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Abstract: The rapid advancements in artificial intelligence (Al) and embedded systems have paved the way
for innovative healthcare solutions, especially for chronic disease management. This paper presents the design
and implementation of Smart Nurse, an Al-powered robotic healthcare assistant for cancer patients. The system
integrates real-time patient monitoring, emergency alert mechanisms, and medication dispensing
functionalities using Raspberry Pi. Key features include a fall detection system based on YOLO and sensor
data fusion, an emotion detection model combining facial expressions (ResNet-50), voice tone (MFCCs), and
sentiment analysis (BERT), and an Al-driven chatbot utilizing GPT-based natural language understanding with
OpenAl Whisper for speech recognition. The robot navigates autonomously using SLAM-based Al navigation
with ESP32CAM and ultrasonic sensors. It communicates via a hybrid MQTT .and API-based system to
synchronize with a Django backend and a locally hosted database. Emergency situations trigger a loud SOS
alarm and Twilio SMS alerts to caretakers. The hardware framework includes a battery-powered structure with
servo-controlled gravity-based medication dispensing. The system is designed to function without cloud
dependency, ensuring affordability and privacy. This paper details the system architecture, hardware-software
co-design, and the implementation methodologies for Al models, real-time communication, and embedded
robotics. The experimental results indicate that the system enhances patient safety, ensures timely medication,
and provides emotional support, making it a promising solution for remote healthcare assistance.

Index Terms: healthcare robotics, artificial intelligence, cancer care, patient monitoring, emotion detection,
fall detection, medication management, embedded systems, YOLO, BERT, ResNet50, SLAM.

I. INTRODUCTION

Cancer patients undergoing treatment often face multiple challenges, including medication adherence, mobility
limitations, and emotional distress [1]. Traditional healthcare systems struggle to provide continuous
monitoring and support without significant caregiver involvement [2]. The COVID19 pandemic further
exacerbated these challenges by limiting in-person healthcare access and increasing isolation among vulnerable
populations [3]. Recent advances in artificial intelligence (Al), embedded systems, and robotics present
unprecedented opportunities to develop intelligent healthcare assistants capable of providing personalized care
[4]. These technological innovations can potentially transform cancer patient management by ensuring
medication adherence, detecting emergencies, and providing emotional support without constant human
supervision [5] This paper presents the design and implementation of Smart Nurse, an Al-powered robotic
healthcare assistant specifically tailored for cancer patients. The system aims to address several critical
challenges:
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« Ensuring timely medication administration in accordance with complex cancer treatment regimens

* Providing early detection of emergency situations such as falls, which are common in patients with
compromised mobility

» Offering emotional support through Al-driven conversation and emotion recognition

* Maintaining continuous patient monitoring while preserving privacy and autonomy

* Creating an affordable solution that can function effectively without continuous internet connectivity

The primary objectives of this research are:

1) To design and implement a comprehensive robotic healthcare assistant that integrates multiple Al
capabilities for cancer patient care

2) To develop an efficient hardware-software co-design that ensures reliability and low power consumption

3) To evaluate the system’s performance in terms of emergency detection accuracy, medication dispensing
reliability, and user satisfaction

4) To create a privacy-preserving solution that processes sensitive health data locally

Unlike existing healthcare robots that often rely heavily on cloud infrastructure or operate in controlled hospital
environments, Smart Nurse is designed for home deployment with minimal infrastructure requirements. The
system utilizes edge computing for Al model execution, ensuring data privacy and functionality even in areas
with limited connectivity.

This paper is organized as follows: Section Il reviews related work in healthcare robotics and Al-based patient
monitoring. Section Il presents a comprehensive system overview of the Smart Nurse architecture. Section IV
details the implementation methodology, including Al model development, hardware integration, and
communication protocols. Section V discusses the experimental results and performance evaluation. Finally,
Section VI concludes the paper and outlines directions for future work.

I. RELATED WORK

The development of robotic healthcare assistants has gained significant momentum in recent years, with
various approaches targeting different aspects of patient care. This section examines existing work in three key
areas relevant to our proposed system: healthcare robotics, Al-based patient monitoring, and medication
management systems.

A. Healthcare Robotics for Patient Assistance

Several notable healthcare robots have been developed for patient assistance in clinical and home settings.
Broadbent et al. [5] reviewed social robots in healthcare, highlighting their potential for patient engagement
but noting limitations in autonomous functionality. The commercially available Mabu robot [7] provides
medication reminders and basic conversation but lacks physical assistance capabilities and complex monitoring
features.

More advanced systems like Care-O-bot [8] and HOBBIT [9] offer mobility assistance and object manipulation
but require substantial infrastructure and are cost-prohibitive for most individual patients. Specifically for
cancer care, Paro [10] and other therapeutic robots have shown promise in reducing anxiety and depression but
serve primarily as emotional support tools rather than comprehensive care assistants

B. Al-Based Patient Monitoring Systems

Al approaches to patient monitoring have evolved from simple rule-based systems to sophisticated deep
learning models. Fall detection systems, particularly relevant for cancer patients with compromised mobility,
have progressed from accelerometer-based approaches [11] to computer vision solutions using convolutional
neural networks [12]. Recent work by Waheed et al. [13] demonstrated YOLO-based fall detection with 92.4%
accuracy, though most implementations require cloud processing.

