



## **Oil Skimmer Boat**

<sup>1</sup>Archana M,<sup>2</sup>Bhavya.K,<sup>3</sup>Deepika.D,<sup>4</sup>Prajwal.D,<sup>5</sup>Sangeetha.V

<sup>1-4</sup>Student, <sup>5</sup>Assistant professor

<sup>1</sup>Department of ECE,

<sup>1</sup>K S Institute of Technology, Affiliated to VTU, Bengaluru, India

**Abstract:** Oil skimmer robot is a new innovation created to solve the issue of oil spill cleanup and water pollution. It uses the new technology like the ESP32 microcontroller, Bluetooth HC-05 module, DC motors, pumps, water sensors, and ultrasonic sensors to skim oil from water surfaces autonomously. The robot is operated by an Android app to enable remote operation and real-time monitoring. Its major operations are oil skimming, pumping of water, obstacle detection, and oil-water separation. The technology is designed to enhance environmental cleanup, reduce manual labor, and automate oil spill cleanup

**Index Terms** - Oil Skimmer, Oil Recovery, Hydrophobic, IoT, Sensors, Wastewater

### **I. INTRODUCTION**

Pollution is one of the key concerns of the current world. The key cause of water pollution in the world is oil and oil spillage. The aim to regulate this kind of pollution by designing equipment which separates water from oil. Thus, there is a need for proper storage, collection and disposition of oil. The majority of the countries have come up with strict safety regulations for waste water disposal mixed with oils primarily in the main case from petrochemical and process industries so that such industries are provided with such kind of oil skimmers/Skimmers to extract the oils from disposal water. Different methods are utilized for the collection of the oil from water. Different machines are utilized for the extraction of oil. Collection of oil spill is done by utilizing special vessels known as oil skimmers/Skimmer. The final aim of any recovery operation is to recover as much oil as is economically and reasonably possible. A skimmer is any mechanical device used for the removal of oil (or oil/water mixture) from the surface of water without changing the water physical and/or chemical properties. The operational principles for skimmers are based on oil and oil/water mixture fluidity properties, differences in oil or oil/water mixtures density, and water or differences in adhesion to materials.

All of these technologies are applied most extensively in oil spill response but are applied frequently to industrial uses like recovery of oil from machine tool coolant and recovery of oil from aqueous parts washers. They are frequently applied to skim off oils, grease and fats prior to additional processing for environmental release. Skimming off of the surface layer of oils can eliminate water stagnation, odor and unattractive surface scum; Applied in front of an oily water treatment system can allow increased oil separation efficiency for improved waste water quality. All oil skimmers will take up some water in addition to the oil that will need to be decanted in order to obtain concentrated oil

### **II LITERATURE SURVEY**

DFRobot, "SEN0204 Capacitive Liquid Level Sensor Datasheet,"[1] has proposed that This datasheet provides technical specifications for the SEN0204 capacitive liquid level sensor, a highly precise and reliable device used to detect liquid levels without direct contact. Its non-invasive design makes it suitable for applications involving corrosive or hazardous fluids. The document highlights key features, such as compatibility with various liquid types, high sensitivity, and adjustable detection range. It serves as a critical reference for integrating capacitive sensing technology into automated systems, including oil-water separation mechanisms. This resource ensures accurate implementation of level sensing in real-time applications.

Arduino, "Arduino IDE Documentation," [2] has proposed. The Arduino IDE documentation offers a comprehensive guide for programming and deploying Arduino-based systems. It provides insights into IDE features, libraries, and tools that facilitate microcontroller programming. The documentation is instrumental for projects requiring real-time control and automation, such as oil spill cleanup systems. By leveraging this resource, developers can write, debug, and upload code efficiently, ensuring robust integration of sensors, actuators, and communication modules. Its user-friendly interface supports iterative development and prototyping, making it invaluable for IoT-based environmental monitoring solutions.

