]. Pore filling is a key adsorption mechanism in activated carbon

(AC), where organic pollutants are physically adsorbed into its porous network through intermolecular forces like Van der Waals and capillary forces. The diverse pore structure of AC, including micropores (<2 nm) and mesopores (2–50 nm), along with surface functional groups, enhances pollutant retention, making it an efficient adsorbent for organic contaminant removal [22]. Hydrophobic interaction is a key mechanism for removing non-polar organic pollutants, where hydrophobic contaminants preferentially adsorb onto the non-polar sites of activated carbon. Higher pyrolysis temperatures enhance AC's hydrophobicity by reducing polar functional groups, allowing hydrophobic pollutants to aggregate on its surface due to thermodynamically driven hydrophobic effects in aqueous environments [23]. Pollutant removal by adsorption typically involves multiple mechanisms, influenced by activated carbon properties, functional groups, pyrolysis temperature, and pollutant nature.

4. Industrial applications of Activated Carbon:

Activated carbon (AC) is extensively used across industries for its high adsorption capacity, large surface area, and versatility. The key benefits are highlighted in this figure. It plays a crucial role in various industrial processes [24,25,26], promoting efficiency [27], renewable energy conversion & storage systems [28], sustainability, and environmental protection [29].

Water treatment: Activated carbon is widely used in water treatment across municipal, industrial, and residential sectors. In municipal treatment, it removes organic compounds, chlorine, disinfection byproducts, and micropollutants to improve water quality. Industrial applications include wastewater treatment, heavy metal adsorption, and removal of dyes, oils, and pharmaceuticals. In residential use, activated carbon is a key component in water filters, eliminating chlorine, odors, volatile organic compounds (VOCs), and contaminants like pesticides. It also enhances reverse osmosis systems by preventing membrane fouling. Due to its high adsorption capacity, activated carbon is essential for ensuring safe, clean water in various water

treatment applications. Adsorption capacity of activated carbon derived form various animal and plant biomass are tabulated below:

AC Source (adsorbent)	Adsorbate	Adsorption capacity	Ref.
		(mg/g)	
Pulp mill sludge and rice straw	Pb ²⁺	256.4	30
Citrus limetta peel	Cr ³⁺	174.98	31
Coconut shell charcoal	Methylene blue	166.7	32
Prickly pear seed cake	Methylene blue	260	33
Sunflower piths	Methylene blue	965	34
Olive stones	Cd^{2+}	148.8	35
Date pit carbon	Brilliant green dye	77.8	36
Sugarcane bagasse	Sodium diclofenac	315	37
Date press cake	Cr ⁶⁺	282.8	38
Rice husk	Hg ²⁺	768.9	39

Air purification: Activated carbon is widely used in air purification due to its high adsorption capacity for gases, odors, and volatile organic compounds (VOCs). It removes pollutants such as benzene, formaldehyde, and ammonia in industrial exhaust treatment [40]. In residential settings, it is used in air purifiers to eliminate smoke, pet odors, and chemical fumes [41]. Hospitals and laboratories use activated carbon to control airborne contaminants and toxic gases. It is also essential in gas masks and respirators for adsorbing harmful pollutants [42]. Due to its effectiveness, activated carbon plays a crucial role in improving indoor and outdoor air quality across various applications.

Food & Beverage Industry: Activated carbon is widely used in the food and beverage industry for purification and decolorization. It removes impurities, odors, and unwanted colors from products like sugar, syrups, and fruit juices [43]. In beverage production, it eliminates contaminants, off-flavors, and excess chlorine from water used in brewing and soft drinks [44]. It is essential in edible oil refining to remove toxins and improve clarity. Activated carbon also plays a role in wine and liquor filtration by eliminating undesirable compounds while preserving taste. Its ability to adsorb contaminants ensures product safety, consistency, and enhanced quality in modern food and beverage processing.