Emotion recognition technologies have similarly advanced, with multimodal approaches showing superior
performance. Facial expression recognition using deep learning has achieved up to 97% accuracy on
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benchmark datasets [14], while speech emotion recognition through MFCCs and recurrent neural networks has
shown promising results in healthcare applications [15]. However, few systems have integrated these
technologies into comprehensive patient monitoring solutions, particularly for cancer care.

B. Medication Management and Reminder Systems

Automated medication dispensing systems range from simple pill organizers to sophisticated robotic solutions.
Commercial systems like MedMinder and Hero [16] provide scheduled dispensing but lack integration with
vital monitoring and emergency detection. Research prototypes such as the one developed by Suzuki et al. [17]
incorporate visual verification of medication intake but require substantial infrastructure.

In the cancer care domain, Carruthers et al. [18] demonstrated improved medication adherence using smart
pill dispensers with SMS reminders, yet their solution did not address emergency detection or emotional
support needs. More comprehensive approaches like the system proposed by Chen et al. [19] combined
medication management with basic health monitoring but relied heavily on cloud infrastructure and lacked
mobility and emotional support features.

D. Research Gap and Our Contribution

Despite these advancements, a significant gap exists in integrating multiple Al capabilities (fall detection,
emotion recognition, conversational agents) with physical assistance (medication dispensing, mobility) in an
affordable, privacy preserving platform specifically designed for cancer patients. Existing solutions are either
too specialized (addressing only one aspect of care), too expensive for widespread adoption, or too dependent
on cloud infrastructure.

Our work contributes to this field by:

* Developing a comprehensive care solution that combines multiple Al technologies tailored specifically for
cancer patient needs

* Implementing edge computing approaches for privacy preservation and offline functionality

* Creating an affordable hardware-software co-design using commercially available components

* Integrating emotional support capabilities with practical physical assistance functions

* Evaluating the system in realistic scenarios relevant to cancer care

I1. SYSTEM OVERVIEW

Smart Nurse is designed as an integrated hardware-software system that combines embedded computing,
artificial intelligence, sensor technologies, and mechanical components to provide comprehensive support for
cancer patients. This section presents the system architecture, hardware components, software modules, and
their interconnections.

A. System Architecture

- The overall architecture of Smart Nurse follows a layered approach with hardware, middleware, and
application layers, as illustrated in Fig. 1. The system is built around a Raspberry Pi 4 main controller that
coordinates all operations and hosts the core Al models. The architecture emphasizes local processing and
privacy preservation while ensuring reliable communication with caregivers when necessary.

- The Smart Nurse robot consists of the following major subsystems:

1) Sensing Subsystem: Monitors patient status and environmental conditions

2) Processing Subsystem: Executes Al algorithms and coordinates system operations

3) Actuation Subsystem: Controls physical movements and medication dispensing

4) Communication Subsystem: Manages data exchange within and beyond the system

5) Power Management Subsystem: Ensures reliable operation with battery backup
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Fig. 3.1 Flowchart of the proposed image enhancement method

B. Hardware Components

The hardware architecture integrates multiple sensors, processing units, and actuators to create a mobile and
autonomous healthcare assistant

1) Core Processing Unit: A Raspberry Pi 4 (8GB RAM) serves as the central processing unit, hosting the main
Al models and coordinating all subsystems. This single-board computer provides sufficient computational
power for edge Al processing while maintaining reasonable power consumption. It runs a modified Raspberry
Pi OS with real-time scheduling capabilities to ensure timely response to critical events.

2) Sensor Suite: The robot incorporates a comprehensive sensor array for patient and environmental
monitoring:

» ESP32-CAM: Two camera modules (one forward-facing, one upward-facing) provide visual inputs for fall
detection, facial expression recognition, and navigation.

* Microphone Array: A 4-microphone MEMS array enables directional sound capture for speech recognition
and voice tone analysis.

« Ultrasonic Sensors: Five HC-SRO04 sensors (front, left, right, back, bottom) provide distance measurements
for obstacle detection and navigation.

« IMU: An MPU-9250 9-axis inertial measurement unit detects robot orientation and movement for
stabilization and fall detection validation.
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* Environmental Sensors: DHT22 temperature/humidity sensors monitor ambient conditions to ensure patient
comfort.

3) Actuation System: The robot’s physical capabilities are implemented through several actuator systems:

* Mobility Platform: A differential-drive system using two 12V DC motors with encoders provides controlled
movement throughout the patient’s living space.

* Medication Dispensing Mechanism: A servo-controlled, gravity-based system organizes medications in seven
rotating compartments corresponding to different days of the week, with four sub-compartments for different
times of day.