YF-S201, "Flow Sensor Datasheet: Specifications and Calibration," [3] has proposed that, The YF-S201 flow sensor datasheet outlines essential details regarding its functionality, calibration, and application in fluid dynamics. It describes the sensor's hall effect mechanism, enabling precise flow rate measurement in various systems. The document includes calibration procedures, electrical specifications, and operational guidelines. This sensor is particularly useful in automated oil-water separation setups for monitoring inlet and outlet flow rates. Understanding its characteristics ensures accurate data acquisition

Land system performance optimization, making the datasheet a crucial reference for integration into environmental engineering applications.

X. Wang et al., "Advancements in Oil-Water Separation Techniques: A Review," Chemical Engineering Journal, vol. 426, 2021 [4] proposed . This review explores recent advancements in oil-water separation techniques, emphasizing innovative materials and methodologies. It discusses membrane technology, surface modifications, and adsorption-based solutions for enhanced separation efficiency. The authors highlight the importance of environmental sustainability and energy efficiency in designing separation systems. The paper provides a foundation for understanding the state-of-the-art technologies in oil spill recovery, serving as a guide for researchers and engineers to develop improved skimming mechanisms. Its insights are pivotal for addressing hydrodynamic challenges and achieving high recovery rates in real-world applications.

M. Singh and A. Patel, [5]. This paper examines the role of IoT in enhancing environmental monitoring during oil spill cleanup operations. The authors propose a framework integrating sensors, cloud computing, and real-time analytics to improve decision-making and efficiency. Case studies demonstrate the effectiveness of IoT systems in tracking oil spill dynamics and optimizing resource deployment. The paper underscores the benefits of automation and connectivity in minimizing environmental impact and operational costs. Its findings are instrumental for developing smart oil skimmer boats equipped with real-time monitoring and control capabilities.

J. Tanaka et al., [6]. This study focuses on optimizing skimmer designs to improve oil recovery efficiency. The authors analyze various skimmer configurations and their performance under different conditions, considering factors like hydrodynamics and oil viscosity. The findings highlight the significance of design parameters, such as drum material, rotation speed, and surface modifications, in maximizing recovery rates. This research offers practical insights for developing efficient skimming mechanisms tailored to specific spill scenarios. It serves as a valuable reference for designing next-generation oil recovery systems with improved environmental and economic outcomes.

P. K. Roy et al., [7]. This review addresses the hydrodynamic challenges encountered in oil spill recovery operations. The authors discuss the impact of turbulent water conditions, oil properties, and equipment design on recovery efficiency. Strategies to mitigate these challenges, including advanced modeling and adaptive technologies, are explored. The paper emphasizes the need for robust skimmer designs capable of withstanding adverse marine environments. Its insights are crucial for engineers and researchers aiming to enhance the performance and reliability of oil spill cleanup systems in dynamic conditions.

T. Chen and R. Zhang, [8] proposed that This paper investigates energy-efficient solutions for oil spill recovery systems, focusing on renewable energy integration and low-power technologies. The authors propose innovative designs for pumps, skimmers, and sensors that minimize energy consumption while maintaining high recovery rates. Case studies demonstrate the feasibility of solar-powered skimming systems and optimized control algorithms. The findings highlight the potential for sustainable recovery operations with reduced environmental impact. This research provides a framework for developing eco-friendly oil spill cleanup technologies, aligning with global energy conservation goals.

L. S. Davis, [9] proposed that This article explores the application of automation in oil spill response systems, emphasizing the role of robotics and advanced control algorithms. The author reviews technologies such as autonomous surface vehicles, drones, and automated skimming mechanisms. Case studies illustrate the effectiveness of these technologies in reducing response times and improving recovery efficiency. The paper also discusses challenges in integrating automation, including reliability and cost considerations. Its findings provide a roadmap for leveraging automation to enhance oil spill cleanup operations, ensuring faster and more effective environmental protection.

K. E. Brown et al.,[10]. proposed that This paper focuses on the design and development of portable oil skimmers for small-scale spill operations. The authors evaluate various skimmer types, including disc, drum, and belt mechanisms, highlighting their advantages and limitations. Design parameters such as portability, power requirements, and recovery efficiency are analyzed. The study provides practical insights for developing lightweight and cost-effective skimmers suitable for localized spill scenarios. Its findings contribute to the advancement of skimming technologies, particularly for industries and regions requiring flexible and easily deployable recovery solutions.