Medicals and Pharmaceuticals: Activated carbon is widely used in the medical and pharmaceutical fields for its adsorption properties. It is a key ingredient in activated charcoal tablets used to treat poisoning and drug overdoses by preventing toxin absorption in the digestive tract [45]. In pharmaceutical manufacturing, activated carbon helps purify drugs by removing impurities, residual solvents, and organic contaminants [46]. It is also used in hemoperfusion for blood detoxification in cases of severe poisoning. Additionally, activated carbon is utilized in wound dressings to absorb toxins and odors, aiding in infection control. Its effectiveness in toxin removal makes it essential for medical treatments and drug purification.

Energy storage devices: Activated carbon is widely used in energy storage systems, particularly in batteries and supercapacitors, due to its high surface area, porosity, and excellent electrical conductivity. In supercapacitors, it serves as an electrode material, enabling rapid charge and discharge cycles with high power density [47]. Its porous structure enhances ion adsorption, improving capacitance and energy efficiency. In lithium-ion and sodium-ion batteries, activated carbon is used as an anode material and in conductive coatings to enhance charge transfer and cycling stability [48]. Its low cost, environmental friendliness, and superior electrochemical performance make it crucial for modern energy storage applications.

5. Choosing the Right Activated Carbon:

Activated carbon is widely used across industries and is available in various forms based on its intended use. It is classified according to its physical form, production method, and application. Businesses must select the right grade and form of activated carbon based on their specific application and target contaminants. Granular Activated Carbon (GAC) is ideal for water and air filtration due to its durability and reusability, while Powdered Activated Carbon (PAC) is best for rapid adsorption in wastewater and food processing. Pelletized carbon suits gas purification, and Activated Carbon Fibers (ACF) excel in high-performance filtration and energy storage.

Various types of Activated Carbon Granular Activated Carbon Surface modified Powdered Impregnated Activated carbon **Activated Carbon** Particle size of Particle size of Cylindrical / AC infused with Treated with <0.18 mm 0.2-5 mm spherical inorganic acid or other diameter diameter shaped. impregnates chemicals to Used in water · Used in water · Used in air like silver, remove impurities iodine or alkali treatment, air filtration, gas purification, gas purification, purification, treatment and Used in Hg Used in and industrial solvent and chemical removal, gas pharmaceutical, masks and processing water food and recovery antibacterial treatment beverage Directly added Low dust filters industries · Can be to raw water content, high intake, gravity regenerated mechanical · Purification of Improves filters, and and reused strength and domestic adsorption clarifiers Cost effective potable water efficiency of low - pressure specific drop contaminants

Factors like adsorption capacity, pH compatibility, lifespan, and regulatory compliance must be considered to ensure optimal efficiency and cost-effectiveness in industrial, medical, and environmental applications.

Conclusion:

Activated carbon plays a crucial role in water purification, air filtration, food processing, medical applications, and energy storage due to its exceptional adsorption properties. It effectively removes contaminants such as organic pollutants, heavy metals, VOCs, and toxins, ensuring cleaner environments and safer products. Available in various forms via granular, powdered, pelletized, and fibrous, activated carbon serves diverse industries with tailored solutions.

Call to Action:

To maximize efficiency, one must select the right type based on application needs, adsorption capacity, and regulatory compliance. Whether for municipal water treatment, industrial filtration, or high-performance energy storage, choosing high-quality activated carbon ensures optimal results.

References:

- 1. Marsh, H., & Reinoso, F. R. (2006). Activated carbon. Elsevier.
- 2. Smith, L. (2017). Historical perspectives on water purification. In *Chemistry and water* (pp. 421-468). Elsevier.
- 3. Roegiers, J., & Denys, S. (2021). Development of a novel type activated carbon fiber filter for indoor air purification. *Chemical engineering journal*, *417*, 128109.
- 4. Manocha, S. M. (2003). Porous carbons. Sadhana, 28, 335-348.
- 5. Le Cloirec, P., Brasquet, C., & Subrenat, E. (1997). Adsorption onto fibrous activated carbon: applications to water treatment. *Energy & fuels*, *11*(2), 331-336.
- 6. Jüntgen, H. (1986). Activated carbon as catalyst support: a review of new research results. *Fuel*, 65(10), 1436-1446.
- 7. Barroso Bogeat, A. (2021). Understanding and tuning the electrical conductivity of activated carbon: a state-of-the-art review. *Critical Reviews in Solid State and Materials Sciences*, 46(1), 1-37.
- 8. De la Puente, G., Pis, J. J., Menéndez, J. A., & Grange, P. (1997). Thermal stability of oxygenated functions in activated carbons. *Journal of Analytical and Applied Pyrolysis*, 43(2), 125-138.
- 9. Mikhalovsky, S. V., Alexeeva, T. A., Fesenko, E. A., Kartel, N. T., & Strelko, V. V. (2001). Biocompatibility of activated carbons. In *Extended Abstracts, Carbon*.
- Yahya, M. A., Mansor, M. H., Zolkarnaini, W. A. A. W., Rusli, N. S., Aminuddin, A., Mohamad, K.,
 ... & Ozair, L. N. (2018, June). A brief review on activated carbon derived from agriculture by-product. In *AIP conference proceedings* (Vol. 1972, No. 1). AIP Publishing.
- 11. Nor, N. M., Lau, L. C., Lee, K. T., & Mohamed, A. R. (2013). Synthesis of activated carbon from lignocellulosic biomass and its applications in air pollution control—a review. *Journal of Environmental Chemical Engineering*, 1(4), 658-666.
- 12. Bajwa, Dilpreet & Pourhashem, Ghasideh & Ullah, Al Habib & Bajwa, Sreekala. (2019). A concise review of current lignin production, applications, products and their environment impact. Industrial Crops and Products. 139. 10.1016/j.indcrop.2019.111526.
- 13. Neolaka, Y. A., Riwu, A. A., Aigbe, U. O., Ukhurebor, K. E., Onyancha, R. B., Darmokoesoemo, H., & Kusuma, H. S. (2023). Potential of activated carbon from various sources as a low-cost adsorbent to remove heavy metals and synthetic dyes. *Results in Chemistry*, *5*, 100711.
- 14. Kosheleva, R. I., Mitropoulos, A. C., & Kyzas, G. Z. (2019). Synthesis of activated carbon from food waste. *Environmental Chemistry Letters*, *17*, 429-438.
- 15. Djilani, C., Zaghdoudi, R., Djazi, F., Bouchekima, B., Lallam, A., & Magri, P. (2016). Preparation and characterisation of activated carbon from animal bones and its application for removal of organic