* Alert System: A piezoelectric buzzer and RGB LED array provide auditory and visual alerts for medication
reminders and emergency situations.

4) Power System: The robot operates on a dual power system:

* Primary Power: A 12V, 10,000mAh LiPo battery pack provides approximately 8 hours of continuous
operation.

* Charging System: Automatic docking to a charging station using infrared guidance when battery levels fall
below 20%.

* Power Management: A custom PCB with voltage regulators and power monitoring ICs ensures stable power
delivery and graceful shutdown during low battery conditions. Table I presents the specifications of key
hardware components used in the Smart Nurse system.

C. Software Architecture

- The software architecture follows a modular design with specialized subsystems for Al processing,
communication, navigation, and system management.

Component Specifications
1.5GHz quad-core Cortex-A72,
Raspberry Pi 8GB LPDDR43200 RAM, 128GB

microSD storage

OVv2640 2MP camera, 160MHz
ESP32-CAM dual-core processor, 4MB
PSRAM, 802.11 b/g/n Wi-Fi
MEMS microphones, 12S
Microphone Array interface, 20Hz20kHz frequency
response, -26dB sensitivity
HC-SR04, 2em-400cm range, 15°
detection angle, 40kHz frequency
MPU-9250, 3-axis accelerometer,
IMU 3-axis gyroscope, 3-axis
magnetometer, 12C interface

12V DC motors with 64 CPR
Motors encoders, 100:1 gear ratio,
200RPM no-load speed

4 MG996R metal gear servos,
Servos 180° range, 15kg/cm torque, 4.8-
7.2V operating voltage

12V 10,000mAh LiPo battery,
Battery with over discharge and over-
current protection

Table 3.1 Performance Comparison for Image Pair 1

Ultrasonic Sensors
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Fig. 3.2 Hardware Architecture

1) Operating System and Base Software: The Raspberry Pi runs a customized version of Raspberry Pi OS
(64-bit) with real-time kernel patches to ensure deterministic response times for critical functions. The system
uses Docker containers to isolate and manage different software components, improving reliability and
simplifying updates.

2) Al Modules: Smart Nurse implements several Al modules for patient care functions:

Fall Detection System: A YOLOV5-based vision system combined with IMU data fusion for reliable
fall detection with minimal false positives.

. Emotion Recognition: A multimodal system combining:
- Facial Expression Analysis: ResNet-50 based model trained on AffectNet and FER2013 datasets
- Voice Tone Analysis: CNN-LSTM model using MFCC features
- Text Sentiment Analysis: BERT-based model for conversation context
Conversational Agent: A modified GPT-2 model finetuned on healthcare conversations, coupled with
a rule based dialogue management system and OpenAl Whisper for speech recognition.

Navigation System: SLAM (Simultaneous Localization and Mapping) implementation using visual
odometry from ESP32-CAM and ultrasonic sensor data, with A* pathfinding for obstacle avoidance.

3) Middleware and Communication: The communication infrastructure combines several protocols to
ensure reliable data exchange:

Internal Communication: MQTT broker (Mosquitto) handles inter-process communication between
software modules.

External Communication: REST API (Django) provides interfaces for caregivers’ mobile
applications and web dashboards.

Emergency Communication: Twilio API integration for automatic SMS alerts to designated
caregivers during emergencies.

Database: SQLite database for medication schedules, patient interaction history, and system logs.

4) System Control and Monitoring: The overall system operation is managed by several control modules:

Task Scheduler: Coordinates medication dispensing schedules, patient check-ins, and routine
monitoring.

Battery Management: Monitors power levels and initiates charging behaviors when necessary.
Health Monitoring: Continuous self-diagnostic system that checks sensor health, model performance,
and overall system integrity.
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Fig. 2 illustrates the software architecture and data flow between the various subsystems.

I1. IMPLEMENTATION METHODOLOGY

This section details the implementation approaches for each major subsystem of the Smart Nurse robot,
focusing on the integration of hardware components with Al algorithms and the development of specialized
functionalities for cancer patient care.

A. Fall Detection System Falls represent a significant risk for cancer patients, particularly those experiencing
treatment-related fatigue, neuropathy, or bone metastases [6]. The Smart Nurse fall detection system
implements a multimodal approach that combines computer vision with sensor data fusion for high reliability

1) Vision-Based Fall Detection: The vision-based component uses a modified YOLOVS5 architecture that has
been optimized for embedded deployment on the Raspberry Pi. The model was trained on a custom dataset
combining:

» UR Fall Detection Dataset [20]

* Le2i Fall Detection Dataset [21]

» Custom recordings simulating cancer patient-specific scenarios

To reduce computational requirements while maintaining accuracy, we implemented several optimizations:

* Model quantization from FP32 to INT8, reducing memory footprint by 75% with only a 2.1% accuracy
reduction