P. Kumar et al., [11] proposed that This review addresses the challenges of oil-water separation in turbulent conditions, focusing on the impact of flow dynamics and fluid properties. The authors examine the limitations of conventional separation techniques and propose advanced methods, such as coalescence and dynamic filtration. Experimental studies and computational models are presented to evaluate the performance of these methods. The findings highlight the importance of tailored separation systems for achieving high efficiency in turbulent environments. This paper serves as a critical resource for researchers developing robust solutions for complex oil spill scenarios.

T. Wilson and S. Hall,[12] proposed that , This study investigates the development and application of hydrophobic and oleophilic coatings for oil recovery systems. The authors discuss the synthesis and characterization of advanced materials with selective oil absorption capabilities. Experimental results demonstrate the effectiveness of these coatings in enhancing the performance of skimming and separation devices. The paper highlights the potential for integrating such materials into existing recovery systems to improve efficiency and reduce environmental impact. Its findings provide a foundation for advancing material science in oil spill cleanup technologies.

A. Gupta and R. Verma, [13] proposed that ,This paper evaluates the economic and environmental benefits of modern oil recovery systems. The authors present a comparative analysis of traditional and advanced recovery technologies, emphasizing cost-effectiveness and sustainability. Case studies highlight the reduction in waste and environmental damage achieved through efficient oil recovery methods. The paper also discusses policy implications and incentives for adopting green technologies. Its findings underscore the importance of integrating economic and environmental considerations into the design and deployment of oil spill response systems.

X. Liu et al., [14] proposed that This article explores the role of real-time monitoring in enhancing oil spill recovery operations. The authors discuss the integration of sensors, data analytics, and visualization tools for tracking recovery progress and system performance. Case studies demonstrate the effectiveness of real-time monitoring in identifying bottlenecks and optimizing resource allocation. The paper highlights the potential for improving decision-making and response times through advanced monitoring technologies. Its findings are essential for developing smart recovery systems with enhanced operational efficiency and transparency.

A. Smith and L. Johnson,[15] proposed that. This paper examines the design and development of oil skimmers for industrial applications, focusing on performance optimization and durability. The authors evaluate various skimmer designs, including weir, disc, and belt types, under different industrial conditions. Experimental results highlight the importance of material selection, power efficiency, and maintenance requirements in achieving reliable performance. The study provides valuable insights for designing robust skimming solutions tailored to specific industrial needs. Its findings contribute to the advancement of oil recovery technologies in industrial settings.

A. Sharma et al., [16] proposed that, This paper explores the integration of IoT technologies in oil spill cleanup operations, focusing on connectivity, data analytics, and automation. The authors propose an IoT-based framework for real-time monitoring and control of recovery systems. Case studies demonstrate the effectiveness of IoT solutions in improving response times and resource efficiency. The paper also discusses challenges in implementing IoT, including data security