- micropollutants from aqueous solution. *Desalination and Water Treatment*, *57*(52), 25070–25079. https://doi.org/10.1080/19443994.2016.1151379
- 16. Marsh, H., & Rodríguez-Reinoso, F. (2006). Activated carbon (origins). Activated carbon, 13-86.
- 17. Rodríguez-Reinoso F, Molina-Sabio M (1992) Activated carbons from lignocellulosic materials by chemical and/or physical activation: an overview. Carbon 30:1111–1118. https://doi.org/10.1016/0008-6223(92)90143 -K
- 18. Soonmin, H., & Kabbashi, N. A. (2021). Review on activated carbon: Synthesis, properties and applications. *Int. J. Eng. Trends Technol*, 69(9), 124-139.
- 19. Nidheesh, P. V., Kumar, M., Venkateshwaran, G., Ambika, S., Bhaskar, S., & Ghosh, P. (2024). Conversion of locally available materials to biochar and activated carbon for drinking water treatment. *Chemosphere*, 141566.
- 20. Srivastava, V., Karim, A.V., Babu, D.S., Nidheesh, P.V., Kumar, M.S., Gao, B., 2022. Metal-loaded biochar for the removal of arsenic from water: a critical review on overall effectiveness, governing mechanisms, and influential factors. Chemistry Select 7, e202200504. https://doi.org/10.1002/slct.202200504.
- 21. Joshi, M., Bhatt, D., & Srivastava, A. (2023). Enhanced adsorption efficiency through biochar modification: a comprehensive review. *Industrial & Engineering Chemistry Research*, 62(35), 13748-13761.
- 22. Jha, S., Gaur, R., Shahabuddin, S., Tyagi, I., 2023. Biochar as sustainable alternative and green adsorbent for the remediation of noxious pollutants: a comprehensive review. Toxics 11, 117. https://doi.org/10.3390/toxics11020117.
- 23. Kabiri, S., Monaghan, C. L., Navarro, D., & McLaughlin, M. J. (2024). Hydrophobic interaction is the dominant mechanism of zwitterionic PFAS adsorption to carbon-based sorptive materials in water and soil. *Environmental Science: Water Research & Technology*, 10(2), 420-430.
- 24. Serafin, J., Dziejarski, B., Fonseca-Bermúdez, Ó. J., Giraldo, L., Sierra-Ramírez, R., Bonillo, M. G., ... & Moreno-Piraján, J. C. (2024). Bioorganic activated carbon from cashew nut shells for H2 adsorption and H2/CO2, H2/CH4, CO2/CH4, H2/CO2/CH4 selectivity in industrial applications. *International Journal of Hydrogen Energy*, 86, 662-676.
- 25. Uthappa, U. T., Ajeya, K. V., Sannasi, V., Lee, S. G., Sohn, E. H., Chang, B. J., ... & Jung, H. Y. (2024). Green aluminum metal-organic frameworks (Al-MOFs) supported on commercial activated carbon for enhanced removal performances of industrial fluoride pollutants. *Journal of Water Process Engineering*, 63, 105450.
- 26. Teimouri, Z., Nanda, S., Abatzoglou, N., & Dalai, A. K. (2024). Application of activated carbon in renewable energy conversion and storage systems: a review. *Environmental Chemistry Letters*, 22(3), 1073-1092.

- 27. Tomy, M., Geethamma, G. S., Aravind, A. M., Reshmi, S. S., & Suryabai, X. T. (2024). Effect of activation environment on coconut-husk-derived porous activated carbon for renewable energy storage applications. *ACS Sustainable Resource Management*, 1(7), 1534-1547.
- 28. Zango, Z. U., Garba, A., Haruna, A., Imam, S. S., Katsina, A. U., Ali, A. F., ... & Adamu, H. (2024). A systematic review on applications of biochar and activated carbon derived from biomass as adsorbents for sustainable remediation of antibiotics from pharmaceutical wastewater. *Journal of Water Process Engineering*, 67, 106186.
- 29. Wang, S., yeong Kim, G., Nam, H., & Nam, K. W. (2024). Ammonia gas adsorption study using copper impregnated on mesoporous activated carbon from seaweed waste for indoor air purification. *Building and Environment*, 261, 111737.
- 30. Landin-Sandoval, V. J., Mendoza-Castillo, D. I., Bonilla-Petriciolet, A., Aguayo-Villarreal, I. A., Reynel-Avila, H. E., & Gonzalez-Ponce, H. A. (2020). Valorization of agri-food industry wastes to prepare adsorbents for heavy metal removal from water. *Journal of Environmental Chemical Engineering*, 8(5), 104067.
- 31. Dinh Viet Cuong, D. V. C., Liu NeiLing, L. N., Viet Anh Nguyen, V. A. N., & Hou ChiaHung, H. C. (2019). Meso/micropore-controlled hierarchical porous carbon derived from activated biochar as a high-performance adsorbent for copper removal.
- 32. Aravind, M., & Amalanathan, M. (2021). Structural, morphological, and optical properties of country egg shell derived activated carbon for dye removal. *Materials Today: Proceedings*, 43, 1491-1495.
- 33. Baysal, M., Bilge, K., Yılmaz, B., Papila, M., & Yürüm, Y. (2018). Preparation of high surface area activated carbon from waste-biomass of sunflower piths: Kinetics and equilibrium studies on the dye removal. *Journal of environmental chemical engineering*, 6(2), 1702-1713.
- 34. Patawat, C., Silakate, K., Chuan-Udom, S., Supanchaiyamat, N., Hunt, A. J., & Ngernyen, Y. (2020). Preparation of activated carbon from Dipterocarpus alatus fruit and its application for methylene blue adsorption. *RSC advances*, *10*(36), 21082-21091.
- 35. Saleem, J., Shahid, U. B., Hijab, M., Mackey, H., & McKay, G. (2019). Production and applications of activated carbons as adsorbents from olive stones. *Biomass Conversion and Biorefinery*, 9, 775-802.
- 36. Mansour, R. A., Aboeleneen, N. M., & AbdelMonem, N. M. (2018). Adsorption of cationic dye from aqueous solutions by date pits: Equilibrium, kinetic, thermodynamic studies, and batch adsorber design. *International Journal of Phytoremediation*, 20(10), 1062–1074. https://doi.org/10.1080/15226514.2018.1460306
- 37. El Naga, A. O. A., El Saied, M., Shaban, S. A., & El Kady, F. Y. (2019). Fast removal of diclofenac sodium from aqueous solution using sugar cane bagasse-derived activated carbon. *Journal of Molecular Liquids*, 285, 9-19.
- 38. Norouzi, S., Heidari, M., Alipour, V., Rahmanian, O., Fazlzadeh, M., Mohammadi-Moghadam, F., ... & Dindarloo, K. (2018). Preparation, characterization and Cr (VI) adsorption evaluation of NaOH-