* Frame processing at 10 fps instead of 30 fps, sufficient for fall detection while reducing computational load
* Region of interest (ROI) optimization to focus processing on areas where the patient is most likely to be
present

The fall detection algorithm analyzes human posture changes and classifies them into normal activities (sitting,
standing, walking) versus fall events based on the following features:

* Vertical-to-horizontal orientation changes

* Sudden acceleration in the downward direction

* Unusual posture on the ground

» Absence of movement following a fall

2) Sensor Fusion for Validation: To minimize false positives, vision-based detections are validated using data
from the robot’s IMU and ultrasonic sensors. A Kalman filter combines data from multiple sources to improve
detection reliability:

Ptail = aPvision + BPmotion + YPaudio

(1) Where Pfall is the probability of a genuine fall event, Pvision, Pmotion, and Paudio are probabilities derived
from vision, motion, and audio analysis respectively, and a, B, and y are weighting coefficients optimized
empirically.

3) Fall Response Protocol: When a fall is detected with high confidence (threshold < 0.85), the system initiates
the following response:

1) Immediate vocal query to the patient: ”Are you okay? Please respond if you can.”

2) If no response within 15 seconds, activation of emergency protocol

3) Movement of the robot to the patient’s location for closer monitoring

4) Activation of SOS alarm and immediate SMS notification to designated caregivers via Twilio API
5) Continuous monitoring until help arrives
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B. Emotion Detection and Support System Cancer patients often experience significant emotional distress,
including anxiety, depression, and fear [1]. The Smart Nurse emotion detection system aims to recognize these
emotional states and provide appropriate support through a multimodal approach.

1) Facial Expression Recognition: The facial expression recognition module implements a ResNet-50
architecture pretrained on ImageNet and fine-tuned on a combination of datasets:

* AffectNet [22]: 450,000 facial images with eight emotion categories

* FER2013 [23]: 35,887 grayscale images of facial expressions

» CK+ [24]: 593 video sequences with emotional transitions

The model classifies facial expressions into eight categories: neutral, happiness, sadness, anger, fear, surprise,
disgust, and pain. The pain category, particularly relevant for cancer patients, was a custom addition trained
using images from pain assessment datasets.

To ensure privacy, facial images are processed locally and immediately discarded after analysis, with only the
emotion classification results being stored temporarily for pattern recognition.

2) Voice Tone Analysis: The voice tone analysis module extracts Mel-frequency cepstral coefficients (MFCCs)
from the patient’s speech and processes them through a CNNLSTM architecture to classify emotional states
from vocal characteristics. The audio processing pipeline includes:

* Pre-emphasis filtering to boost higher frequencies
* 25ms frame windowing with 10ms stride
* 40-dimensional MFCC feature extraction
* Normalization and temporal aggregation

The model was trained on RAVDESS [25], TESS [26], and SAVEE [27] datasets, with-additional data from
cancer patient counseling sessions (with appropriate consent and anonymization).

3) Text Sentiment Analysis: Speech recognized by the OpenAl Whisper model is analyzed for sentiment using
a BERT-based model fine-tuned on healthcare conversations. The model identifies:

* Emotional content (positive, negative, neutral)

* Specific concerns (pain, medication effects, fear of disease progression)

* Requests for information or assistance 4) Multimodal Fusion and Response Generation: The outputs from
facial, vocal, and textual analysis are combined using a weighted fusion approach:

E= (DfEf + O)va + O)tEt (2)

Where E is the final emotion assessment, Ef , Ev, and Et are the emotions detected from facial, vocal, and
textual analyses, respectively, and of , wv, and ot are dynamically adjusted weights based on confidence scores.

Based on the detected emotional state, the system selects appropriate responses from a database of supportive
dialogues developed in consultation with oncology psychologists. For severe distress, the system alerts
caregivers while providing immediate supportive interaction.

C. Al-Driven Conversational Agent The conversational agent bridges the gap between the robot’s technical
capabilities and the patient’s need for natural interaction. It serves multiple purposes: providing medication
reminders, answering health-related questions, offering emotional support, and facilitating emergency
communication.
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Fig. 4.1 Emotion Recognition Flow

1) Speech Recognition System: Audio input is processed using a modified version of OpenAI’s Whisper model,
optimized for edge deployment on the Raspberry Pi. The model has been fine-tuned to recognize healthcare
terminology and common expressions used by cancer patients.

To improve recognition in challenging conditions, the system implements:

 Adaptive noise cancellation using the microphone array

* Speaker adaptation techniques to adjust to the patient’s voice characteristics

« Context-aware word prediction based on previous conversations
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Fig. 4.2 Chatbot Flow

1) Dialogue Management System: The dialogue management follows a hybrid approach combining:

A rule-based system for handling critical functions (medication reminders, emergency responses)
A neural network-based system for general conversation and emotional support

The neural component uses a GPT-2 model (774M parameters) fine-tuned on:

General conversation datasets (filtered for appropriateness)

Healthcare dialogue datasets (doctor-patient conversations)

Cancer support group transcripts (anonymized)

Psychologist-approved supportive responses
The model was compressed using knowledge distillation and quantization to run efficiently on the Raspberry
Pi while maintaining natural response quality.
2) Response Generation: Responses are generated based on:

The detected intent of the patient’s query

Current emotional state from the emotion detection system

Relevant medical information from the patient’s profile

Time-sensitive information (medication schedules, appointments)
For sensitive topics where accuracy is critical (medication information, symptom management), the system
relies on pre-approved responses rather than generating novel content. All health advice is clearly prefaced
with disclaimers about consulting healthcare professionals.