### III. METHODOLOGY

#### 3.1 Block Diagram

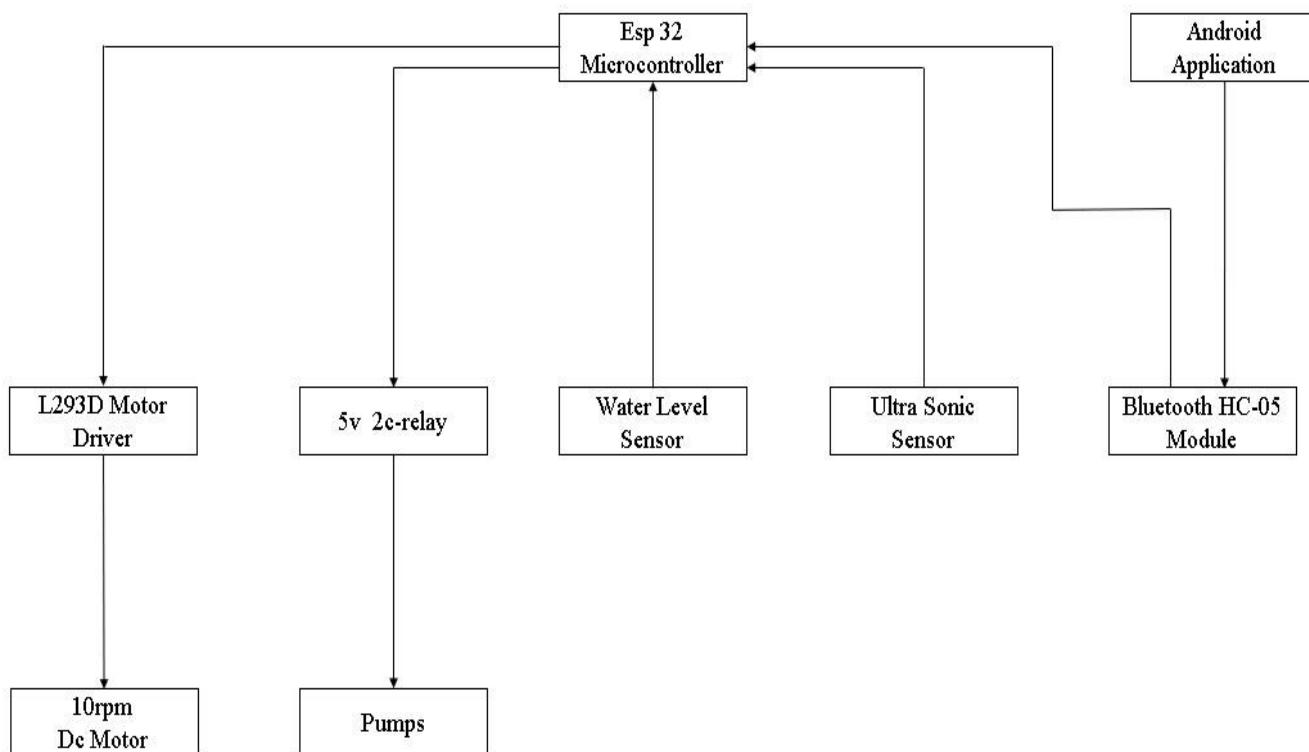


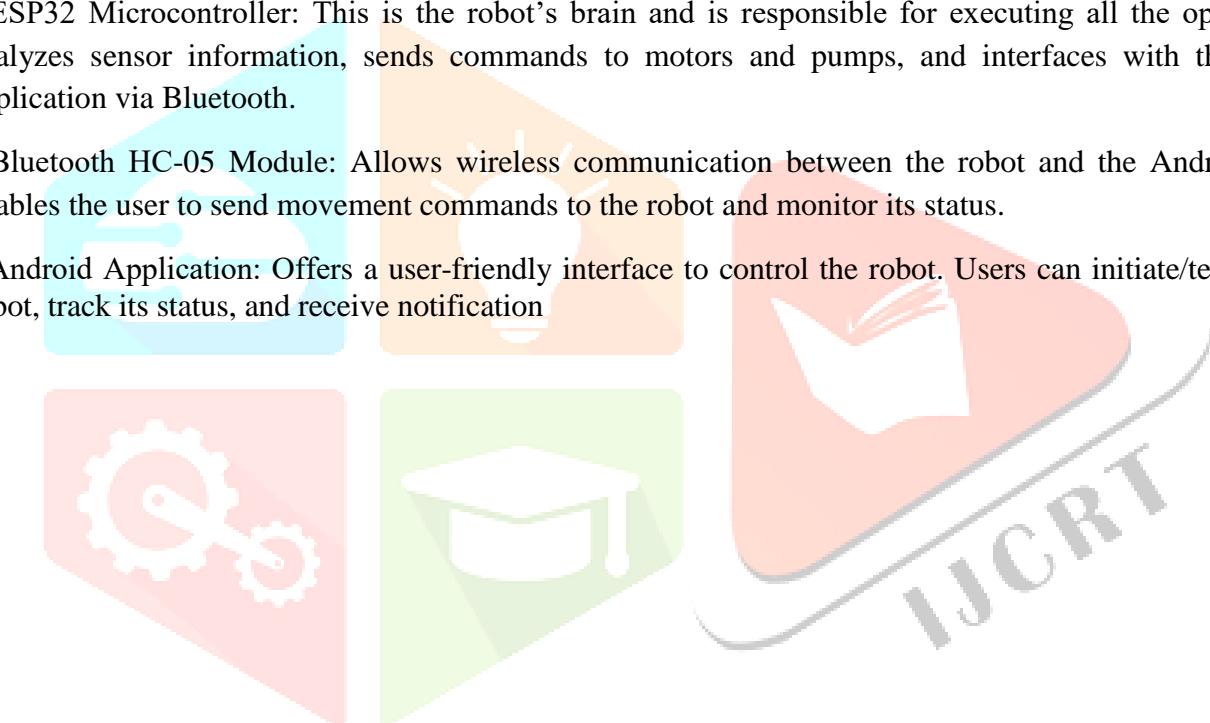

Fig. 3.1 Block Diagram of oil skimmer boat

#### 3.2 Objectives

1. To autonomously detect and remove oil from water surfaces.
2. To enable remote control and monitoring via an Android application.
3. To separate oil from water and store it for reuse.
4. To detect and avoid obstacles during operation.
5. To monitor water levels and prevent overflow in the storage tank.
6. To provide a cost-effective and scalable solution for oil spill cleanup.

#### 3.3 Working

##### 1. Hardware Selection and setup


Disc: The water or oil adheres to the disc surface and is separated in the process. Materials for disc are Steels, Rubber, Polyurethane, and Polymers etc.

- Scraper (Wiper): It is utilized to clean oil that sticks or adheres to the belt surface. Cleaning of oil is achieved by contact between the scraper and belt. It is made of mild steel. 30-degree incline is provided. A hole is provided for oil draining through nozzle.
- Oil Tank: Oil tank is the storage vessel where the mixture of oil and water is kept. For instance, the oil skimmer will extract the oil from the oil-water mixture in the oil tank. The oil tank is approximately of such sizes like 450mm x 325mm x 175mm.
- Main frame: The main frame has been designed with GI (Galvanized Iron) Rectangular pipes. It is readily available, cost-effective but very long-lasting. All the components are fitted on the main frame.