354

- activated carbon produced from Date Press Cake; an agro-industrial waste. Bioresource technology, 258, 48-56.
- 39. Pereira, L., Castillo, V., Calero, M., Blázquez, G., Solís, R. R., & Martín-Lara, M. Á. (2024). Insights into using plastic waste to produce activated carbons for wastewater treatment applications: A review. Journal of Water Process Engineering, 62, 105386.
- 40. Wicaksono, M. R., Handayani, I. P., Andiani, L., Chandra, I., Muminati, S. A., Wardhani, N. K., & Verasta, T. (2024). Molecular sieve 13X activated zeolite for CO2 filter in air purifier. Materials Today: Proceedings.
- 41. CAKPO, A. R., Mireille, F. A. N. O. U. V. I., Hervé, B. O. K. O. S. S. A., & Etienne, S. A. G. B. O. Valorization of powder of neem hulls like bioadsorbant for the detoxification of the hospital effluents: Case of CNHU-HKM. Research Journal of Engineering Sciences. ISSN, 2278, 9472.
- 42. Bhatlawande, A. R., Ghatge, P. U., Shinde, G. U., Anushree, R. K., & Patil, S. D. (2024). Unlocking the future of smart food packaging: biosensors, IoT, and nano materials. Food Science and Biotechnology, 33(5), 1075-1091.
- 43. Hossain, M. Z., & Chowdhury, M. B. I. (2024). Biobased Activated Carbon and Its Application.
- 44. Al-Hazmi, G. A., El-Zahhar, A. A., El-Desouky, M. G., & El-Bindary, A. (2024). Superior adsorption and removal of doxorubicin from aqueous solution using activated carbon via thermally treated green adsorbent: isothermal, kinetic, and thermodynamic studies. Environmental Technology, 45(10), 1969-1988.
- 45. Romero-Hernandez, J. J., Paredes-Laverde, M., Silva-Agredo, J., Mercado, D. F., Ávila-Torres, Y., & Torres-Palma, R. A. (2024). Pharmaceutical adsorption on NaOH-treated rice husk-based activated carbons: Kinetics, thermodynamics, and mechanisms. *Journal of Cleaner Production*, 434, 139935.
- 46. Sagadevan, S., Balakrishnan, T., Rahman, M. Z., Soga, T., Randriamahazaka, H., Kakavandi, B., & Johan, M. R. (2024). Agricultural biomass-based activated carbons for efficient and sustainable supercapacitors. Journal of Energy Storage, 97, 112878.
- 47. Zhu, J., Wang, X., Wang, W., Yang, C., & Wang, H. (2024). Decoupling electrolyte strategy for a high-voltage Na-ion hybrid capacitor based on NaFeO2 and activated carbon. Journal of Energy Storage, 85, 111052.