Medication Management System

Medication adherence is particularly challenging for cancer patients due to complex regimens, side effects,
and cognitive impacts of treatment [28]. The Smart Nurse medication management system addresses these
challenges through intelligent scheduling, reliable dispensing, and verification mechanisms.
3) Medication Scheduling System: The medication scheduling module maintains a database of:

Medication names, dosages, and administration routes

Specific timing requirements (e.g., with food, before sleep)

Special handling instructions (e.qg., crush, dissolve)

Potential side effects to monitor
The system generates optimal medication schedules that balance medical requirements with the patient’s
daily routine and preferences, while considering potential medication interactions. Schedules are updateable
through a caregiver web interface or mobile application.

4) Physical Dispensing Mechanism: The medication dispensing hardware consists of:
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A rotating carousel with seven daily compartments
Four sub-compartments per day (morning, noon, evening, night)
Servo-controlled dispensing mechanism with gravity assisted delivery
Verification sensors (weight and optical) to confirm successful dispensing
The mechanical design employs a fail-safe approach, where power failures default to a locked state to
prevent accidental overdosing. The compartments are designed for easy loading by caregivers with tamper-
evident seals.
5) Reminder and Verification System: Medication reminders follow a graduated approach:

1) Initial gentle reminder 10 minutes before scheduled time
2) More insistent reminder at the scheduled time
3) Follow-up reminders at 15-minute intervals if medication remains undispensed

4) Caregiver notification after three unsuccessful reminder attempts

The system uses computer vision to verify medication consumption, with the patient encouraged to show
the taken medication to the robot’s camera. This verification is optional but encouraged through positive
reinforcement.

B. SLAM-Based Navigation System

Autonomous navigation is essential for the robot to provide timely assistance throughout the patient’s living
space. The navigation system combines visual SLAM, ultrasonic sensing, and efficient path planning.
1) Environment Mapping: The mapping subsystem uses a monocular visual SLAM approach based on
ORB-SLAM2 [29], modified for resource-constrained operation on the Raspberry Pi. During an initial
guided tour of the patient’s living space, the system:

Extracts ORB features from camera frames

Builds a sparse 3D point cloud of the environment
Identifies and labels key locations (patient’s bed, medication area, charging station)
Creates a 2D occupancy grid for navigation planning

The map is continuously updated during operation to accommodate changes in the environment, such as moved
furniture or new obstacles.
2) Localization: During operation, the robot localizes itself using:

Visual feature matching against the stored map

Wheel encoder odometry for short-term motion estimation

IMU data for orientation and acceleration

Ultrasonic sensor readings for obstacle verification These information sources are fused using an

Extended

Kalman Filter to provide robust localization even under challenging conditions (low lighting, temporarily
obscured camera view).

3) Path Planning and Obstacle Avoidance: The navigation algorithm uses a hierarchical approach:
Global planning using A* algorithm on the occupancy grid
Local planning using Dynamic Window Approach for reactive obstacle avoidance
Special case handling for moving obstacles (people) and narrow passages

The motion controller implements a proportional-integral derivative (PID) control system to follow planned
paths while maintaining smooth motion appropriate for a healthcare environment.

C.  Communication and Alert System

Reliable communication is critical for emergency response and ongoing care coordination. The Smart Nurse
implements a layered communication architecture to ensure message delivery even under challenging
conditions.
1) Internal Communication: Internal communication between software modules uses an MQTT protocol
with the Mosquitto broker running locally on the Raspberry Pi. This provides:

Low-latency message passing between subsystems

Quality of Service (QoS) guarantees for critical messages
Topic-based subscription for efficient message routing Critical subsystems (fall detection, emergency
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alerts) operates on dedicated high-priority topics with the highest QoS level.
2) External Communication: Communication with caregivers and healthcare providers occurs through
multiple channels:

A Django-based REST API for mobile and web applications

Twilio SMS API for urgent notifications

Local Wi-Fi for high-bandwidth data exchange when available

Fallback to GSM (via a USB modem) when Wi-Fi is unavailable

All external communications are encrypted using TLS with certificate pinning to prevent man-in-the-middle
attacks. Patient data is anonymized when possible and transmitted only with explicit consent.