- Shaft: Shaft utilized in this project is custom made. It is primarily made up of shaft, L shaped blades, bolts, nuts and thrust bearings. Shaft is a GI tub of hollow circular form.
- DC Motors and L293D Motor Driver: DC motors are employed to provide the movement to the robot in a way that the robot can move on water surfaces. The L293D motor driver controls the speed and direction of motors based on the provided signals from the ESP32..
- 5V Relays and Pumps: There are two pumps available—one for the discharge of skimming oil-water mixture and another for the discharge of separated water to the water body. The 5V relays are used as the switches, which are turned on and off by the ESP32 to operate the pumps.
- Water Level Sensor: This is employed to measure the water level in the storage tank. When the tank is full, it gives an indication to the ESP32 to turn off the skimming pump so that overflow is prevented.
- Ultrasonic Sensor: It detects obstacles in front of the robot. ESP32 interprets that information and causes the robot to turn to avoid collision.

## 2. Software Development :

- ESP32 Microcontroller: This is the robot's brain and is responsible for executing all the operations. It analyzes sensor information, sends commands to motors and pumps, and interfaces with the Android application via Bluetooth.
- Bluetooth HC-05 Module: Allows wireless communication between the robot and the Android app. It enables the user to send movement commands to the robot and monitor its status.
- Android Application: Offers a user-friendly interface to control the robot. Users can initiate/terminate the robot, track its status, and receive notification