3) Emergency Alert System: The emergency alert system activates when critical events are detected
(falls, severe distress, missed critical medications). The alert protocol includes:

1) Local audio-visual alerts (siren, flashing lights)
2) SMS messages to primary and secondary caregivers
3) Escalating notifications if acknowledgment is not received

4) Optional integration with monitoring services or emergency response systems

Alert messages include essential information: event type, timestamp, last known patient status, and robot’s
current location within the home.

D. Power Management and Battery System

Reliable power management is essential for a healthcare robot that must operate continuously. The Smart
Nurse implements a comprehensive power management strategy.

1) Battery System Design: The power system uses a 12V, 10,000mAh LiPo battery pack, providing
approximately:

8 hours of normal operation (monitoring, occasional movement)
4 hours of intensive operation (frequent movement, continuous conversation)
12 hours of low-power standby mode

The battery incorporates protection circuits for overcharge, over-discharge, and short-circuit prevention,
with cell balancing to maximize lifespan.

2) Power Optimization Strategies: To maximize operational time, the system implements several
power-saving strategies:

Dynamic CPU frequency scaling based on computational load
Camera and sensor duty cycling when not actively used
Selective activation of processing-intensive Al models
Motion planning that minimizes unnecessary movement

These optimizations reduce average power consumption by approximately 40% compared to continuous
full-power operation.
3) Autonomous Charging System: To ensure continuous operation, the robot implements an autonomous
charging system:

Battery level monitoring with predictive power estimation

Automatic return to charging station when battery level reaches 20%

Infrared guidance system for precise docking alignment

Prioritization of critical tasks before initiating charging

Scheduling of charging periods during typical patient rest times

The charging station provides 19V DC at 3.5A, allowing a full recharge in approximately 3.5 hours.
E.  System Integration and Testing Methodology

The integration of hardware and software components followed a systematic approach to ensure reliability and
performance.

1) Hardware-Software Integration: The integration process followed these steps:

1) Unit testing of individual hardware components and software modules

2) Integration testing of related subsystems (e.g., sensors with perception algorithms)
3) System-level testing of end-to-end functionalities

4) Stress testing under challenging conditions (low light, noisy environments)
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5) Usability testing with healthcare professionals and simulated patients

A continuous integration pipeline was established to ensure code quality and functionality throughout
development.

2) Safety and Reliability Testing: Given the critical nature of healthcare applications, comprehensive
safety testing was conducted:

Electrical safety testing according to IEC 60601-1 standards

Physical stability and collision testing

Failure mode and effects analysis (FMEA)

Long-duration reliability testing (72-hour continuous operation)

Recovery testing from simulated failures and crashes Safety features were implemented at both

hardware and
software levels, including mechanical stops, current limiters,
watchdog timers, and redundant critical systems.
3) Clinical Validation Approach: The validation methodology included:
Laboratory testing with simulated patient scenarios
Controlled environment testing with healthy volunteers
Pilot testing with five cancer patients in a supervised setting
. Iterative refinement based on feedback from patients, caregivers, and healthcare professionals
Ethical approval was obtained for all testing involving human subjects, with particular attention to privacy,
dignity, and informed consent.

V.RESULTS

l. RESULTS AND DISCUSSION

This section presents the performance evaluation of the Smart Nurse system, focusing on technical metrics,
usability assessments, and clinical outcomes from pilot testing.

A.  Technical Performance Evaluation

1) Fall Detection Performance: The fall detection system was evaluated using both simulated falls
(performed by healthy volunteers) and real-world data from patient monitoring. Table Il presents the
performance metrics.

The multimodal approach demonstrated superior performance compared to single-maodality methods, with
particularly high specificity (98.2%), reducing false alarms that could lead

Detection Sensitivi [Specifict -1
Metho ty ty Score
Vvision-only 9L.Z% [93./% _ [0.89
Sensor-only  [87.6%  96.4% _ [0.90
{c\/lu_ltlmodal 94.8% [U8.2% [0.96
usion

Table 5.1 : FALL DETECTION SYSTEM PERFORMANCE

to alert fatigue. The system achieved a mean detection time of 1.2 seconds from fall initiation, enabling
rapid response to emergency situations.

Fig. 3 shows the ROC curves for different detection approaches, illustrating the improved performance of
the multimodal system across various sensitivity thresholds.

Fig. 7. ROC curves comparing fall detection performance of vision-only, sensor-only, and multimodal
fusion approaches.

2) Emotion Detection Accuracy: The emotion detection system was evaluated using both controlled
expressions (actors simulating emotions) and natural expressions from patient interactions. Table 11l
summarizes the performance for different emotional states.
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Emotion|Facial|Vocal [TextuaMultimod
| al
Neutral [92.1%185.3%[90.7% [94.8%
Happine [94.5%88.2%86.3% [95.2%
SS
Sadness 87.8%(82.6%(84.1% [90.4%
Anger  90.2%(91.6%(85.9% [93.8%
Fear 83.6%(79.8%81.2% [88.5%
Surprise [91.4%80.5%183.3% [92.1%
Disgust 85.7%(78.2%82.9% (87.6%
Pain 89.3%84.5%188.2% [93.7%

Average 89.3%(83.8%85.3% [92.0%
Table 5.2 : EMOTION DETECTION ACCURACY BY MODALITY AND EMOTION

The multimodal fusion showed significantly improved accuracy (92.0% overall) compared to individual
modalities. Notably, pain detection—particularly relevant for cancer patients—achieved 93.7% accuracy
with the multimodal approach. The system demonstrated robustness to varying lighting conditions and
patient positions, though performance decreased somewhat (approximately 5-8% reduction) in extreme
conditions.

3) Conversational Agent Evaluation: The conversational agent was evaluated using both automatic
metrics and human assessments. Table IV presents the results.

Metric \Value
Speech recognition accuracy?8.2%
(WER)
Response relevance (human-4.3/5
rated)
Emotional  appropriateness4.5/5
(human-rated)
Medical information accuracy|97.2%
Average response time 1.3

seconds
Table 5.3 CONVERSATIONAL AGENT PERFORMANCE

The speech recognition system achieved a Word Error Rate (WER) of 8.2%, comparable to cloud-based
systems but with

complete local processing. Human evaluators (oncology nurses and psychologists) rated the relevance and
emotional appropriateness of responses favorably (4.3/5 and 4.5/5, respectively). A key achievement was the
1.3-second average response time despite local processing, enabling natural conversation flow. Medical
information accuracy was assessed against a validated database of cancer care information, with 97.2% of
responses providing correct information.

Fig. 5.1 Speech To Text

[JCRTBE02089 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | 658


http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 7 July 2025 | ISSN: 2320-2882
4) Medication Management Precision: The medication dispensing system was evaluated for reliability
and accuracy under various conditions. Results are summarized in Table 5.4.

Metric Value

Dispensing 99.8% (5/2,500 errors)

accuracy

Mechanical 99.9% (1/1,000 mechanical
reliability failures)

Reminder 89.3% (patient response within 5
effectiveness min)

Verification 96.7% (correct identification of
accuracy taken/not taken)

Table 5.4 : MEDICATION DISPENSING SYSTEM PERFORMANCE

The dispensing system demonstrated high accuracy (99.8%) over 2,500 test dispensing operations, with only
5 errors (3 under-dispensing, 2 over-dispensing). All errors were detected by the verification system,
preventing potential medication mistakes. The mechanical reliability was excellent at 99.9%, with a single
failure during 1,000 operation cycles.

The reminder system proved effective, with 89.3% of reminders resulting in patient response within 5 minutes
during pilot testing. The optical verification correctly identified 96.7% of cases where medication was taken
or not taken.

5) Navigation and Mobility Performance: The navigation system was evaluated in typical home
environments with various obstacles and lighting conditions. Table VI summarizes the performance metrics.
The SLAM-based navigation achieved an average localization error of 5.7 cm, sufficient for reliable indoor
navigation. The system successfully mapped 94.2% of accessible areas during initial mapping phases.
Navigation tests showed a 97.3% success rate in reaching destinations across 300 test runs, with failures
primarily occurring in extremely cluttered environments.

Metric Value

Localization 5.7 cm (average
accuracy error)

Mapping 94.2% (of accessible
completeness areas)

Navigation success97.3% (reached
rate destination)
Obstacle avoidance98.6% (dynamic
success obstacles)

Average navigation0.22 m/s

Speed

Table 5.5 : NAVIGATION SYSTEM PERFORMANCE

Notably, the system achieved a 98.6% success rate in avoiding dynamic obstacles (moving people, pets)
while maintaining a comfortable average speed of 0.22 m/s, balancing efficiency with safety considerations.
6) Power Consumption and Battery Life: The power management system was evaluated under different
operational scenarios, as summarized in Table 5.6 .

[JCRTBE02089 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | 659


http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 7 July 2025 | ISSN: 2320-2882

Operational Mode [Power Battery

Consumption |Duration
Standby mode 3.8W 31.6 hours
Active monitoring  [7.2W 16.7 hours
Navigation mode  [12.5W 9.6 hours
Full operation (alll18.4W 6.5 hours
systems)

Table 5.6 : POWER CONSUMPTION AND BATTERY PERFORMANCE
The implemented power optimization strategies achieved significant improvements, with the robot operating
for 6.5 hours in full operation mode and up to 31.6 hours in standby mode. The automatic charging system
successfully initiated charging in 98.7% of low-battery situations before critical battery levels were reached.

B. Clinical Evaluation Results

Following technical validation, a pilot clinical evaluation was conducted with five cancer patients over a
two-week period in a supervised home-like environment.
1) Patient Safety Outcomes: The system demonstrated promising safety outcomes:

Detected 5/5 (100%) simulated fall events with an average response time of 1.4 seconds
Successfully alerted caregivers in 11/12 (91.7%) simulated emergency situations

No false emergency alerts were triggered during normal activities

All participants reported feeling more secure” with the robot present

2) Medication Adherence Impact: Medication adherence was measured before and during robot
assistance:

Pre-intervention adherence: 76.4% (measured by pill count)
During-intervention adherence: 92.8% (verified by robot)
Improvement: 16.4 percentage points (p j 0.01)

The most significant improvements were observed for medications with complex schedules (3+ times daily)
and those with conditional requirements (e.g., with food, before sleep).