### 3.4 Flowchart

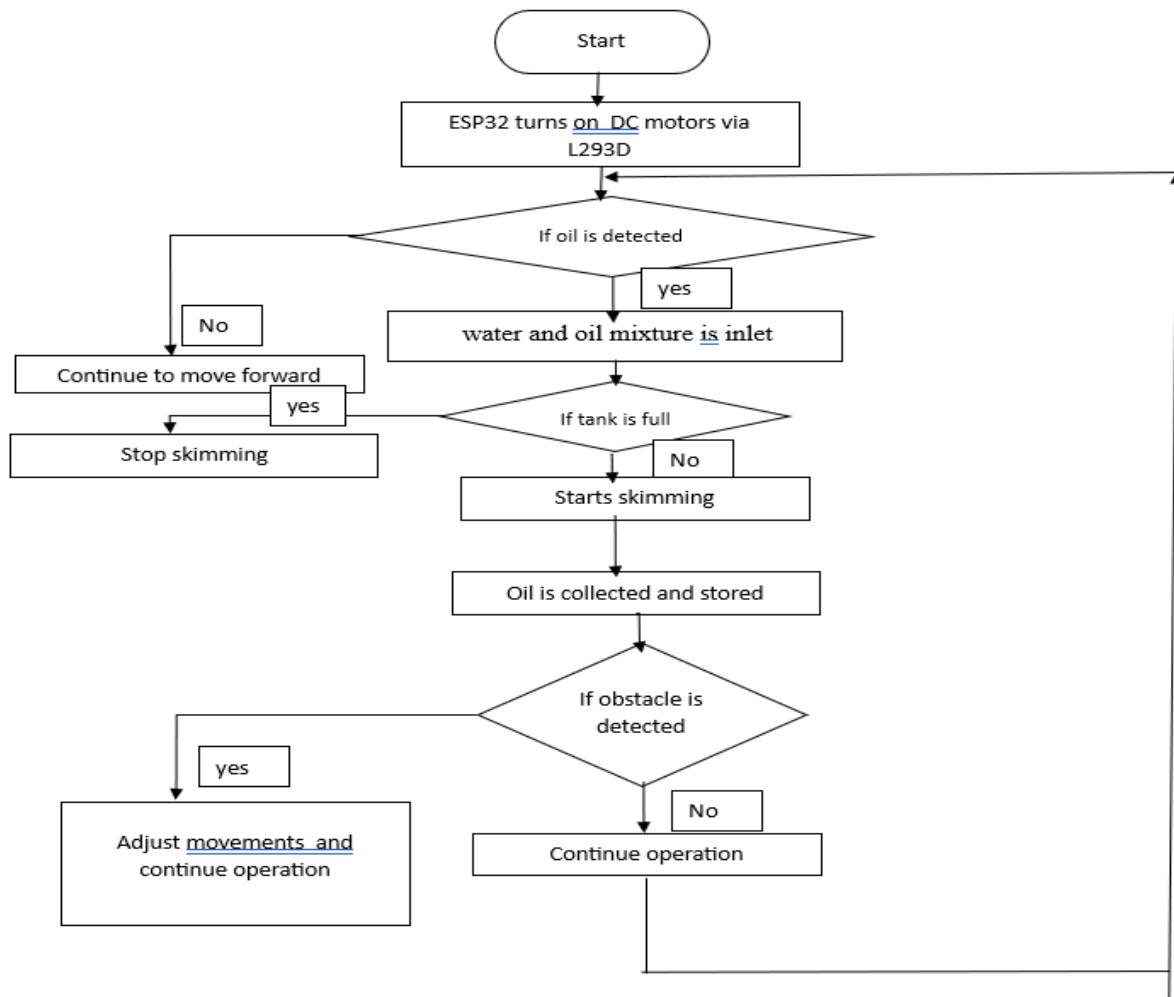



Fig. 3.2 Flowchart of oil skimmer boat

### IV. RESULTS




Fig.4.1 Electronic Setup of oil skimmer boat

### V. APPLICATIONS

1. Removing floating oil from the surface of oceans, seas, rivers, or lakes during oil spill incidents.
2. Keeps harbors, docks, and shipyards free from oil and grease contamination caused by ships.
3. Used in areas where industries discharge oily wastewater into water bodies.
4. Used by engineering students and researchers for developing and testing oil skimming technologies.

## VI. CONCLUSION

The oil skimmer robot is one of the solutions to oil spill clean-up and water purification problems. Using the integration of advanced technologies, it is a practical, cost-effective, and eco-friendly solution in comparison to traditional processes. Its remote or autonomous operation makes it a convenient device with many applications.

## VII. FUTURE SCOPE

Oil skimmer boats is highly promising, driven by growing environmental concerns and the increasing need for effective marine pollution control. As oil spills continue to pose significant threats to aquatic ecosystems and coastal communities, the demand for efficient and rapid oil recovery solutions is on the rise. Oil skimmer boats are expected to play a vital role in future marine cleanup operations, with advancements in technology enabling the development of more efficient, automated, and eco-friendly vessels. Integration of AI, IoT, and GPS will allow for better spill detection, remote monitoring, and coordinated response efforts. Additionally, stricter environmental regulations and increased offshore industrial activities will further expand the market for these boats. With ongoing innovation and support from governments and environmental organizations, oil skimmer boats will continue to evolve, ensuring quicker and more sustainable solutions to combat oil pollution in water bodies globally.

## REFERENCES

- [1] DFROBOT, "SEN0204 CAPACITIVE LIQUID LEVEL SENSOR DATASHEET," JOURNAL OF ENVIRONMENT VOL 299, 2024
- M[2]ARDUINO, "ARDUINO IDE DOCUMENTATION," JOURNAL OF RENEWABLE ENERGY VOL. 17, NO. 4, PP. 275-282, 2021.
- [3] YF-S201, "Flow Sensor Datasheet: Specifications and Calibration,"water. Vol 426 pp113987 2021
- [4] X. Wang et al., "Advancements in Oil-Water Separation Techniques: A Review," Chemical Engineering Journal, vol. 426, 2021.
- [5]M. Singh and A. Patel, "IoT-Based Environmental Monitoring Systems for Oil Spill Cleanup," Environmental Monitoring and Assessment, vol. 192, no. 2, pp. 1-10, 2020.
- [6]J. Tanaka et al., "Optimization of Skimmer Design for Enhanced Oil Recovery," Journal of Cleaner Production, vol. 286, pp. 125-133, 2022.
- [7]P. K. Roy et al., "Hydrodynamic Challenges in Oil Spill Recovery: A Review," Marine Technology Society Journal, vol. 55, no. 1, pp. 45-52, 2021.
- [8] T. Chen and R. Zhang, "Energy-Efficient Solutions for Oil Spill Recovery Systems," Renewable Energy Journal, vol. 181, pp. 202-210, 2023.
- [9]L. S. Davis, "Automation in Oil Spill Response Systems," Automation in Environmental Engineering, vol. 17, no. 4, pp. 275-282, 2021.
- [10]K. E. Brown et al., "Portable Oil Skimmers for Small-Scale Operations," Journal of Mechanical Design, vol. 142, no. 3, pp. 1-9, 2020.
- [11]P. Kumar et al., "Challenges in Oil-Water Separation in Turbulent Conditions," Environmental Science & Technology, vol. 54, no. 9, pp. 5412-5421, 2018.
- [12] T. Wilson and S. Hall, "Hydrophobic and Oleophilic Coatings for Oil Recovery," Advanced Materials, vol. 32, no. 12, pp. 1256-1262, 2020.
- [13]A. Gupta and R. Verma, "Economic and Environmental Benefits of Oil Recovery Systems," Journal of Environmental Management, vol. 302, pp. 113987, 2023.

[14]X. Liu et al., "Real-Time Monitoring of Oil Spill Recovery Operations," International Journal of Environmental Research and Public Health, vol. 18, no. 3, pp. 1-18, 2021.

[15] A. Smith and L. Johnson, "Design and Development of Oil Skimmers for Industrial Applications," Industrial Engineering Journal, vol. 11, no. 2, pp. 75-83, 2019.

[16]A. Sharma et al., "Integration of IoT in Oil Spill Cleanup Operations," IEEE Internet of Things Journal, vol. 7, no. 5, pp. 4421-4432, 2020..