3) Emotional Support Effectiveness: Emotional support effectiveness was assessed using standardized
questionnaires and semi-structured interviews:

Hospital Anxiety and Depression Scale (HADS) showed mean reduction of 2.7 points (p j 0.05)

4/5 patients reported that emotional support features were “helpful” or “very helpful”

Conversation logs showed increasing engagement over time (average conversation duration increased
from 45 seconds to 3.2 minutes)

The robot correctly identified emotional distress in 18/22 (81.8%) instances, providing appropriate
responses

4) Usability and User Experience: Usability was assessed using the System Usability Scale (SUS) and
NASA Task Load Index (NASA-TLX):

Mean SUS score: 74.6/100 (above industry average of 68)

NASA-TLX mental demand score: 2.3/10 (low cognitive burden)

100% of participants successfully learned to use all functions within 24 hours

Key usability challenges identified: occasional speech recognition issues in noisy environments,
difficulty in physically repositioning the robot when necessary

Caregivers also reported high satisfaction (mean 4.2/5) and significant perceived reduction in caregiver burden
during the intervention period.

C. Limitations and Challenges

Despite promising results, several limitations and challenges were identified:
1) Technical Limitations:

Navigation challenges in highly cluttered environments or homes with multiple floor levels
Reduced emotion detection accuracy in extreme lighting conditions (very dark or direct bright light)
Limited battery life during intensive usage scenarios requiring frequent charging
. Occasional false positives in fall detection during unusual but normal activities (e.g., quickly lying down)
2) Clinical Limitations:
Small sample size (n=5) and short duration (2 weeks) of clinical evaluation
Potential novelty effect influencing patient engagement and satisfaction
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Controlled environment testing may not fully represent real-world home conditions
. Limited diversity in cancer types and treatment stages among test participants
3) Ethical and Practical Considerations:
Privacy concerns with continuous monitoring, despite local processing
Risk of reduced human interaction if caregivers rely too heavily on technological assistance
Need for regular maintenance and technical support that may not be readily available
Initial cost considerations despite efforts for affordability
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V. CONCLUSION

This paper presented Smart Nurse, an Al-powered robotic healthcare assistant designed specifically for
cancer patients. The system integrates multiple Al capabilities, including fall detection, emotion recognition,
conversational support, and medication management, on an affordable and privacy preserving platform.

Summary of Contributions The main contributions of this work include:

* Development of a multimodal fall detection system with 94.8% sensitivity and 98.2% specificity, functioning
entirely on-device

 Implementation of a trimodal emotion recognition approach achieving 92.0% overall accuracy, including
specialized detection of pain expressions relevant to cancer care

* Creation of a medication management system that improved adherence by 16.4 percentage points in pilot
testing

* Design of a comprehensive hardware-software architecture optimized for reliability, privacy, and
affordability

* Validation of the system’s technical performance and preliminary clinical effectiveness in a supervised pilot

study

The results demonstrate that affordable robotic healthcare assistants with edge Al capabilities can potentially
improve safety, medication adherence, and emotional wellbeing for cancer patients, while reducing caregiver
burden.

V. FUTURE WORK
Several directions for future research and development have been identified:

e Long-term Clinical Trials: Conducting extended studies with larger, more diverse patient populations to
assess long-term effectiveness and impact on clinical outcomes

e Enhanced Al Capabilities: Developing more sophisticated emotion detection for subtle distress signals
specific to cancer patients, and expanding the knowledge base of the conversational agent

e Improved Physical Capabilities: Implementing a robotic arm for simple physical assistance tasks and
enhanced medication handling capabilities

e Integration with Healthcare Systems: Developing secure interfaces with electronic health records and
telemedicine platforms for improved care coordination

e Customization Framework: Creating a modular software and- hardware architecture allowing
customization for different cancer types and treatment regimens

e Caregiver Support Features: Expanding functionalities to support family caregivers with training,
reminders, and stress monitoring

The development of Smart Nurse represents a step toward more accessible and comprehensive technological
support for cancer care. By demonstrating that complex Al capabilities can be implemented on affordable edge
devices, this work contributes to the democratization of advanced healthcare technology.

While robotic assistants cannot and should not replace human caregivers, they can serve as valuable tools to
extend the reach of healthcare providers, support family caregivers, and enhance the independence and safety
of patients. As cancer survival rates improve, there is an increasing need for solutions that address the long-
term care and quality of life of cancer patients and survivors.

The approaches developed in this research may extend beyond cancer care to other chronic conditions requiring
continuous monitoring and support, potentially contributing to broader healthcare challenges related to aging
populations and healthcare workforce limitations.
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